School of Basic and Applied Science

Course Code: BSMB2003 Course Name: Microbial Physiology and Metabolism

Kinetics of Bacterial Growth

GALGOTIAS UNIVERSITY

Microbial growth physiology

Bacterial cells replicate by Binary fission

- In this process, the chromosomal DNA duplicates by replication,
- Then bacterial membrane and cell wall grow inward to meet one another and divide the cell in two.
- The two cells separate and the process are complete.
- The time taken by a cell to divide into two cells (Doubling time) varies by species and conditions

 Bacterial cell division by Binary Fission

Generation Time

When bacterial cells grow exponentially by binary fission, the increase in a bacterial population occurs by geometric progression.

The time interval required for the cells (or population) to divide into 2 daughter cells is termed as G, Generation time/ Doubling time

G (generation time) = t/n t = time interval in hours or minutes

n= number of generations (no. of doublings/ no. of cell divisions)

- Bacteria have short generation time, (ranges between 30 minutes and three hours).
- Escherichia coli, for example, has a generation time of about 20 minutes when it is dividing under optimal conditions.

Generation Time

<u>Practice Q1.</u> 100 Bacterial cells grow and divide by binary fission for 1 hr and reach a population of 6400 cells. Calculate the number of generations and generation time (G).

Solution:

```
Progression of Cell division: 100 -> 200 -> 400 -> 800 -> 1600 -> 3200 -> 6400 n= no. of generation= 6 generation/doublings
```

Genetation time, G=t/n =60 min/6

=10 min

Exponential growth Kinetics

- During the exponential phase each microorganism is dividing at constant intervals.
- For a bacterial population growing by binary fission, the exponential growth can be expressed using the equation,

$$N_t = N_0 \times 2^n$$

Where, N_0 = number of bacteria at the beginning of a time interval

 N_t = number of bacteria at the end of the time interval, t

n = number of generations (number of times the cell population doubles during the time interval)

Solving for n, by using Log at both sides,

$$logN_{t} = logN_{0} + nlog2$$

$$n = \underline{logN_{t} - log N_{0}}$$

$$log2$$

$$n = \frac{\log N_{\underline{t}} - \log N_{\underline{0}}}{0.301}$$

Generation time,
$$G = t/n$$

$$= t/\underline{\log N_t} - \underline{\log N_0}$$
0.301

$$= \frac{t \times 0.301}{\log N_t - \log N_0}$$

<u>Practice Q2</u>. A culture is inoculated with 1000 cells/ml. After 10 hrs the population is estimated to be 10⁹ cells per ml. calculate the generation time.

Solution: G=t/n

Total time taken for division, t = 10 hr = 10 x 60 = 600 min $N_0 = \text{number of bacteria at the beginning of a time interval}$ $N_t = \text{number of bacteria at the end of the time interval, t}$ $N_0 = 1000; N_t = 10^9$ No of generation, $n = log N_t - log N_0$

0.301

 $= (\log 10^9 - \log 1000) / 0.301$

= 9 - 3 / 0.301 = 6 / 0.301 = 19.9

= approx. 20 generation.

G = 600 / 20 = 30 min

Growth Rate

- mean growth rate constant (k) is the the rate of growth during the exponential phase in a batch culture
- This is the number of generations per unit time,
- Expressed as the generations per hour.

$$k = n / t$$

Assignment

• problem Q1. A culture is inoculated with 10⁵ cells/ml. After 20 hrs the population is estimated to be 10²⁰ cells per ml. calculate, no. of generations and the generation time.

GALGOTIAS UNIVERSITY

References

- ➤ Willey JM, Sherwood LM, and Woolverton CJ. (2013). Prescott's Microbiology. 9th edition. McGraw Hill Higher Education
- Moat AG and Foster JW. (2002). Microbial Physiology. 4th edition. John Wiley & Sons
- ➤ Madigan MT, and Martinko JM (2014). Brock Biology of Microorganisms. 14th edition. PrenticeHall International Inc.
- > Surinder Kumar . Textbook of Microbiology. First Edition: 2012. Jaypee Brothers Medical PublishersISBN: 978-93-5025-510-0

GALGOTIAS UNIVERSITY