Course Code : BPHT3004

Course Name: Pharmaceutical Engineering

TOPIC: FLUID FLOW

GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. Shikha Yadav

Course Code : BPHT3004

Course Name: Pharmaceutical Engineering

Disclaimer

All the content material provided here is only for teaching purpose

GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. Shikha Yadav

Course Code : BPHT3004

Course Name: Pharmaceutical Engineering

Fluid flow

- Mention fluid properties such as viscosity, compressibility and surface tension of fluids.
- Hydrostatics (Fluidststics) influencing fluid flow.
- Fluid dynamics Bernoulli's theorem, flow of fluids in pipes, laminar and turbulent flow.

Course Code : BPHT3004

Course Name: Pharmaceutical Engineering

THE PROPERTIES OF FLUIDS

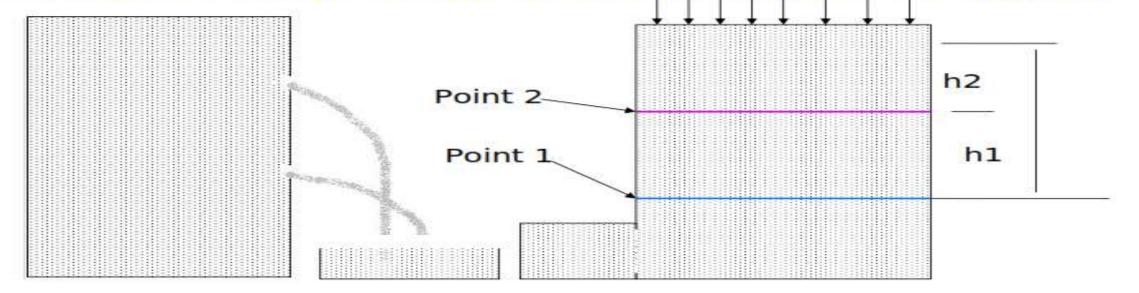
u VISCOSITY u SURFACE TENSION u COMPRESSIBILITY

Name of the Faculty: Dr. Shikha Yadav

Course Code : BPHT3004

Viscosity is a measure of a fluid's resistance to flow.

- It describes the internal friction of a moving fluid.
- A fluid with large viscosity resists motion because its molecular makeup gives it a lot of **internal friction**.
- A fluid with **low** viscosity **flows easily** because its molecular makeup results in very little friction when it is in motion.

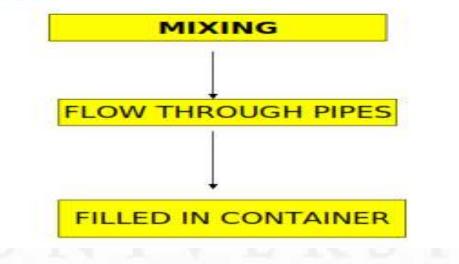

Course Code : BPHT3004

Course Name: Pharmaceutical Engineering

FLUID STATICS

- Ø Fluid static's deals with the fluids at rest in equilibrium
- Ø Behavior of liquid at rest
- Ø Nature of pressure it exerts and the variation of pressure at different layers

Pressure differences between layers of liquids


Name of the Faculty: Dr. Shikha Yadav

Course Code : BPHT3004

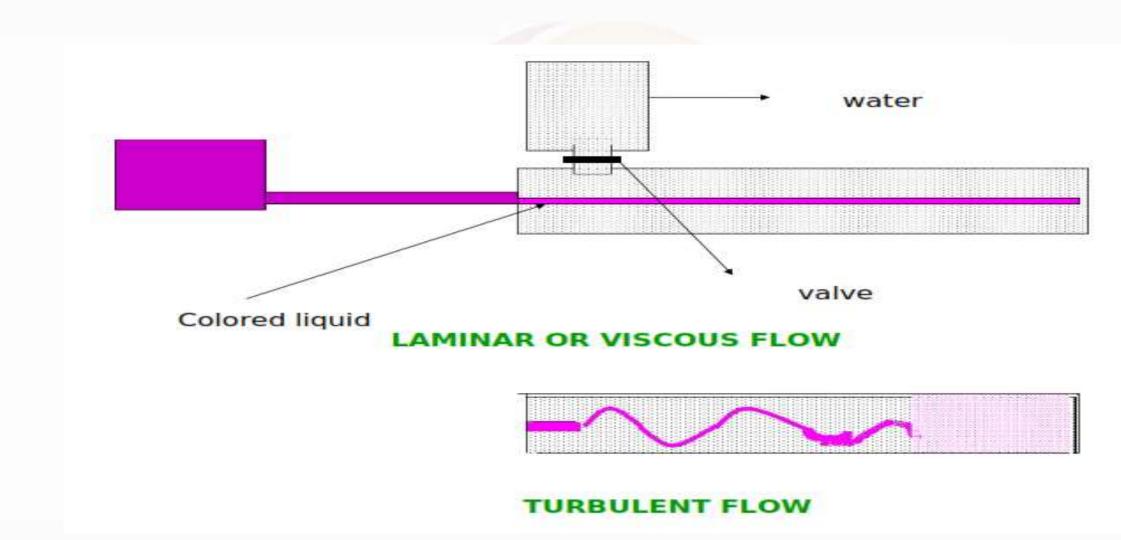
Course Name: Pharmaceutical Engineering

FLUID DYNAMICS

- Ø Fluid dynamics deals with the study of fluids in motion
- Ø This knowledge is important for liquids, gels, ointments which will change their flow behavior when exposed to different stress conditions

Name of the Faculty: Dr. Shikha Yadav

Course Code : BPHT3004


Course Name: Pharmaceutical Engineering

Reynolds Experiment

- Glass tube is connected to reservoir of water, rate of flow of water is adjusted by a valve,
- A reservoir of colored solution is connected to one end of the glass tube with help of nozzle.
- Colored solution is introduced into the nozzle as fine stream through jet tube.

Course Code : BPHT3004

Course Name: Pharmaceutical Engineering

Course Code : BPHT3004

Course Name: Pharmaceutical Engineering

REYNOLDS NUMBER

In Reynolds experiment the flow conditions are affected by Ø Diameter of pipe Ø Average velocity Ø Density of liquid Ø Viscosity of the fluid

This four factors are combined in one way as Reynolds number

$$Re = \frac{D u \rho}{\eta} = \frac{INERTIAL FORCES}{VISCOUS FORCES}$$

- Ø Inertial forces are due to mass and the velocity of the fluid particles trying to diffuse the fluid particles
- viscous force if the frictional force due to the viscosity of the fluid which make the motion of the fluid in parallel.

Name of the Faculty: Dr. Shikha Yadav

Course Code : BPHT3004

Course Name: Pharmaceutical Engineering

References

1: H., K AWAM UR A, H . & MATSUO, Y. 2001 Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence. J. Fluid. Eng. - T. 123, 382–393

2: R. A., KIM, J. & BROW NE, L. W. B. 1991 Some characteristics of small-scale turbulence in a turbulent duct flow. J. Fluid Mech. 233, 369–388 3:https://studylib.net/doc/8164236/ppt---manometer

GALGOTIAS UNIVERSITY