School of Basic and Applied Sciences

Course Code : BSCC2003 Course Name: Inorganic Chemistry II

BRONSTED LOWRY: CONJUGATE ACID BASE PAIR

GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. Pooja Agarwal

Program Name: B.Sc. (H)Chemistry

PREREQUISITES

- Arrhenius concept of acids and bases.
- Hydrogen donor and acceptor species

LEARNING OUTCOMES

- Knowledge of Lowry concept of acids and bases
- Conjugated acid base pair concept

What distinguishes an acid from a base in the Brønsted-Lowry theory?

Sodium carbonate (Na_2CO_3) and ammonia (NH_3) act as bases when they form aqueous solutions.

 Neither of these compounds is a hydroxidecontaining compound, so neither would be classified as a base by the Arrhenius definition.

UNIVERSITY

In 1923, the Danish chemist Johannes Brønsted and the English chemist Thomas Lowry were working independently.

• Each chemist proposed the same definition of acids and bases.

According to the Brønsted-Lowry theory, an acid is a hydrogen-ion donor and a base is a hydrogen-ion acceptor.

- This theory includes all the acids and bases that Arrhenius defined.
- It also includes some compounds that Arrhenius did not classify as bases.

You can use the Brønsted-Lowry theory to understand why ammonia is a base.

• When ammonia dissolves in water, hydrogen ions are transferred from water to ammonia to form ammonium ions and hydroxide ions.

You can use the Brønsted-Lowry theory to understand why ammonia is a base.

• When ammonia dissolves in water, hydrogen ions are transferred from water to ammonia to form ammonium ions and hydroxide ions.

 Water is a Brønsted-Lowry acid because it donates hydrogen ions.

Conjugate Acids and Bases

When the temperature of an aqueous solution of ammonia is increased, ammonia gas is released.

 $NH_3(aq) + H_2O(l) \implies NH_4^+(aq) + OH^-(aq)$

- HNH_4^+ reacts with OH^- to form more NH_3 and H_2O .
- In the reverse reaction, ammonium ions donate hydrogen ions to hydroxide ions.
 - NH₄⁺ (the donor) acts as a Brønsted-Lowry acid, and OH⁻ (the acceptor) acts as a Brønsted-Lowry base.

Conjugate Acids and Bases

In essence, the reversible reaction of ammonia and water has two acids and two bases.

 $NH_{3}(aq) + H_{2}O(l) \implies NH_{4}^{+}(aq) + OH^{-}(aq)$ Base Acid Conjugate Conjugate base

Conjugate Acids and Bases

A <u>conjugate acid</u> is the ion or molecule formed when a base gains a hydrogen ion.

• NH_4^+ is the conjugate acid of the base NH_3 .

Conjugate Acids and Bases

A <u>conjugate base</u> is the ion or molecule that remains after an acid loses a hydrogen ion.

• OH^- is the conjugate base of the acid H_2O .

 $NH_{3}(aq) + H_{2}O(l) \implies NH_{4}^{+}(aq) + OH^{-}(aq)$ Base Acid Conjugate Conjugate base

Conjugate Acids and Bases

Conjugate acids are always paired with a base, and conjugate bases are always paired with an acid.

 A <u>conjugate acid-base pair</u> consists of two ions or molecules related by the loss or gain of one hydrogen ion.

Conjugate Acids and Bases

- The ammonia molecule and the ammonium ion are a conjugate acid-base pair.
- The water molecule and the hydroxide ion are also a conjugate acid-base pair.

$$NH_{3}(aq) + H_{2}O(l) \implies NH_{4}^{+}(aq) + OH^{-}(aq)$$

Base Acid Conjugate Conjugate base

Conjugate Acids and Bases

In this reaction, hydrogen chloride is the hydrogenion donor and is by definition a Brønsted-Lowry acid. Water is the hydrogen-ion acceptor and a Brønsted-Lowry base.

- The chloride ion is the conjugate base of the acid HCI.
- The hydronium ion is the conjugate acid of the water base.

Conjugate Acids and Bases

The figure below shows the reaction that takes place when sulfuric acid dissolves in water.

- The products are hydronium ions and hydrogen sulfate ions.
- Use the figure to identify the two conjugate acidbase pairs.

Interpret Data

Some Conjugate Acid-Base Pairs	
Acid	Base
HCI	C⊢
H ₂ SO ₄	HSO_4^-
H ₃ O ⁺	H ₂ O
HSO ₄ -	SO4 ²⁻
CH ₃ COOH	CH_3COO^-
H ₂ CO ₃	HCO ₃ -
HCO ₃ -	CO ₃ ^{2–}
NH_4^+	NH ₃
H ₂ O	OH-

GALGC UNIVE

Amphoteric Substances

Note that water appears in both the list of acids and the list of bases.

- Sometimes water accepts a hydrogen ion.
- At other times, it donates a hydrogen ion.
- How water behaves depends on the other reactant.

	Some Conjugate Acid-Base Pairs		
	Acid	Base	
	HCI	C⊢	
	H ₂ SO ₄	HSO_4^-	
	H ₃ O ⁺	H ₂ O	
	HSO ₄ ⁻	SO4 ²⁻	
1	CH₃COOH	CH ₃ COO ⁻	
	H ₂ CO ₃	HCO ₃ -	
	HCO ₃ -	CO ₃ ^{2–}	
	NH ₄ ⁺	NH ₃	
	H ₂ O	OH-	

Amphoteric Substances

A substance that can act as either an acid or a base is said to be **amphoteric**.

- Water is amphoteric.
 - In the reaction with hydrochloric acid, water accepts a proton and is therefore a base.
 - In the reaction with ammonia, water donates a proton and is therefore an acid.

How can one substance, such as water, be both an acid and a base, according to the Brønsted-Lowry definition?

How can one substance, such as water, be both an acid and a base, according to the Brønsted-Lowry definition?

Because water can act as both a hydrogen-ion donator and a hydrogen-ion acceptor, it can act as both an acid and a base according to the Brønsted-Lowry definition.

REFERENCES

Naiman, B. (1948). The Bronsted concept of acids and bases in quantitative analysis. *Journal of Chemical Education*, *25*(8), 454.

Kauffman, G. B. (1988). The Bronsted-Lowry acid base concept. *Journal of Chemical Education*, *65*(1), 28.

Bandiera, J., Dufaux, M., & Taârit, Y. B. (1997). Effect of the brønsted acid site strength on the cracking and dehydrogenating properties in propane conversion evidence for the soft-soft/hard-hard acid-base interaction concept. *Applied Catalysis A: General*, *148*(2), 283-300.

Deford, D. D. (1950). The Bronsted concept in calculation; involving acid-base equilibria. *Journal of Chemical Education*, *27*(10), 554.