School of Computing Science and Engineering

Course Code: BCSE3094 Course Name: DataMining and warehousing

UNIVERSITY

Data Integration

Data integration:

Combines data from multiple sources into a coherent store

Schema integration: e.g., A.cust-id ≡ B.cust-#

Integrate metadata from different sources

Entity identification problem:

Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton

Detecting and resolving data value conflicts

For the same real world entity, attribute values from different sources are different

Possible reasons: different representations, different scales, e.g., metric vs. British units

Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
 - Object identification: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Redundant attributes may be able to be detected by correlation analysis and covariance analysis
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

Correlation Analysis (Nominal Data)

- X² (chi-square) test
- The larger the X² value, the more likely the variables are related
- The cells that contribute the most to the X² value are those whose actual count is very different from the expected count
- Correlation does not imply causality
 - # of hospitals and # of car-theft in a city are correlated
 - Both are causally linked to the third variable: population

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	250(90)	200(360)	450
Not like science fiction	50(210)	1000(840)	1050
Sum(col.)	300	1200	1500

• X² (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

 It shows that like_science_fiction and play_chess are correlated in the group References: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed. The Morgan Kaufmann Series in Data Management Systems Morgan Kaufmann Publishers, July 2011. ISBN 978-0123814791

GALGOTIAS UNIVERSITY

