Course Code : BSCP3005

Course Name: Digital System and Application

Canonical Forms

Contents

- Sum-of-Minterm (SOM) Canonical Form
- Product-of-Maxterm (POM) Canonical Form
- Representation of Complements of Functions
- Conversions between Representations

Course Code : BSCP3005

Course Name: Digital System and Application

Sum-Of-Minterm (SOM)

Sum-Of-Minterm (SOM) canonical form: Sum of minterms of entries that evaluate to '1'

X	У	Z	F	Minterm	
0	0	0	0		
0	0	1	1	$m_1 = \overline{x} \overline{y} \overline{z}$	·
0	1	0	0		Focus on the
0	1	1	0		' 1 ' entries
1	0	0	0		
1	0	1	0	207PH	
1	1	0		$m_6 = x y \overline{z}$	
1	1	1		$m_7 = x y z$	TV

 $F = m1 + m6 + m7 = \sum (1, 6, 7) = x y \overline{z} + x y z + \overline{x} y z$

Name of the Faculty: Dr. Prabhakar Singh

Program Name: B.Sc.(H) Physics

Course Code : BSCP3005	Course Name: Digital System and Application
Sum-Of-Minterm Examples	
$F(a, b, c, d) = \sum (2, 3, 6, 10, 11)$	
$F(a, b, c, d) = m_2 + m_3 + m_6 + m_{10} + m_{11}$	=
$\overline{a} \overline{b} c \overline{d} + \overline{a} \overline{b} c d + \overline{a} b c \overline{d} +$	a b c d + a b c d
$G(a, b, c, d) = \Sigma(0, 1, 12, 15)$	
$G(a, b, c, d) = m_0 + m_1 + m_{12} + m_{15} =$	
ā b c d + a b c d + a b c d +	a b c d

Course Code : BSCP3005

Course Name: Digital System and Application

Product-Of-Maxterm (POM)

Product-Of-Maxterm (POM) canonical form:

Product of maxterms of entries that evaluate to '0'

x	y	Z	F	Maxterm	
0	0	0	1		
0	0	1	1		
0	1	0	0	$\mathbf{M}_2 = (x + \overline{y} + z)$	Focus on the
0	1	1	1		'O' entries
1	0	0	0	$M_4 = (\overline{x} + y + z)$	
1	0	1		OTI	
1	1	0	0	$M_6 = (\overline{x} + \overline{y} + z)$	
1	- 1	1	- 1 -	T D C T	

 $F = M2 \cdot M4 \cdot M6 = \prod (2, 4, 6) = (x+y+z) (x+y+z) (x+y+z)$

Name of the Faculty: Dr. Prabhakar Singh

Program Name: B.Sc.(H) Physics

Course Code : BSCP3005

Course Name: Digital System and Application

Product-Of-Maxterm Examples

1. $F(a, b, c, d) = \prod (1, 3, 6, 11)$

 $F(a, b, c, d) = M_1 \cdot M_3 \cdot M_6 \cdot M_{11}$ (a+b+c+d) (a+b+c+d) (a+b+c+d) (a+b+c+d)

2. $G(a, b, c, d) = \prod(0, 4, 12, 15)$ $G(a, b, c, d) = M_0 \cdot M_4 \cdot M_{12} \cdot M_{15}$ $(a+b+c+d) (a+\bar{b}+c+d) (\bar{a}+\bar{b}+c+d) (\bar{a}+\bar{b}+\bar{c}+\bar{d})$

Name of the Faculty: Dr. Prabhakar Singh

Course Code : BSCP3005

Course Name: Digital System and Application

Conversions
Between
Canonical
Forms

x	У	Z	F	Minterm	Maxterm
0	0	0	0		$M_0 = (x + y + z)$
0	0	1	1	$m_1 = \overline{x y} z$	
0	1	0	1	$m_2 = x y z$	
0	1	1	1	$m_3 = \overline{x} y z$	
1	0	0	0		$M_4 = (\overline{x} + y + z)$
1	0	1	1	$m_5 = x \overline{y} z$	
1	1	0	0		$M_6 = (\overline{x} + \overline{y} + z)$
1	1	1	-1	$m_7 = x y z$	

 $F = m_1 + m_2 + m_3 + m_5 + m_7 = \sum (1, 2, 3, 5, 7) =$

 $\overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z} + \overline{x}\overline{y}z + x\overline{y}\overline{z} + x\overline{y}z$

 $F = \mathsf{M}_0 \cdot \mathsf{M}_4 \cdot \mathsf{M}_6 = \prod (0, 4, 6) = (x + y + z)(\overline{x} + y + z)(\overline{x} + \overline{y} + z)$

Name of the Faculty: Dr. Prabhakar Singh

Program Name: B.Sc.(H) Physics

Course Code : BSCP3005

Course Name: Digital System and Application

Algebraic Conversion to Sum-of-Minterms

- Expand all terms first to explicitly list all minterms
- AND any term missing a variable v with $(v + \overline{v})$
- Example 1: $f = x + \overline{x} \overline{y}$ (2 variables) $f = x (y + \overline{y}) + \overline{x} \overline{y}$ $f = x y + x \overline{y} + \overline{x} \overline{y}$ $f = m_3 + m_2 + m_0 = \sum(0, 2, 3)$
- Example 2: $g = a + \overline{b} c$ (3 variables) $g = a (b + \overline{b})(c + \overline{c}) + (a + \overline{a}) \overline{b} c$ $g = a b c + a b \overline{c} + a \overline{b} c + a \overline{b} \overline{c} + a \overline{b} c + \overline{a} \overline{b} c$ $g = \overline{a} \overline{b} c + a \overline{b} \overline{c} + a \overline{b} c + a b \overline{c} + a b c$ $g = m_1 + m_4 + m_5 + m_6 + m_7 = \sum (1, 4, 5, 6, 7)$

Conversions Between Canonical Forms

Course Code : BSCP3005

Course Name: Digital System and Application

References:

- Digital Principles and Applications, A.P. Malvino, D. P. Leach and Saha, 7th Ed., 2011, Tata McGraw Hill
- Digital Fundamentals, Thomas L. Floyd, 11th Ed., 2015, Pearson Education Limited
- Modern Digital Electronics, R P Jain, 4th Ed., 2010, Tata McGraw Hill

Name of the Faculty: Dr. Prabhakar Singh