

 School of Computing

 Science and Engineering

Program: B.Tech CSE

Course Code: BCSE2073

Course Name: Database Management System

 School of Computing Science and Engineering
 Course Code :BCSE2073 Course Name : DBMS

Name of the Faculty: Mr. Umesh Kumar Gupta Programme: B.Tech

Course Outcomes :

CO Number Title CO

CO1 Explain Database Architecture and Representation Models

CO2 Use DDL and DML commands using SQL to retrieve data from the given table

CO3 Use Normalization techniques to design a database for a given application

CO4 Describe the transaction processing concept and apply storage techniques

CO5 Describe the concurrency control process and various relevant protocols

 School of Computing Science and Engineering

 Course Code :BCSE2073 Course Name : DBMS

 Course Prerequisites

Basic knowledge of data.

Name of the Faculty: Mr. Umesh Kumar Gupta Programme: B.Tech

 School of Computing Science and Engineering

 Course Code :BCSE2073 Course Name : DBMS

Syllabus

Name of the Faculty: Mr. Umesh Kumar Gupta Programme: B.Tech

Unit I: Introduction 9 lecture hours

Introduction: An overview of database management system, database system Vs file system, Database system concept and architecture, data model schema and

instances, data independence and database language and interfaces, data definitions language, DML, Overall Database Structure.

Data modeling using the Entity Relationship Model: ER model concepts, notation for ER diagram, mapping constraints, keys, Concepts of Super Key, candidate

key, primary key, Generalization, aggregation, reduction of an ER diagrams to tables, extended ER model, relationship of higher degree.

Unit II: Relational data Model and Language 11 lecture hours

Relational data model concepts, integrity constraints, entity integrity, referential integrity, Keys constraints, Domain constraints, relational algebra, relational

calculus, tuple and domain calculus.

Introduction on SQL: Characteristics of SQL, advantage of SQL. SQl data type and literals. Types of SQL commands. SQL operators and their procedure. Tables,

views and indexes. Queries and sub queries. Aggregate functions. Insert, update and delete operations, Joins, Unions, Intersection, Minus, Cursors, Triggers,

Procedures in SQL/PL SQL

Unit III: Data Base Design & Normalization 8 lecture hours

Functional dependencies, normal forms, first, second, third normal forms, BCNF, inclusion dependence, loss less join decompositions, normalization using FD,

MVD, and JDs, alternative approaches to database design.

Unit IV: Transaction Processing Concept 8 lecture hours

Transaction system, Testing of serializability, serializability of schedules, conflict & view serializable schedule, recoverability, Recovery from transaction failures,

log based recovery, checkpoints, deadlock handling. Distributed Database: distributed data storage, concurrency control, directory system.

Unit V: Concrrency Control Techniques 8 lecture hours

Concurrency control, Locking Techniques for concurrency control, Time stamping protocols for concurrency control, validation based protocol, multiple

granularity, Multi version schemes, Recovery with concurrent transaction, case study of Oracle.

 School of Computing Science and Engineering
 Course Code :BCSE2073 Course Name : DBMS

 Contents

Unit-5 : Concurrency Control

 Lock-Based Protocols

 Timestamp-Based Protocols

 Validation-Based Protocols

 Multiple Granularity

 Multi-version Schemes

 Recovery with concurrent transaction

 Case study of Oracle.

Name of the Faculty: Mr. Umesh Kumar Gupta Programme: B.Tech

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Timestamp-Based Protocols
• An alternative to locking protocols

• Each transaction is issued a timestamp when it enters the system. If
an old transaction Ti has time-stamp TS(Ti), a new transaction Tj is
assigned time-stamp TS(Tj) such that TS(Ti) <TS(Tj).

• The protocol manages concurrent execution such that the time-
stamps determine the serializability order.

• In order to assure such behavior, the protocol maintains for each
data Q two timestamp values:

– W-timestamp(Q) is the largest time-stamp of any transaction
that executed write(Q) successfully.

– R-timestamp(Q) is the largest time-stamp of any transaction
that executed read(Q) successfully.

Name of the Faculty: Mr. Umesh Kumar Gupta Programme: B.Tech

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Timestamp-Based Protocols (Cont.)
• The timestamp ordering protocol ensures that any conflicting

read and write operations are executed in timestamp order.

• Suppose a transaction Ti issues a read(Q)

 1. If TS(Ti) W-timestamp(Q), then Ti needs to read a value of
Q

 that was already overwritten. Hence, the read operation is

 rejected, and Ti is rolled back.

 2. If TS(Ti) W-timestamp(Q), then the read operation is

 executed, and R-timestamp(Q) is set to the maximum of R-

 timestamp(Q) and TS(Ti).

Name of the Faculty: Mr. Umesh Kumar Gupta Programme: B.Tech

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Timestamp-Based Protocols (Cont.)

• Suppose that transaction Ti issues write(Q).

• If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is
producing was needed previously, and the system
assumed that that value would never be produced. Hence,
the write operation is rejected, and Ti is rolled back.

• If TS(Ti) < W-timestamp(Q), then Ti is attempting to write
an obsolete value of Q. Hence, this write operation is
rejected, and Ti is rolled back.

• Otherwise, the write operation is executed, and W-
timestamp(Q) is set to TS(Ti).

Name of the Faculty: Mr. Umesh Kumar Gupta Programme: B.Tech

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Correctness of Timestamp-Ordering Protocol
• The timestamp-ordering protocol guarantees serializability since all

the arcs in the precedence graph are of the form:

Thus, there will be no cycles in the precedence graph
• Timestamp protocol ensures freedom from deadlock as no

transaction ever waits.
• But the schedule may not be cascade-free, and may not even be

recoverable.

Name of the Faculty: Mr. Umesh Kumar Gupta Programme: B.Tech

transaction

with smaller

timestamp

transaction

with larger

timestamp

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Recoverability and Cascade Freedom
• Problem with timestamp-ordering protocol:

– Suppose Ti aborts, but Tj has read a data item written by Ti

– Then Tj must abort; if Tj had been allowed to commit earlier, the
schedule is not recoverable.

– Further, any transaction that has read a data item written by Tj must
abort

– This can lead to cascading rollback --- that is, a chain of rollbacks

• Solution:

– A transaction is structured such that its writes are all performed at the
end of its processing

– All writes of a transaction form an atomic action; no transaction may
execute while a transaction is being written

– A transaction that aborts is restarted with a new timestamp

Name of the Faculty: Mr. Umesh Kumar Gupta Programme: B.Tech

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Validation-Based Protocol
• Useful if majority of transactions are read-only

• Execution of transaction Ti is done in three phases.

 1. Read and execution phase: Transaction Ti writes only to

 temporary local variables

 2. Validation phase: Transaction Ti performs a “validation test''

 to determine if local variables can be written without violating

 serializability.

 3. Write phase: If Ti is validated, the updates are applied to the

 database; otherwise, Ti is rolled back.

• The three phases of concurrently executing transactions can be interleaved, but each

transaction must go through the three phases in that order.

• Also called as optimistic concurrency control since transaction executes fully in the hope

that all will go well during validation

Name of the Faculty: Mr. Umesh Kumar Gupta Programme: B.Tech

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Validation-Based Protocol (Cont.)

• Each transaction Ti has 3 timestamps

 Start(Ti) : the time when Ti started its execution

 Validation(Ti): the time when Ti entered its validation phase

 Finish(Ti) : the time when Ti finished its write phase

• Serializability order is determined by timestamp given at validation

time, to increase concurrency. Thus TS(Ti) is given the value of

Validation(Ti).

• This protocol is useful and gives greater degree of concurrency if

probability of conflicts is low. That is because the serializability

order is not pre-decided and relatively less transactions will have to

be rolled back.

Name of the Faculty: Mr. Umesh Kumar Gupta Programme: B.Tech

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Validation Test for Transaction Tj

• If for all Ti with TS (Ti) < TS (Tj) either one of the following condition holds:

– finish(Ti) < start(Tj)

– start(Tj) < finish(Ti) < validation(Tj) and the set of data items written by Ti

does not intersect with the set of data items read by Tj.

 then validation succeeds and Tj can be committed. Otherwise, validation fails and Tj

is aborted.

• Justification: Either first condition is satisfied, and there is no overlapped

execution, or second condition is satisfied and

 1. the writes of Tj do not affect reads of Ti since they occur after Ti

 has finished its reads.

 2. the writes of Ti do not affect reads of Tj since Tj does not read

 any item written by Ti.

Name of the Faculty: Mr. Umesh Kumar Gupta Programme: B.Tech

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Schedule Produced by Validation
Example of schedule produced using validation

Name of the Faculty: Mr. Umesh Kumar Gupta Programme: B.Tech

T14 T15

read(B)
read(B)

B:- B-50

read(A)

A:- A+50
read(A)

(validate)

display (A+B)
(validate)

write (B)

write (A)

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Multiple Granularity
• Allow data items to be of various sizes and define a hierarchy of

data granularities, where the small granularities are nested within
larger ones

• Can be represented graphically as a tree (but don't confuse with tree-
locking protocol)

• When a transaction locks a node in the tree explicitly, it implicitly
locks all the node's descendents in the same mode.

• Granularity of locking (level in tree where locking is done):

– fine granularity (lower in tree): high concurrency, high locking
overhead

– coarse granularity (higher in tree): low locking overhead, low
concurrency

Name of the Faculty: Mr. Umesh Kumar Gupta Programme: B.Tech

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Example of Granularity

Hierarchy

 The highest level in the

example hierarchy is the

entire database.

 The levels below are of type

area, file and record in that

order.

Name of the Faculty: Mr. Umesh Kumar Gupta Programme: B.Tech

 School of Computing Science and Engineering
 Course Code : BCSE2073 Course Name : DBMS

Text books

“Data base System Concepts”, Silberschatz, Korth, McGraw Hill,
V edition

Reference Book

1. C.J. Date, “An Introduction to Database Systems”, Addision
Wesley, Eigth Edition, 2003.

2. Elmasri, Navathe, “ Fudamentals of Database Systems”, Addision
Wesley, Sixth Edition, 2011.

Additional online materials

1. WWW.Tutoiralpoint.com/

Program Name: B.Tech Program Code: BCSE2073

 Recommended Books

