School of Computing Science and Engineering

Course Code : BCSE3094

Course Name: DataMining and warehousing

UNITI

DATA PREPROCESSING ATTRIBUTES, & STATISTICAL DESCRIPTION OF DATA

GALGOTIAS UNIVERSITY

Name of the Faculty: Mrs. Priyanka Shukla B Tech (CSE) **Program Name:**

What Is Frequent Pattern Analysis?

Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set

First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets

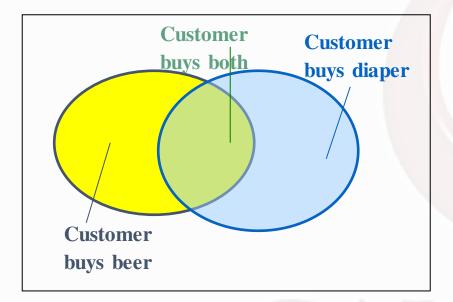
and association rule mining

Motivation: Finding inherent regularities in data

What products were often purchased together? — Beer and diapers?!

What are the subsequent purchases after buying a PC?

What kinds of DNA are sensitive to this new drug?


Can we automatically classify web documents?

Applications

Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Program Name: B.Tech.(CSE)

- itemset: A set of one or more items
- k-itemset X = {x₁, ..., x_k}
- *(absolute) support,* or, *support count* of X: Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is *frequent* if X's support is no less than a *minsup* threshold

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Program Name: B.Tech.(CSE)

Association Rules

- Find all the rules $X \rightarrow Y$ with minimum support and confidence
 - support, s, probability that a transaction contains $X \cup Y$
 - confidence, c, conditional probability that a transaction having X also contains Y
- *Let minsup* = 50%, *minconf* = 50%

Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer, Diaper}:3

- Association rules: (many more!)
 - Beer \rightarrow Diaper (60%, 100%)
 - Diaper \rightarrow Beer (60%, 75%)

Closed Patterns and Max-Patterns

A long pattern contains a combinatorial number of sub-patterns, e.g., $\{a_1, ..., a_{100}\}$ contains $\binom{1}{100} + \binom{1}{100} + \dots + \binom{1}{1000} = 2^{100} - 1 = 1.27 \times 10^{30}$ sub-patterns! Solution: Mine closed patterns and max-patterns instead An itemset X is closed if X is *frequent* and there exists *no super-pattern* Y > X, with the same support as X (proposed by Pasquier, et al. @ ICDT'99) An itemset X is a max-pattern if X is frequent and there exists no frequent superpattern Y > X (proposed by Bayardo @ SIGMOD'98) Closed pattern is a lossless compression of freq. patterns Reducing the # of patterns and rules

Closed Patterns and Max-Patterns

Exercise. DB = $\{<a_1, ..., a_{100}>, < a_1, ..., a_{50}>\}$ Min_sup = 1. What is the set of closed itemset? $<a_1, ..., a_{100}>: 1$ $<a_1, ..., a_{50}>: 2$ What is the set of max-pattern?

<a1, ..., a100>: 1 What is the set of all patterns?

GALGOTIAS UNIVERSITY

References: Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniques, 3rd ed. The Morgan Kaufmann Series in Data Management Systems Morgan Kaufmann Publishers, July 2011. ISBN 978-0123814791

GALGOTIAS UNIVERSITY

