Course Code: BSCN 2002 Course Name: PPG

Course Name: PPG

What are General Anesthetics?

- A drug that brings about a reversible loss of consciousness.
- These drugs are generally administered by an anesthesiologist in order to induce or maintain general anesthesia to facilitate surgery.

Course Code: BSCN 2002 Course Name: PPG

Background

- General anesthesia was absent until the mid-1800's
- William Morton administered ether to a patient having a neck tumor removed at the Massachusetts General Hospital, Boston, in October 1846.
- The discovery of the diethyl
 ether as general anesthesia was
 the result of a search for means of
 eliminating a patient's pain
 perception and responses to painful
 stimuli.

 $(CH_3CH_2)_2O$

Course Code: BSCN 2002

Course Name: PPG

Anesthetics divide into 2 classes:

- Inhalation Anesthetics
 - Gasses or Vapors
 - Usually Halogenated

- Intravenous Anesthetics
 - Injections
 - Anesthetics or induction agents

Inhaled Anesthetics

- Halothane
- Enflurane
- Isoflurane
- Desflurane

ethyl chloride

trichloroethylene

methoxyflurane, U.S.P. (Penthrane[®])

Course Code: BSCN 2002 Course Name: PPG

Physical and Chemical Properties of Inhaled Anesthetics

- Although halogenations of hydrocarbons and ethers increase anesthetic potency, it also increase the potential for inducing cardiac arrhythmias in the following order F<CI<Br.1
- Ethers that have an asymmetric halogenated carbon tend to be good anesthetics (such as Enflurane).

Course Code: BSCN 2002 Course Name: PPG

Overview

	MW	1	2	3	4	5	6	7	8
Diethyl ether	74	Н	Н	CH ₃	Н	Н	Н	Н	Н
Fluroxene	126	Н	Н	=CH	l ₂	Н	F	F	F
Methoxyflurane	165	F	Н	Н	Н	F	CI	Н	CI
Desflurane	168	Н	F	Н	F	F	F	F	F
Isoflurane	184	Н	F	Н	F	CI	F	F	F
Enflurane	184	F	F	Н	F	F	CI	Н	F
Sevoflurane	200	Н	Н	F	Н	CF ₃	F	F	F

Intravenous Anesthetics

- Used in combination with Inhaled anesthetics to:
 - Supplement general anesthesia
 - Maintain general anesthesia
 - Provide sedation
 - Control blood pressure
 - Protect the brain

Course Code: BSCN 2002

Course Name: PPG

Essential Components of Anesthesia

- Analgesia- perception of pain eliminated
- Hypnosis- unconsciousness
- Depression of spinal motor reflexes
- Muscle relation

* These terms together emphasize the role of immobility and of insensibility!

Course Code: BSCN 2002

Course Name: PPG

Hypotheses of General Anesthesia

- 1. <u>Lipid Theory</u>: based on the fact that anesthetic action is correlated with the oil/gas coefficients.
 - The higher the solubility of anesthetics is in oil, the greater is the anesthetic potency.
 - Meyer and Overton Correlations
 - Irrelevant

2. Protein (Receptor)

Theory: based on the fact that anesthetic potency is correlated with the ability of anesthetics to inhibit enzymes activity of a pure, soluble protein. Also, attempts to explain the GABA_A receptor is a potential target of anesthetics acton.

Course Code: BSCN 2002 Course Name: PPG

Other Theories included

- Binding theory:
 - Anesthetics bind to hydrophobic portion of the ion channel

Course Code: BSCN 2002

Course Name: PPG

Mechanism of Action

UNKNOWN!!

- Most Recent Studies:
 - General Anesthetics acts on the CNS by modifying the electrical activity of neurons at a molecular level by modifying functions of ION CHANNELS.
 - This may occur by anesthetic molecules binding directly to ion channels or by their disrupting the functions of molecules that maintain ion channels.

Course Name: PPG

Cont on Mechanism

- Scientists have cloned forms of receptors in the past decades, adding greatly to knowledge of the proteins involved in neuronal excitability. These include:
 - Voltage-gated ion channels, such as sodium, potassium, and calcium channels
 - Ligand-gated ion channel superfamily and
 - G protein-coupled receptors superfamily.

Course Code: BSCN 2002 Course Name: PPG

Anesthetic
Suppression of
Physiological
Response to
Surgery

Course Name: PPG

Pharmacokinetics of Inhaled Anesthetics

- Amount that reaches the brain
 - Indicated by oil:gas ratio (lipid solubility)
- Partial Pressure of anesthetics
 - 1. 5% anesthetics = 38 mmHg
- 3. Solubility of gas into blood
 - The lower the blood:gas ratio, the more anesthetics will arrive at the brain
- Cardiac Output
 - 1. Increased CO= greater Induction time

Course Name: PPG

Pathway for General Anesthetics

Course Code: BSCN 2002

Course Name: PPG

Variables that Control Partial Pressure in Brain

- Direct Physician's Control
 - Solubility of agent
 - Concentration of agent in inspired by air
 - Magnitude of alveolar ventilation
- Indirect Physician's Control
 - Pulmonary blood flow-function of CO
 - Arteriovenous concentration gradient

Course Name: PPG

Rate of Entry into the Brain: Influence of Blood and Lipid Solubility

Name of the Faculty: Nancy Thakur

Program Name: B.Sc. Nursing

Course Code: BSCN 2002 Course Name: PPG

MAC

- A measure of potency
- 1MAC is the concentration necessary to prevent responding in 50% of population.
- Values of MAC are additive:
 - Avoid cardiovascular depressive concentration of potent agents.

Course Code: BSCN 2002

Course Name: PPG

Increase in Anesthetic Partial Pressure in Blood is Related to its Solubility

Name of the Faculty: Nancy Thakur

Program Name: B.Sc. Nursing

Course Code: BSCN 2002

Course Name: PPG

General Actions of Inhaled Anesthetics

- Respiration
 - Depressed respiration and response to CO2
- Kidney
 - Depression of renal blood flow and urine output
- Muscle
 - High enough concentrations will relax skeletal muscle

Course Code: BSCN 2002 Course Name: PPG

Cont'

- Cardiovascular System
 - Generalized reduction in arterial pressure and peripheral vascular resistance. Isoflurane maintains CO and coronary function better than other agents
- Central Nervous System
 - Increased cerebral blood flow and decreased cerebral metabolism

Course Name: PPG

Toxicity and Side Effects

- Depression of respiratory drive
 - Decreased CO2 drive (medullary chemoreceptors),
 Takes MORE CO2 to stimulate respiration
- Depressed cardiovascular drive
- Gaseous space enlargement by NO
- Fluoride-ion toxicity from methoxyflurane
 - Metabolized in liver = release of Fluoride ions
 - Decreased renal function allows fluoride to accumulate = nephrotoxicity

Course Code: BSCN 2002 Course Name: PPG

Toxicity and Side Effects

- Malignant hyperthermia
 - Rapidly cool the individual and administer
 Dantrolene to block S.R. release of Calcium

Course Code: BSCN 2002 Course Name: PPG

Refrences

- https://accesspharmacy.mhmedical.com/cont ent.aspx?bookid=1568§ionid=95702505
- https://www.ncbi.nlm.nih.gov/books/NBK493 199/