Course Code: MSCH6002 Course Name: Reagents and Heterocyclic Chemistry

Oxidation Reactions: Ozonolysis and Bayer-Villiger Reaction

UNIVERSITY

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

TOPICS TO BE COVERED

- Ozonolysis reaction
- Mechanism of Ozonolysis
- Epoxidation of alkene
- Baeyer–Villiger Oxidation and Mechanism

UNIVERSITY

Examples of Different Reaction

Course Code : MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Oxidative Cleavage of Alkenes by Ozonolysis

$$C = C \left(\begin{array}{c} 1. O_3, -78 °C \\ \hline 2. work-up \end{array} \right) C = O + O = C \left(\begin{array}{c} \\ \\ \end{array} \right)$$

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Mechanism of Ozonolysis

The alkene and ozone will undergo a concerted cycloaddition reaction to form molozonide. Molozonide is unstable as it has two O-O bonds, so rearranges to form stable ozonide.

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Ozonides can be cleaved to carbonyl compounds by oxidative cleavage in presence of H₂O₂ and reductive cleavage in presence of Zn/H₂O.

Course Code : MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Examples of the Oxidative Cleavage of Alkenes by Ozonolysis

$$CH_3CH_2CH_2CH_2CH_2 \xrightarrow{\textbf{1. O}_3} CH_3CH_2CH_2COH + CO_2$$

$$CH_{3}CH_{2}CH = CCH_{2}CH_{3} \xrightarrow{\textbf{1. O}_{3}} CH_{2}COH + CH_{3}CCH_{2}CH_{3}$$

$$CH_{3}$$

Name of the Faculty: Dr. Subhalaxmi Pradhan

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Examples of the Reductive Cleavage of Alkenes by Ozonolysis

$$CH_3CH_2CH_2 \xrightarrow{CH=CH_2} \xrightarrow{1. O_3} CH_3CH_2CH_2CH + HCH$$

$$CH_{3}CH_{2}CH = CHCH_{2}CH_{3} \qquad \frac{1. O_{3}}{2. (CH_{3})_{2}S} \qquad 2 CH_{3}CH_{2}CH$$

$$CH_{3} \qquad \frac{1. O_{3}}{2. Zn, H_{2}O} \qquad CH_{3}CCH_{2}CH_{2}CH_{2}CH_{2}CH$$

Name of the Faculty: Dr. Subhalaxmi Pradhan

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

A peroxyacid, OsO₄, and (cold basic) KMnO₄ break only the p bond of the alkene. Ozone and acidic KMnO₄ break both the p bond and the s bond

$$CH_{3}CH_{2}C=CHCH_{3} \xrightarrow{KMnO_{4}, HO^{-}} CH_{3}CH_{2}CCH_{3} + CH_{3}CO^{-}$$

$$CH_{3}CH_{2}CH=CH_{2} \xrightarrow{KMnO_{4}} CH_{3}CH_{2}COH + CO_{2}$$

$$CH_{3}CH_{2}CH=CH_{2} \xrightarrow{KMnO_{4}, HO^{-}} CH_{3}CH_{2}COH + CO_{2}$$

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Oxidative Cleavage of Alkynes

$$CH_{3}C = CCH_{2}CH_{3}$$

$$CH_{3}C = CCH_{2}CH_{3}$$

$$CH_{3}C = CCH_{2}CH_{3}$$

$$CH_{3}C = CCH_{2}CH_{3}$$

$$CH_{3}COH + CH_{3}CH_{2}COH$$

$$CH_{3}CH_{2}CH_{2}C = CH$$

$$CH_{3}CH_{2}CH_{2}CH_{2}COH + CO_{2}$$

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Oxidation of Alkenes with Peroxyacids

Mechanism of Epoxidation of an Alkene

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Stereochemistry of Epoxidation of alkene

The addition of oxygen to an alkene is a stereospecific reaction.

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Baeyer-Villiger Oxidation

Ketones on oxidation with peracids converted into esters and cyclic ketones into lactones. This reaction was discovered by Bayer and Villiger

in 1899.

Course Code : MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Mechanism of Baeyer-Villiger Oxidation

Reagents used to carry out this reaction is peracetic acid, perbenzoic acid and m-CPBA. The oxygen of peracid behaves as anucleophile and adds to the carbonyl carbon of ketone.

This reaction proceeds by a concerted intramolecular process involving migration of a group from carbon to electron deficient oxygen.

Name of the Faculty: Dr. Subhalaxmi Pradhan

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Migratory ability of groups in Baeyer-Villiger Oxidation

An unsymmetrical ketone may give two different products due to migration of different groups. But the group with highest migratory ability will migrate fast to give predominant product.

relative migration tendencies

H > tert-alkyl > sec-alkyl = phenyl > primary alkyl > methyl

increasing tendency to migrate

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Examples

Course Code: MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Course Code : MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

Summary of Oxidation of Alkenes

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3}\text{C} = \text{CHCH}_{3} \\ \end{array} \xrightarrow{\text{RCOOH}} \xrightarrow{\text{CH}_{3}\text{C}} \xrightarrow{\text{CHCH}_{3}} \\ \xrightarrow{\text{1. O}_{3}} \xrightarrow{\text{CH}_{3}\text{CCH}_{3}} + \text{CH}_{3}\text{CH} \\ \xrightarrow{\text{1. O}_{3}} \xrightarrow{\text{2. In}, \text{H}_{2}\text{O}} \xrightarrow{\text{CH}_{3}\text{CCH}_{3}} + \text{CH}_{3}\text{COH} \\ \xrightarrow{\text{1. O}_{3}} \xrightarrow{\text{2. In}, \text{CH}_{2}\text{O}} \xrightarrow{\text{CH}_{3}\text{CCH}_{3}} + \text{CH}_{3}\text{COH} \\ \xrightarrow{\text{KMnO}_{4}} \xrightarrow{\text{HO}_{4}} \xrightarrow{\text{CH}_{3}\text{CCH}_{3}} + \text{CH}_{3}\text{COH} \\ \xrightarrow{\text{KMnO}_{4}, \text{HO}^{-}, \text{H}_{2}\text{O}} \xrightarrow{\text{CH}_{3}\text{CCH}_{3}} \xrightarrow{\text{CHCH}_{3}} \xrightarrow{\text{CHCH}_{3}} \xrightarrow{\text{CH}_{3}\text{CCH}_{3}} + \text{CH}_{3}\text{CH} \\ \xrightarrow{\text{CH}_{3}\text{C}\text{CH}_{3}} \xrightarrow{\text{CH}_{3}\text{CCH}_{3}} \xrightarrow{\text{CH}_{3}\text{CCH}_{3}} \xrightarrow{\text{CH}_{3}\text{CCH}_{3}} + \text{CH}_{3}\text{CH} \\ \xrightarrow{\text{CH}_{3}\text{C}\text{CH}_{3}} \xrightarrow{\text{CH}_{3}\text{C}\text{CH}_{3}} \xrightarrow{\text{CH}_{3}\text{CCH}_{3}} \xrightarrow{\text{CH}_{3}\text{CCH}_{3}} + \text{CH}_{3}\text{CH} \\ \xrightarrow{\text{CH}_{3}\text{C}\text{CH}_{3}} \xrightarrow{\text{CH}_{3}\text{CCH}_{3}} \xrightarrow{\text{CH}_{3}\text{CCH}_{3}} \xrightarrow{\text{CH}_{3}\text{CCH}_{3}} + \text{CH}_{3}\text{CH} \\ \xrightarrow{\text{CH}_{3}\text{C}\text{CH}_{3}} \xrightarrow{\text{CH}_{3}\text{CCH}_{3}} \xrightarrow{\text{CH}_{3}\text{CH}_{3}} \xrightarrow{\text{CH}_{3}\text{CCH}_{3}} \xrightarrow{\text{CH}_{3}\text{CCH}_{3}} \xrightarrow{\text{CH}_{3}\text{CH}_{3}} \xrightarrow{\text{CH}_{3}\text{CH}_{3$$

Name of the Faculty: Dr. Subhalaxmi Pradhan

Course Code: MSCH6002 Course Name: Reagents and Heterocyclic Chemistry

References

- W. Carruthers, Some Modern Methods of Organic Synthesis, 3rd edition, Cambridge University Press, New York, 1998.
- J. Clayden, N. Greeves and S. Warren, Organic Chemistry, Oxford University Press, 2nd edition, 2012.
- T.L. Gilchrist, Heterocyclic Chemistry, 3rd edition, Addison-Wesley Longman Ltd., England, 1997.

UNIVERSITY

 https://www.google.com/search?q=baeyervilliger+oxidation+ppt&source=lmns&bih=625&biw=1366&rlz=1C1CHBD_enIN920IN920&hl=en&sa=X&ved= =2ahUKEwiV-r3UoZ3sAhUtJLcAHQXNBAUQ_AUoAHoECAEQAA

Course Code : MSCH6002

Course Name: Reagents and Heterocyclic Chemistry

