Course Code : MSCM303

**Course Name: Integral equations and calculus of variation** 

Lecture-9

## Conversion of initial value problem into integral equations( A QUIZ)

A. An equation in which an unknown function appears under one or more integral signs is said to be as

1. Kernel

- 2. Integral Eq.
- 3. PDE
- 4. <sup>ODE</sup>



Name of the Faculty: Dr. Leena Rani

Course Code : MSCM303

......

**Course Name: Integral equations and calculus of variation** 

The integral eq.  $f(s) + \lambda \int K(s,t)g(t)dt = 0$  is called

- 1. Fredhlom integral eq. of first kind
- 2. Fredhlom integral eq. of second kind
- 3. Volterra integral eq. of first kind
- 4. Homogeneous Fredholm integral equation of the second kind

The integral q.  $g(s) = f(s) + \lambda \int_{a}^{b} K(s,t)g(t)dt$  is called

- 1. Fredhlom integral eq. of first kind
- 2. Fredhlom integral eq. of second kind
- 3. Volterra integral eq. of first kind
- 4. Homogeneous Fredholm integral equation of the second kind

Name of the Faculty: Dr. Leena Rani

**Course Code : MSCM303** 

**Course Name: Integral equations and calculus of variation** 

- The integral q.  $f(s) + \lambda \int_{-\infty}^{\infty} K(s, t)g(t)dt = 0$  is called
  - 1 Volterra integral eq. of first kind
  - 2 Volterra integral eq. of second kind
  - 3 Volterra integral eq. of first kind
  - 4 Homogeneous Fredholm integral equation of the second kind

The integral q.  $g(s) = f(s) + \lambda \int_{-\infty}^{\infty} K(s, t)g(t)dt$  is called

- 1. Volterra integral eq. of first kind
- 2. Volterra integral eq. of second kind
- 3. Volterra integral eq. of first kind
- 4. Homogeneous Fredholm integral equation of the second

Name of the Faculty: Dr. Leena Rani

**Course Code : MSCM303** 

**Course Name: Integral equations and calculus of variation** 

The integral eq.  $g(s) = \lambda \int_{0}^{x} K(s,t)g(t)dt$  is called

- 5. Volterra integral eq. of first kind
- 6. Volterra integral eq. of second kind
- 7. Volterra integral eq. of first kind
- 8. Homogeneous Volterra integral equation of the second kind
- 13. If K (x, t)= i (x t), which type of kernel is it
- 1. Symmetric kernel
- 2. Separable or degenerate kernel
- 3. Not a symmetric kernel
- 4. None of these

Name of the Faculty: Dr. Leena Rani

Course Code : MSCM303

**Course Name: Integral equations and calculus of variation** 

- 14. If K (x, t)=sin (2x + 3t), which type of kernel is it
  - 1. Symmetric kernel
- 2. Separable or degenerate kernel
- 3. Not a symmetric kernel
- 4. None of these

If 
$$K(x,t) = \sum_{i=1}^{n} g_i(x)h_i(t)$$
 which type of kernel is it

- 1. Symmetric kernel
- 2. Separable or degenerate kernel
- 3. Not a symmetric kernel
- 4. None of these

Name of the Faculty: Dr. Leena Rani