School of Medical and Allied Sciences

Course Code: BPHT5003

Course Name: Pharmacology II

Anti- diuretic Drugs

GALGOTIAS UNIVERSITY

Disclaimer

All the content material provided here is only made for teaching purpose.

GALGOTIAS UNIVERSITY

Anti-diuretics

- > The drugs that decrease urine volume are called antidiuretics.
- > They inhibit water excretion without affecting salt excretion.
- > Primary indication of antidiuretics is the treatment of diabetes insipidus(DI).

Anti-diuretic Classification

- 1. Antidiuretics hormones and its analogues
 - Vasopressin(ADH)
 - Desmopressin
 - Lypressin
 - Terlipressin
- 1. Natriuretics
 - Thiazides, Amiloride,
- 3. Miscellaneous
 - Carbamazepine, Chlorpromazine, Indomethacin

Anti-diuretic Hormone (ADH)

- > Physiological antidiuretics is 8 arginine vasopressin (AVP) that is synthesized in the hypothalamus and secreted by the posterior pituitary.
- > It is secreted in response to increased plasma osmolality or decreased volume of extracellular fluid (ECF).
- > ADH acts via 2 receptors V1 and V2

Vasopressin (ADH) Receptors

	V1 receptor	V2 receptor
Location	 V1a - vascular and other smooth muscle, platelets and hepatocytes, wider distribution. V1b - anterior pituitary, brain and pancreas. (V1b rec. also called as V3 receptor) 	Site- principal cells of collecting ducts(CDs) in the kidney, thick ascending limb of LH. Endothelium of blood vessels,
Mechanism	G protein coupled cell membrane receptor PLC-IP3/DAG pathway	G -protein coupled cell membrane receptor. Adenylyl cyclase c-AMP pathway
Functions	Vasoconstriction, Visceral smooth muscle contraction, platelet aggregation	Antidiuretic action

Actions of ADH

- > In the absence of ADH, collecting ducts(CD) of the nephron are impermeable to water.
- > ADH increase the permeability of CD by its actions on V2 receptors.
- > Stimulation of these receptors elevates cAMP levels that increase aquaporins on the apical membrane of CD(by decreasing endocytosis and increasing exocytosis).
- > Activation of vasopressin regulated urea transporter at apical membrane of collecting ducts in the inner medulla.

Contd....

- > Translocation of Na K-2Cl cotransporter to the luminal membrane of cells in thick ascending limb of loop of henle.
- > Activation of Na+ K+ 2Cl- cotransporter in Thick ascending limb of loop of henle (TAL)cells.
- > V1a receptor mediated vasoconstriction of vasa recta.
- > All the above effects leads to medullary hypertonicity and maximum concentrated urine.
- > Gene mediated increased expression of aquaporin 2 Channels in collecting duct cells.

> Gene mediated increased expression of Na+ K+ 2Cl- cotransporter in TAL cells.

Effects on Blood vessels:

- > AVP constrict blood vessels through V1 receptors and increases peripheral resistance.
- > Rise in BP occurs at higher doses.
- > AVP is an effective pressor agent in shock patients.
- > Though vasopressor effect is not physiologically important in the healthy state, it may play role in hypotensive state, CHF.

- > Most visceral smooth muscles contract.
- > Increased peristalsis in gut, results in evacuation of bowels and expulsion of gases.
- > Uterus: contracted by AVP acting on oxytocin receptors.
- > CNS: exogenously administered AVP does not cross blood brain barrier. AVP may be involved in the regulation of body temperature, systemic circulation, ACTH release and in learning of tasks.

- > AVP induces platelet aggregation and hepatic glycogenolysis.
- > It releases coagulation factor VIII and von willebrand's factor.

Pharmacokinetics:

- > AVP is inactive orally because it is destroyed by proteolytic enzyme.
- > It can be given by any parenteral route.
- > Plasma half life is 25 min.

Vasopressin analogues

Lypressin:

- > less poent than AVP.
- > It acts on both V1 and V2 receptor and has longer duration of action.
- > it is used in place of AVP for V1 receptor mediated action.

Terlipressin:

> synthetic prodrug of vasopressin is specifically used for bleeding esophageal varices.

Desmopressin:

> It is synthetic selective V2 antagonist.

> 12 times more potent antidiuretic and negligible vasoconstrictor activity.

> Intranasal route is preferred though bioavailability is only 10-20%.

Uses

> Terlipressin stops bleeding in 80% and has been shown to improve survival.

>Simultaneous addition of nitroglycerine with vasopressin reduces the cardiotoxic effects of vasopressin and enhances beneficial splanchnic effects of drug.

> Dose-2mg followed by 1mg every 6hr I.V. until bleeding stops (max. 72 hr)

2). Miscellaneous uses:

- > To treat postoperative paralytic ileus and before abdominal radiography.
- > Vasopressin or terlipressin can be used during abdominal surgery in patients with portal hypertension to reduce the risk of haemorrhage.
- > These drugs can also be used to prevent bleeding in acute haemorrhagic gastritis .

A. based on V2 actions: (Desmopressin is the drug of choice) 1). Diabetes insipidus:

> Only central DI (neurogenic or neurohypophyseal DI) respond to desmopressin because ADH receptors on CD are non functional.

> Dose: oral 100 μg TDS; (nasal) 10-40 μg /day;(IV, IM or SC) 1-4 μg /day.

2). Primary Nocturnal Enuresis:

- > Desmopressin is used intranasally with restricted fluid intake and behavioural conditioning.
- > Dose: orally 200-400 µg at bed time; (nasal) 20-40 µg at bedtime.
- 3). To relieve post lumbar puncture Headache:
- > Due to its water retention property it facilitates equilibration of fluid osmolarity in CNS.

- 4). Bleeding disorders in patients of Haemophilia A and von Willebrand's Disease:
- > Desmopressin elevates factor VIII and von willebrand factor and shortens bleeding time.

Adverse effects:

V1 receptor mediated adverse effects

- > Facial pallor, nausea, abdominal cramps and an urge to defecate (due to increased intestinal motility), and precipitation of angina (due to constriction of coronary arteries).
- > More with vasopressin, terlipressin and lypressin.

> It is contraindicated in patients of hypertension and ischaemic heart disease.

V2 receptor mediated Adverse Effects:

- > Fluid retention and hyponatraemia.
- > Carbamazepine, Indomethacin and chlorpropamide can potentiate the antidiuretic effects of desmopressin.
- > Irritation, ulceration and rhinitis due to intranasal administration.

Thiazides

- > These drugs are used as diuretics but exert paradoxical effect (decrease urine formation) in DI.
- > This paradoxical effect is believed to be due to increased formation of cAMP in the distal tubules.

> Another proposed mechanism is that thiazides cause dehydration that result in compensatory increase in reabsorption of Na and water from the proximal portions of nephron.

- > These are low efficacy antidiuretics but beneficial in both central as well as nephrogenic DI.
- > hydrochlorothiazide 25-50 mg TDS or equivalent dose of longer acting agent is commonly used.

GALGOTIAS UNIVERSITY

Amiloride

- > It is the agent of choice for the treatment of lithium induced DI.
- > Along with blocking entry of Na in the principal cells of CD, it also blocks Li entry.

Indomethacin:

- > Also reduce polyuria in renal DI to some extent by reducing renal PG synthesis.
- > It can be combined with a thiazides and amiloride in nephrogenic DI.

Chlorpropamide:

- > It is long acting sulfonylurea oral hypoglycaemic.
- > It reduce urine volume in DI of pituitary origin.
- > It sensitizes the kidney to ADH action.

Carbamazepine:

> An antiepileptic drug which reduces urine volume in DI of pituitary origin.

Vasopressin antagonists

Tolvaptan:

- > It is an orally active nonpeptide selective V2 receptor antagonist.
- > It is used for the treatment of hyponatraemia due to CHF, cirrhosis of liver or syndrome of inappropriate ADH secretion(SIADH).
- > It increases the free water clearance by the kidney and helps to correct the low plasma Na levels.
- > Mozavaptan (V2 selective antagonist) Conivaptan (V1a+V2 antagonist)

References

- 1. Tripathi KD. 'Essentials of Medical Pharmacology', 6th edition, Jaypee Brothers Medical publications (P) Ltd., New Delhi, 2003.
- 2. Mohan H. 'Text book of Pathology',4th edition, Jaypee Brothers Medical publications (P) Ltd., New Delhi, 2004.
- 3. Dale M M, Rang H P, and Dale M M. Rang & Dale's Pharmacology', 7th edition. Edinburgh: Churchill Livingstone, 2007.
- 4. Satoskar RS, Ainapure SS, Bhandarkar SD, Kale AK, 'Pharmacology and pharmacotherapeutics', 14th edition, Popular Prakashan, Mumbai, 1995.