Course Code : MATH2007

Course Name: Discrete Mathematics

Algebraic Structures, Semigroup and Monoid UNIVERSITY

Name of the Faculty: Mr. Divesh Garg

Program Name: B. Tech Sem-III

Course Code : MATH2007

Course Name: Discrete Mathematics

Binary Operation

Let G be a set. A binary operation on G is a function that assigns each order pair of elements of G an element of G. $f: G \times G \rightarrow G$

Remark : 'o' is a binary operation on G iff aob $\in G$.

Course Code : MATH2007

Course Name: Discrete Mathematics

Algebraic Structure

A non empty set together with one or more than one binary operation is called algebraic structure.

Examples :-1. (R,+, ·) is an algebraic structure. 2. (N, +) , (Z, +), (Q, +) are algebraic structures.

Course Code : MATH2007

Course Name: Discrete Mathematics

Semigroup

If S is a nonempty set and * be a binary operation on S, then the algebraic system
{S, * } is called a semigroup , if the operation * is associative.
 viz., if for any a,b,c∈S,

(a*b)*c=a*(b*c)

Since the characteristic property of a binary operation on S is the closure property, it is not necessary to mention it explicitly when algebraic systems are defined. Example :-

if E is the set of positive even numbers, then (E, +) and (E, X) are semigroups.

UNIVERSITY

Course Code : MATH2007

Course Name: Discrete Mathematics

Monoid

If a semigroup {M, * } has an identity element with respect to the operation * , then {M, * } is called a monoid. viz., if for any a,b,c∈M

(a*b)*c=a*(b*c)

and if there exists an element $e \in M$ such that for any $a \in M$, e*a=a*e=a, then the algebraic system {M, * } is called a monoid.

Example :-

1. if N is the set of natural numbers, then (N,+) and (N,X) are monoids with the identity elements 0 and 1 respectively.

2. The semigroups (E,+) and (E,X) are not monoids.

Course Code : MATH2007

Course Name: Discrete Mathematics

Group

A non empty set *G* together with an operation 'o' is called a group if the following conditions are satisfied :

- 1. Closure axiom, $\forall a, b \in G \Rightarrow aob \in G$.
- 2. Associative axiom, $aob \ oc = ao(boc) \ \forall \ a, b, c \in G$
- 3. Existence of identity, \exists an element $e \in G$, called identity $aoe = eoa = a \forall a \in G$.
- 4. Existence of inverse, $a \in G$, $\exists a^{-1} \in G \ s.t \ a^{-1}oa = aoa^{-1} = e$ This a^{-1} is called inverse of a.

Course Code : MATH2007

Course Name: Discrete Mathematics

References:

<u>1. Contemporary Abstract Algebra – Gallian</u> <u>2. A Course in Abstract Algebra: Vijay K. Khanna and S. K. Bhambri</u>

GALGOTIAS UNIVERSITY

Name of the Faculty: Mr. Divesh Garg

Program Name: B. Tech Sem-III