

 School of Computing

 Science and Engineering

Program: B.Tech CSE

Course Code: BCSE2073

Course Name: Database Management System

 School of Computing Science and Engineering
 Course Code :BCSE2073 Course Name : DBMS

Program Name: B.Tech Program Code: BCSE2073

Course Outcomes :

CO Number Title CO

CO1 Explain Database Architecture and Representation Models

CO2 Use DDL and DML commands using SQL to retrieve data from the given table

CO3 Use Normalization techniques to design a database for a given application

CO4 Describe the transaction processing concept and apply storage techniques

CO5 Describe the concurrency control process and various relevant protocols

 School of Computing Science and Engineering

 Course Code :BCSE2073 Course Name : DBMS

 Course Prerequisites

Basic knowledge of data.

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering

 Course Code :BCSE2073 Course Name : DBMS

Syllabus

Program Name: B.Tech Program Code: BCSE2073

Unit I: Introduction 9 lecture hours

Introduction: An overview of database management system, database system Vs file system, Database system concept and architecture, data model schema and

instances, data independence and database language and interfaces, data definitions language, DML, Overall Database Structure.

Data modeling using the Entity Relationship Model: ER model concepts, notation for ER diagram, mapping constraints, keys, Concepts of Super Key, candidate

key, primary key, Generalization, aggregation, reduction of an ER diagrams to tables, extended ER model, relationship of higher degree.

Unit II: Relational data Model and Language 11 lecture hours

Relational data model concepts, integrity constraints, entity integrity, referential integrity, Keys constraints, Domain constraints, relational algebra, relational

calculus, tuple and domain calculus.

Introduction on SQL: Characteristics of SQL, advantage of SQL. SQl data type and literals. Types of SQL commands. SQL operators and their procedure. Tables,

views and indexes. Queries and sub queries. Aggregate functions. Insert, update and delete operations, Joins, Unions, Intersection, Minus, Cursors, Triggers,

Procedures in SQL/PL SQL

Unit III: Data Base Design & Normalization 8 lecture hours

Functional dependencies, normal forms, first, second, third normal forms, BCNF, inclusion dependence, loss less join decompositions, normalization using FD,

MVD, and JDs, alternative approaches to database design.

Unit IV: Transaction Processing Concept 8 lecture hours

Transaction system, Testing of serializability, serializability of schedules, conflict & view serializable schedule, recoverability, Recovery from transaction failures,

log based recovery, checkpoints, deadlock handling. Distributed Database: distributed data storage, concurrency control, directory system.

Unit V: Concrrency Control Techniques 8 lecture hours

Concurrency control, Locking Techniques for concurrency control, Time stamping protocols for concurrency control, validation based protocol, multiple

granularity, Multi version schemes, Recovery with concurrent transaction, case study of Oracle.

 School of Computing Science and Engineering
 Course Code :BCSE2073 Course Name : DBMS

 Contents

Transaction System

Transaction State

 Serializability of schedules,

 conflict & view serializable

Testing of Serializability

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Introduction to Transaction Processing

• A Transaction: logical unit of database processing that

includes one or more access operations (read -retrieval, write -

insert or update, delete).

• A transaction (set of operations) may be stand-alone

specified in a high level language like SQL submitted

interactively, or may be embedded within a program.

• Transaction boundaries: Begin and End transaction.

• An application program may contain several transactions

separated by the Begin and End transaction boundaries.

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Introduction to Transaction Processing

• A transaction is a unit of program execution that accesses and
possibly updates various data items.

• A transaction must see a consistent database.

• During transaction execution the database may be inconsistent.

• When the transaction is committed, the database must be
consistent.

• Two main issues to deal with:

– Failures of various kinds, such as hardware failures and
system crashes

– Concurrent execution of multiple transactions

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

SIMPLE MODEL OF A DATABASE (for purposes
of discussing transactions):

• A database - collection of named data items

• Granularity of data - a field, a record , or a whole disk block
(Concepts are independent of granularity)

• Basic operations are read and write

– read_item(X): Reads a database item named X into a
program variable. To simplify our notation, we assume that
the program variable is also named X.

– write_item(X): Writes the value of program variable X
into the database item named X.

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

READ AND WRITE OPERATIONS

• Basic unit of data transfer from the disk to the computer

main memory is one block. In general, a data item (what is
read or written) will be the field of some record in the
database, although it may be a larger unit such as a record or
even a whole block.

• read_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory (if that
disk block is not already in some main memory buffer).

3. Copy item X from the buffer to the program variable named
X.

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

READ AND WRITE OPERATIONS (cont.)

• write_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory (if that
disk block is not already in some main memory buffer).

3. Copy item X from the program variable named X into its
correct location in the buffer.

4. Store the updated block from the buffer back to disk (either
immediately or at some later point in time).

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Properties of transaction (ACID)

• Atomicity: Either all operations of the transaction are properly

reflected in the database or none are.
• Consistency: Execution of a transaction in isolation preserves the

consistency of the database.
• Isolation: Although multiple transactions may execute

concurrently, each transaction must be unaware of other
concurrently executing transactions. Intermediate transaction results
must be hidden from other concurrently executed transactions.
– That is, for every pair of transactions Ti and Tj, it appears to Ti

that either Tj, finished execution before Ti started, or Tj started
execution after Ti finished.

• Durability: After a transaction completes successfully, the changes
it has made to the database persist, even if there are system failures.

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Example of Fund Transfer

• Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

• Consistency requirement – the sum of A and B is unchanged by the
execution of the transaction.

• Atomicity requirement — if the transaction fails after step 3 and before step
6, the system should ensure that its updates are not reflected in the
database, else an inconsistency will result.

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Example of Fund Transfer (Cont.)

• Durability requirement: once the user has been notified that the

transaction has completed (i.e., the transfer of the $50 has taken place), the

updates to the database by the transaction must persist despite failures.

• Isolation requirement: if between steps 3 and 6, another transaction is

allowed to access the partially updated database, it will see an inconsistent

database (the sum A + B will be less than it should be).

Can be ensured trivially by running transactions serially, that is one after

the other. However, executing multiple transactions concurrently has

significant benefits, as we will see.

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Transaction State

• Active, the initial state; the transaction stays in this state while it is

executing

• Partially committed, after the final statement has been executed.

• Failed, after the discovery that normal execution can no longer
proceed.

• Aborted, after the transaction has been rolled back and the database
restored to its state prior to the start of the transaction. Two options
after it has been aborted:

– restart the transaction – only if no internal logical error

– kill the transaction

• Committed, after successful completion.

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Transaction State (Cont.)

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Two sample transactions

(a) Transaction T1.

(b) Transaction T2.

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Schedules

• Schedules – sequences that indicate the chronological order in

which instructions of concurrent transactions are executed

• OR, When various transactions are executing in concurrent

manner then the order of execution of various instruction is

called schedule.

• Two types of schedules

– Serial schedule

– Non-serial schedule

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Example Schedules:

Let T1 transfer $50 from A to B,

and T2 transfer 10% of the

balance from A to B. The

following is a serial schedule

(Schedule 1 in the text), in which

T1 is followed by T2.

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Example Schedule (Cont.)

Let T1 and T2 be the transactions

defined previously. The following

schedule (Schedule 3 in the text)

is not a serial schedule, but it is

equivalent to Schedule 1.

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Serializability

• Basic Assumption – Each transaction preserves database consistency.

• Thus serial execution of a set of transactions preserves database
consistency.

• A (possibly concurrent) schedule is serializable if it is equivalent to a serial
schedule. Different forms of schedule equivalence give rise to the notions
of:

1. conflict serializability

2. view serializability

• We ignore operations other than read and write instructions, and we
assume that transactions may perform arbitrary computations on data in
local buffers in between reads and writes. Our simplified schedules consist
of only read and write instructions.

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Conflict Serializability

• Instructions li and lj of transactions Ti and Tj respectively, conflict if and

only if there exists some item Q accessed by both li and lj, and at least one

of these instructions wrote Q.

 1. li = read(Q), lj = read(Q). li and lj don’t conflict.

2. li = read(Q), lj = write(Q). They conflict.

3. li = write(Q), lj = read(Q). They conflict

4. li = write(Q), lj = write(Q). They conflict

• Intuitively, a conflict between li and lj forces a (logical) temporal order

between them. If li and lj are consecutive in a schedule and they do not

conflict, their results would remain the same even if they had been

interchanged in the schedule.

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Conflict Serializability (Cont.)

• If a schedule S can be transformed into a schedule S´ by a series of swaps
of non-conflicting instructions, we say that S and S´ are conflict
equivalent.

• We say that a schedule S is conflict serializable if it is conflict equivalent
to a serial schedule

• Example of a schedule that is not conflict serializable:

 T3 T4

 read(Q)
 write(Q)
 write(Q)

We are unable to swap instructions in the above schedule to obtain either
the serial schedule < T3, T4 >, or the serial schedule < T4, T3 >.

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Conflict Serializability

(Cont.)

Schedule 3 below can be

transformed into Schedule 1, a

serial schedule where T2

follows T1, by series of swaps

of non-conflicting instructions.

Therefore Schedule 3 is conflict

serializable.

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

View Serializability
• Let S and S´ be two schedules with the same set of transactions. S and S´

are view equivalent if the following three conditions are met:

1. For each data item Q, if transaction Ti reads the initial value of Q in
schedule S, then transaction Ti must, in schedule S´, also read the initial
value of Q.

2. For each data item Q if transaction Ti executes read(Q) in schedule S,
and that value was produced by transaction Tj (if any), then transaction
Ti must in schedule S´ also read the value of Q that was produced by
transaction Tj .

3. For each data item Q, the transaction (if any) that performs the final
write(Q) operation in schedule S must perform the final write(Q)
operation in schedule S´.

 As can be seen, view equivalence is also based purely on reads and writes
alone.

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

View Serializability (Cont.)

• A schedule S is view serializable it is view equivalent to a serial schedule.
• Every conflict serializable schedule is also view serializable.
• Schedule 9 (from text) — a schedule which is view-serializable but not

conflict serializable.

• Every view serializable schedule that is not conflict serializable has blind
writes.

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Other Notions of
Serializability
• Schedule 8 (from text) given

below produces same
outcome as the serial
schedule < T1, T5 >, yet is not
conflict equivalent or view
equivalent to it.

• Determining such
equivalence requires analysis
of operations other than read
and write.

Program Name: B.Tech Program Code: BCSE2073

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Text books

“Data base System Concepts”, Silberschatz, Korth, McGraw Hill,
V edition

Reference Book

1. C.J. Date, “An Introduction to Database Systems”, Addision
Wesley, Eigth Edition, 2003.

2. Elmasri, Navathe, “ Fudamentals of Database Systems”, Addision
Wesley, Sixth Edition, 2011.

Additional online materials

1. WWW.Tutoiralpoint.com/

Program Name: B.Tech Program Code: BCSE2073

 Recommended Books

