Course Code : MATH2007

Course Name: Discrete Mathematics

GALGOTIAS UNIVERSITY

Name of the Faculty: Mr. Divesh Garg

Course Code : MATH2007

Course Name: Discrete Mathematics

Group

A non empty set *G* together with an operation 'o' is called a group if the following conditions are satisfied :

- 1. Closure axiom, $\forall a, b \in G \Rightarrow aob \in G$.
- 2. Associative axiom, $aob \ oc = ao(boc) \ \forall \ a, b, c \in G$
- 3. Existence of identity, \exists an element $e \in G$, called identity $aoe = eoa = a \forall a \in G$.
- 4. Existence of inverse, $a \in G$, $\exists a^{-1} \in G \ s.t \ a^{-1}oa = aoa^{-1} = e$ This a^{-1} is called inverse of a.

Course Code : MATH2007

Course Name: Discrete Mathematics

Abelian Group

A group (*G*, *o*) is called abelian group or commutative group if $aob = boa \forall a, b \in G$.

Examples :-

- 1. $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$ all are abelian group.
- 2. $(\mathbb{Q}, \cdot), (\mathbb{R}, \cdot)$ are commutative group. 1 is an identity $\frac{1}{a}$ is the inverse of a in each case.
- 3. The set of all $m \times n$ matrices (real and complex) with matrix addition as a binary operation is commutative group. The zero matrix is the identity element and the inverse of matric of A is -A.

UNIVERSITY

Course Code : MATH2007

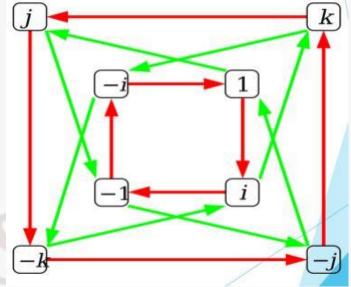
Course Name: Discrete Mathematics

Quaternion Group

 $G = \{\pm 1, \pm i, \pm j, \pm k\}$ define a binary operation of multiplication as $i^2 = j^2 = k^2 = -1$, ij = -jk = k, ki = -ik = j, jk = -kj = i.

The red arrows represent multiplication on the right by *i*, and the green arrows represent multiplication on the right by *j*.

This is non abelian group for this operation. This is called Quaternion group.



Course Code : MATH2007

Course Name: Discrete Mathematics

Klein's four group

Let G = (e, a, b, c) with operation o defined by the following table :

0	е	а	b	С
е	е	а	b	С
а	а	е	С	b
b	b	С	е	а
С	С	b	а	е

Name of the Faculty: Mr. Divesh Garg

Course Code : MATH2007

Course Name: Discrete Mathematics

Theorem :- Uniqueness of identity

Statement - The identity *e* in a group always unique. Proof - If possible, suppose that e and e' are two identity elements in a group G. 'e' is an identity element $\Rightarrow ee' = e'e = e' [ae = ea = a]$ e' is an identity element $\Rightarrow ee' = e'e = e[ae' = e'a = a]$ these statements prove that e = ee' = e'e = e'from which, we get e = e'. Hence Proved UNIVERSITY

Course Code : MATH2007

Course Name: Discrete Mathematics

The cancellation laws

Statement - Suppose, a, b, c are arbitrary elements of a group G. Then 1. $ab = ac \Rightarrow b = c$ (left cancellation) 2. $ba = ca \Rightarrow b = c$ (right cancellation) Proof - Let *e* be the identity element in a group *G*. Let $a, b, c \in G$ be arbitrary ab = ac $\Rightarrow a^{-1} ab = a^{-1} (ac)$ $\Rightarrow a^{-1}a \ b = a^{-1}a \ c$ [by associative law] $\Rightarrow eb = ec$ $\Rightarrow b = c$ UNIVERSITY

Course Code : MATH2007

Course Name: Discrete Mathematics

Again ba = ca $\Rightarrow ba a^{-1} = ca a^{-1}$ $\Rightarrow b aa^{-1} = c aa^{-1}$ $\Rightarrow be = ce$ $\Rightarrow b = c$

GALGOTIAS UNIVERSITY

Name of the Faculty: Mr. Divesh Garg

Course Code : MATH2007

Course Name: Discrete Mathematics

References:

<u> 1. Contemporary Abstract Algebra – Gallian</u>

2. A Course in Abstract Algebra: Vijay K. Khanna and S. K. Bhambri

GALGOTIAS UNIVERSITY

Name of the Faculty: Mr. Divesh Garg