Course Code : BAUT4001

Course Name: CAD/CAM

<u>Unit-4</u> CIM Architecture - OSI Model

GALGOTIAS UNIVERSITY

Name of the Faculty:Mr. Shrikant Vidya

Course Code : BAUT40U1

Course Name: CAD/CAM

- The OSI reference model
- Services in the OSI model

GALGOTIAS UNIVERSITY

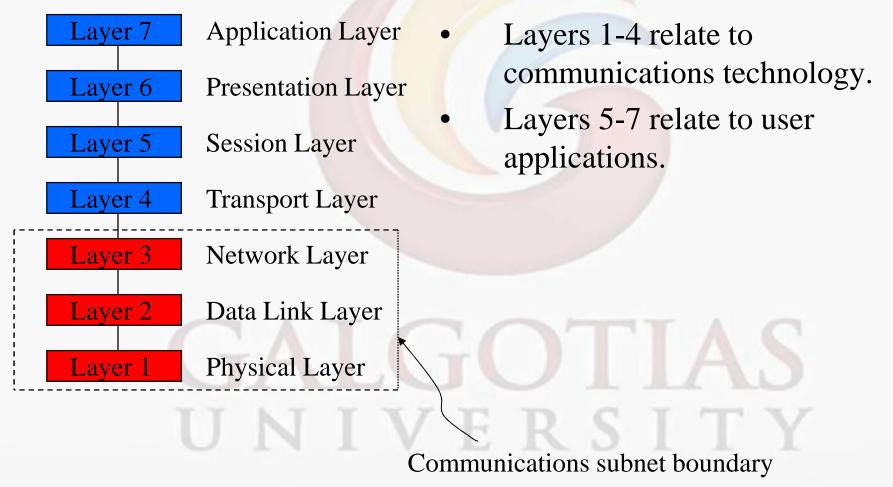
Name of the Faculty:Mr. Shrikant Vidya

F

Course Code : BAUT4001

Course Name: CAD/CAM

OSI Reference Model


- OSI Reference Model internationally standardised network architecture.
- OSI = Open Systems Interconnection: deals with open systems, i.e. systems open for communications with other systems.
- Specified in ISO 7498.
- Model has 7 layers.

Name of the Faculty:Mr. Shrikant Vidya

Course Code : BAUT4001

Course Name: CAD/CAM

7-Layer OSI Model

Name of the Faculty:Mr. Shrikant Vidya

Course Code : BAUT4001

Course Name: CAD/CAM

Layer 7: Application Layer

- Level at which applications access network services.
 - Represents services that directly support software applications for file transfers, database access, and electronic mail etc.

GALGOTIAS UNIVERSITY

Name of the Faculty:Mr. Shrikant Vidya

Course Code : BAUT4001

Course Name: CAD/CAM

Layer 6: Presentation Layer

- Related to representation of transmitted data
 - Translates different data representations from the Application layer into uniform standard format

UNIVERSITY

- Providing services for secure efficient data transmission
 - e.g. data encryption, and data compression.

Name of the Faculty:Mr. Shrikant Vidya

Course Code : BAUT4001

Course Name: CAD/CAM

Layer 5: Session Layer

- Allows two applications on different computers to establish, use, and end a session.
 - e.g. file transfer, remote login
- Establishes dialog control
 - Regulates which side transmits, plus when and how long it transmits.

UNIVERSITY

• Performs token management and synchronization.

Name of the Faculty:Mr. Shrikant Vidya

Course Code : BAUT4001

Course Name: CAD/CAM

Layer 4: Transport Layer

- Manages transmission packets
 - Repackages long messages when necessary into small packets for transmission
 - Reassembles packets in correct order to get the original message.
- Handles error recognition and recovery.
 - Transport layer at receiving acknowledges packet delivery.
 - Resends missing packets

Course Code : BAUT4001

Course Name: CAD/CAM

Layer 3: Network Layer

- Manages addressing/routing of data within the subnet
 - Addresses messages and translates logical addresses and names into physical addresses.
 - Determines the route from the source to the destination computer
 - Manages traffic problems, such as switching, routing, and controlling the congestion of data packets.
- Routing can be:
 - Based on static tables
 - determined at start of each session
 - Individually determined for each packet, reflecting the current network load.

Name of the Faculty:Mr. Shrikant Vidya

Course Code : BAUT4001

Course Name: CAD/CAM

Layer 2: Data Link Layer

- Packages raw bits from the Physical layer into frames (logical, structured packets for data).
- Provides reliable transmission of frames
 - It waits for an acknowledgment from the receiving computer.
 - Retransmits frames for which acknowledgement not received

JIVERSITY

Name of the Faculty:Mr. Shrikant Vidya

Course Code : BAUT4001

Course Name: CAD/CAM

Layer 1: Physical Layer

- Transmits bits from one computer to another
- Regulates the transmission of a stream of bits over a physical medium.
- Defines how the cable is attached to the network adapter and what transmission technique is used to send data over the cable. Deals with issues like
 - The definition of 0 and 1, e.g. how many volts represents a 1, and how long a bit lasts?
 - Whether the channel is simplex or duplex?
 - How many pins a connector has, and what the function of each pin is?

Name of the Faculty:Mr. Shrikant Vidya

Course Code : BAUT4001

Course Name: CAD/CAM

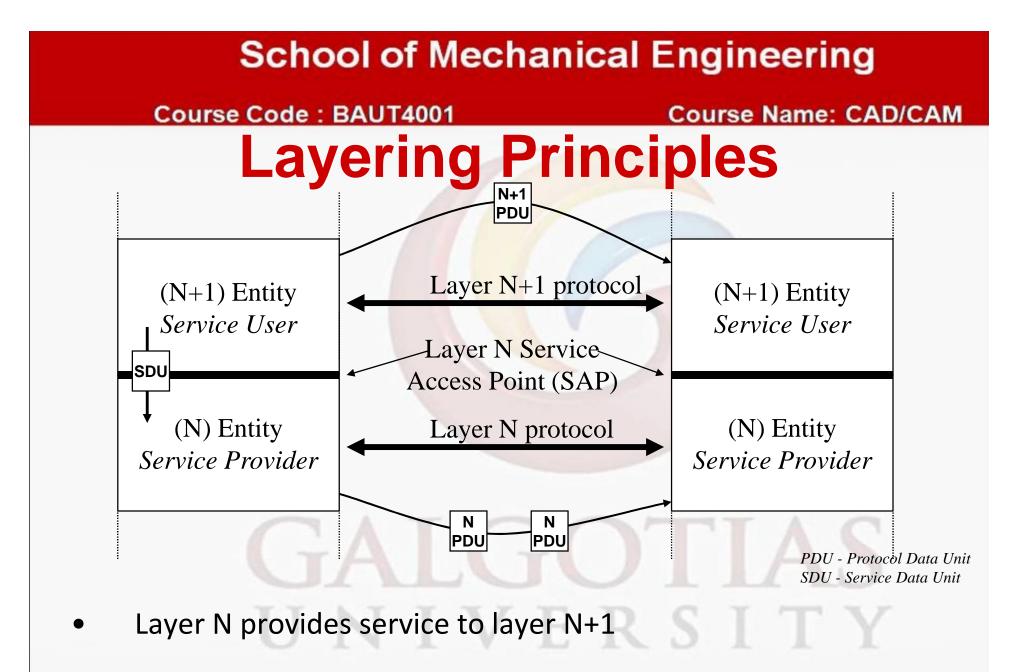
Internet Protocols vs OSI

Application]			Explicit Presentation
Presentation		Application		and session layers
Session				missing in Internet Protocols
Transport		ТСР	•	Data Link and
Network		IP		Network Layers
	-	Network Interface		redesigned
Data Link				
Physical		Hardware	\bigcirc	
	TN	TTTTE		CITV

Name of the Faculty:Mr. Shrikant Vidya

Program Name: B.Tech (Auto)

IVEKSIIY


Course Code : BAUT4001

Course Name: CAD/CAM

Services in the OSI Model

- In OSI model, each layer provide services to layer above, and 'consumes' services provided by layer below.
- Active elements in a layer called *entities*.
- Entities in same layer in different machines called *peer entities*.

UNIVERSITY

Name of the Faculty:Mr. Shrikant Vidya

Course Code : BAUT4001

Course Name: CAD/CAM

Connections

- Layers can offer *connection-oriented* or connectionless services.
- Connection-oriented like telephone system.
- Connectionless like postal system.
- Each service has an associated *Quality-of-service* (e.g. reliable or unreliable).

UNIVERSITY

Course Code : BAUT4001

Course Name: CAD/CAM

Reliability

- Reliable services never lose/corrupt data.
- Reliable service costs more.
- Typical application for reliable service is file transfer.
- Typical application not needing reliable service is voice traffic.
- Not all applications need connections.

Course Code : BAUT4001

Course Name: CAD/CAM

Topics

- Service = set of primitives provided by one layer to layer above.
- Service defines what layer can do (but not how it does it).
- Protocol = set of rules governing data communication between peer entities, i.e. format and meaning of frames/packets.
- Service/protocol decoupling very important.