
School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

MOBILE GAME PROGRAMMING

Course Outcomes :

CSGG4024.1 Develop an understanding of Objective-C and Cocos2d Knowledge Level 6

CSGG4024.2 Apply advanced 2D Graphics and designing for mobile Knowledge Level 3

CSGG4024.3 Make use of mobile usability and design concerns Knowledge Level 3

CSGG4024.4 Understand advanced graphical and audio effects Knowledge Level 2

CSGG4024.5 Understand three dimensional concept in mobile environment Knowledge Level 2

CSGG4024.6 Implement individual game project or in a team environment Knowledge Level 5

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

 Course Prerequisites

The objective of this course is to:

• Provide the overview of professional game design

• Know the best ways to learn how to design games

• Understand what game design is and isn’t

Course Description

• This course provides students with an in-depth introduction to technologies and techniques used
to create successful mobile games.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

Texture Atlases

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

Texture atlases

• Texture atlases for 2D games is a great optimization for batching together tons of different sprites

(especially quads) with a very few number of draw calls. Making them is a pain. For pixel art or

other 2D art, DXT compression is often not a great choice due to the lossyness. One good way to

make atlases for 2D games is with the PNG format. Single-file loaders and savers can be used to

load and save PNGs with a single function call each.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

http://stackoverflow.com/questions/4853856/why-are-draw-calls-expensive
http://stackoverflow.com/questions/4853856/why-are-draw-calls-expensive
http://stackoverflow.com/questions/4853856/why-are-draw-calls-expensive
https://en.wikipedia.org/wiki/S3_Texture_Compression
https://en.wikipedia.org/wiki/S3_Texture_Compression
https://en.wikipedia.org/wiki/S3_Texture_Compression
https://blogs.msdn.microsoft.com/shawnhar/2008/10/28/texture-compression/
https://blogs.msdn.microsoft.com/shawnhar/2008/10/28/texture-compression/
https://blogs.msdn.microsoft.com/shawnhar/2008/10/28/texture-compression/
https://blogs.msdn.microsoft.com/shawnhar/2008/10/28/texture-compression/
https://blogs.msdn.microsoft.com/shawnhar/2008/10/28/texture-compression/
https://blogs.msdn.microsoft.com/shawnhar/2008/10/28/texture-compression/
https://blogs.msdn.microsoft.com/shawnhar/2008/10/28/texture-compression/

Here’s an example with the popular stb_image, along with stb_image_write:

• #define STB_IMAGE_IMPLEMENTATION

• #include "stb_image.h"

• #define STB_IMAGE_WRITE_IMPLEMENTATION

• #include "stb_image_write.h"

• int w;

• int h;

• int comp;

• unsigned char* image = stbi_load(path, &w, &h, &comp, STBI_rgb_alpha);

• stbi_write_png(path, w, h, comp, image, 4);

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

https://github.com/nothings/stb
https://github.com/nothings/stb

• This requires two different headers, one for loading and one for saving. Additionally the author of

these headers also has a bin packing header, which could be used to make a texture atlas

compiler.

• However I have created a single-file header called tinydeflate. It does PNG loading, saving, and

can create a texture atlas given an array of images. Internally it contains its own bin packing

algorithm for sorting textures and creating atlases. Here’s an example:

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

https://github.com/RandyGaul/tinyheaders

• #define TINYDEFLATE_IMPL

• #include "tinydeflate.h"

• const char* names = {

• "path/image0.png",

• "path/image1.png"

• };

• tdImage img0 = tdLoadPNG(names[0]);

• tdImage img1 = tdLoadPNG(names[1]);

• int w = 64;

• int h = 64;

• int count = 2;

• tdMakeAtlas("atlas.png", "atlas.txt", w, h, pngs, count, names);

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

• The above example (if given a few more images) could output an atlas like so:

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

Followed by a very easy to parse text formatted file containing uv information for each atlas:

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

What's a Texture Atlas?

• If you are approaching the development of a 3D video game for the first time, you’ll begin to

discover that 3D graphics are composed of several parts: 3D meshes, textures, particle systems,

and many other elements that are usually drawn on the screen 30 times per second (in slang: 30

fps) during the rendering process, making the game’s world varied and lively.

• Believe it or not, the first 3D video games I saw in my life had none of these elements. They were

composed only of lines that formed objects or elements in 3D wireframe.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

• In a 3D game, the UI is usually made of 3D elements (such as planes or boxes) with
textures.

• We mentioned before the rendering process: it’s the operation by which the elements in
memory are physically drawn on the screen. It’s among the most complex and expensive
processes that occur in a real-time 3D game. Then, any expedient to reducess the time
taken by this process is welcome; less time spent in the rendering phase means a higher
frame rate (i.e. if you reach the 60 fps you can render the image twice and then think of
developing your game also for VR), or more screen elements (and then a richer game,
more animated, more beautiful).

• One of the means used to reduce the duration of the rendering process is a Texture
Atlas: it’s nothing more than an image that contains many textures.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

How a Texture Atlas Works

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

How a Texture Atlas Works

• Note: As mentioned in the previous paragraph, this article will discuss the Texture Atlas applied to

the UI. However, many of the concepts explained here can also be applied to 3D models and their
textures.

• A Texture Atlas, we said, is a collection of textures inside a single image.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

How a Texture Atlas Works

• An Atlas is usually associated with a file descriptor, which indicates to the game where a texture is

(in certain x and y coordinates), in order to retrieve it.

• Depending on the system that you will use to generate and manage the Atlas, you will have more
or less options, such as the distance between the images that compose it (reducing the risk of
artifacts on the edges of the texture, caused by an overlap of two elements), or the ability to
rotate the elements to optimize the space inside the Atlas (more optimized space means more
images inside the same Atlas).

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

• Different Ways to Create a Texture Atlas

• There are different ways to create an Atlas. A complete development
environment usually allows the internal management of the Atlas;
there are also many external tools that provide a lot of additional
options.

• The choice of which system to use obviously depends on your
personal preferences. Here we explain two of them: Sprite Packer,
internal to Unity, and TexturePacker (a standalone tool, for a fee).

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

Sprite Packer

• To open Sprite Packer, choose from the menu Window > Sprite Packer.

• The management is really easy: the button Pack is used to create one or
more Atlases (it depends on the number of your images and on the Atlas
dimension that you want to use).

• Now you can select an image to see where it is in the Atlas. If you add or
remove images from your project, you must use the button Repack, to
update the Atlas.

• In order to configure the Sprite Packer, you can choose from the menu Edit
> Project Settings > Editor; here you can disable the Atlas, activate it only
for the game built, or always turn it on.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

• Texture Packer

• Texture Packer is a standalone tool used to manage Atlas.

• You can add one or more folders from your project and Texture Packer
will create the Atlas.

• After that, you can choose the data format for the export. As you can
see, there is also the option "JSON for Unity". This means that you
can export your Atlas for your Unity project. But, in order to use them
together, you must install a free editor extension from the asset store.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

https://www.assetstore.unity3d.com/en/

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

Why Is It Important to Use a Texture Atlas?

• But why is it so important to collect multiple images into a single larger one?

• Let's go back for a moment to the rendering process: if every element of the UI has a separate

texture, it is drawn with a separated "draw call." This means that if in our interface we have the

icon of hearts (representing the player’s energy) and the icon of the coins collected, we will have

two draw calls.

• Each draw call takes some time to complete, making the rendering process longer and longer. If

there are five UI elements, instead of two as in the example above, there are five draw calls.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

• Do you begin to see the point?

• More draw calls -> more time during the rendering phase -> less fps -
> game with a low frame rate (with some frame drops) or fewer
elements on the screen (then visually poor).

• Wasting draw calls this way, unless there are special reasons, doesn’t
really make sense, especially for the UI.

• In fact, all the textures in an Atlas will be rendered together, in a
single pass.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

• In conclusion, especially if you're developing a game on a platform where performance is
really important (such as a mobile platform):

• You must pay attention to the number of draw calls: more draw calls means a higher
rendering time (and a higher rendering time means the risk of having a low frame rate).

• Generally, every object with a different texture can generate a single draw call (it's a
generic statement: there are some exceptions, especially in the case of 3D objects).

• One way to lower the number of draw calls is to use a Texture Atlas.

• A Texture Atlas is basically a big texture with a group of different textures.

• All objects that use the same Texture Atlas generate a single draw call.

• Especially for the UI textures, the use of a Texture Atlas is a must-have to improve the
performance of your project.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

Importing Textures

• There are 3 ways you can import texture assets into PlayCanvas:

• Drag and drop images into the Assets panel.

• Select 'Upload' from the context menu in the Assets panel and select an image using the file browser.

• Import an FBX file that embeds textures.

• Supported image formats are:

• JPG

• PNG

• GIF

• TGA

• BMP

• TIF

• HDR

• EXR

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

• Imported JPG and PNG files remain in their original format.

• GIF, TGA, BMP and TIF image types will be converted to JPG or PNG on import. If the imported
image has transparency, it will be converted to PNG. Otherwise, it will be converted to JPG.

• HDR and EXR are high dynamic range formats formats. Images of these types are converted to
PNG on import and marked as being stored in RGBM format. RGBM essentially stores a multiplier
for RGB values in the PNG's alpha channel, enabling the compression of an HDR format into a low
dynamic range format.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

https://en.wikipedia.org/wiki/High-dynamic-range_imaging

• By default, imported images will be resized to the nearest power of two. For example, an image

that is 323x414 will be resized to 256x512 on import. This is done because the graphics engine

cannot utilize mipmapping with non-power of two textures. However, this behavior can be

overridden by disabling the 'Textures POT' setting in the Asset Tasks panel before importing a

non-power of two texture.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

 Texture Properties

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

Texture Properties

• Selecting a texture's thumbnail in the Assets panel will load it into the Inspector panel. Note that

you can multi-select textures and edit the whole selection simultaneously in the Inspector.

• A texture shares the standard set of asset properties (ID, name, tags and so on). But it's also has
some texture-specific properties.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

Texture Filtering

• Texture filtering gives control over how the color of a texture mapped pixel is calculated. 'Point'

applied no filtering whereas 'Linear' will interpolate the color of a texel with those of its

neighbours. This produces better visual results, particularly as a texture is minimized (where the

texture occupies fewer pixels on the screen than it has texels).

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

Anisotropy

• When textures are viewed on surfaces at an oblique angle, quality can suffer and they can appear

blurred. To fix this problem, you can set a value for anisotropy. See how different anisotropy

values can affect the appearance of a texture:

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

Note that as anisotropy
increases, the cost of
sampling the texture on
the GPU also increases.

Texture Addressing

• The texture addressing properties give you control over how a texture is sampled for texture

coordinates outside the range 0 to 1. See how the different modes affect the sprite below:

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

Texture Compression

• Texture data is stored in a device's video memory (or VRAM). It is important to ensure that your

application does not exhaust VRAM as this can cause undesirable things like browser tab crashes.

• The Editor has the ability to apply lossy compression schemes to your textures to dramatically
reduce the amount of VRAM used. These schemes are:

• DXT: Typically supported by desktop devices.

• PVR: Typically supported by iOS devices.

• ETC: Typically supported by Android devices.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

Consider this texture asset

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

• It's a 512x512 JPG that is 202KB in size. However, JPG is a compressed format and when passed to
the graphics engine, it is expanded to an uncompressed RGB8 format that occupies 1.05MB of
VRAM (including mipmap levels).

• Enabling all compression schemes achieves the following results:

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

The compression has achieved a 6 times reduction in VRAM usage.
Furthermore, in this case, compression has also reduced download size
from 202KB to as little as 116KB.

Animation

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

Animation

• It is a method of photographing successive drawings, models, or even puppets, to create an

illusion of movement in a sequence. Because our eyes can only retain an image for 1/16 of a

second, when multiple images appear in fast succession, the brain blends them into a single

moving image. I

• n traditional animation, pictures are drawn or painted on transparent celluloid sheets to be

photographed and shown on film.

• Early cartoons are examples of this, but today, most animation is made with computer-generated

imagery or CGI.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

• To create the appearance of smooth motion from these drawn, painted, or computer-generated

images, frame rate, or the number of consecutive images that are displayed each second, is

considered. Moving characters are usually shot “on twos” which just means one image is shown

for two frames, totaling in at 12 drawings per second. 12 frames per second allows for motion but

may look choppy. In the film, a frame rate of 24 frames per second is often used for smooth

motion animation.

• There are several types of animation that employ different techniques to achieve their desired

effect.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

Different Types of Animation:

• Traditional Animation

• 2D Animation (Vector-based)

• 3D Animation

• Motion Graphics

• Stop Motion

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

Designing for the impatient user

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

• 1. Equip with all possible information

• 2. Never lengthen a straight-forward flow

• 3. Avoid heavy-duty components

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

Quick overview of vector math

• Vector, in mathematics, a quantity that has both magnitude and direction but not position.

Examples of such quantities are velocity and acceleration.

• Vectors may be visualized as directed line segments whose lengths are their magnitudes. Since

only the magnitude and direction of a vector matter, any directed segment may be replaced by

one of the same length and direction but beginning at another point, such as the origin of

a coordinate system.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

https://www.britannica.com/science/mathematics
https://www.britannica.com/science/velocity
https://www.britannica.com/science/acceleration
https://www.britannica.com/science/line-mathematics
https://www.britannica.com/science/vector-physics
https://www.britannica.com/science/coordinate-vector

Physics principles

• We start from the following five basic principles to construct all other physical laws and
equations. These five basic principles are:

• (1) Constituent principle: the basic constituents of matter are various kinds of identical particles.
This can also be called locality principle;

• (2) Causality principle: the future state depends only on the present state;

• (3) Covariance principle: the physics should be invariant under an arbitrary coordinate
transformation;

• (4) Invariance or Symmetry principle: the spacetime is homogeneous;

• (5) Equi-probability principle: all the states in an isolated system are expected to be occupied with
equal probability.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

• These five basic principles can be considered as physical common senses. It is very natural to have

these basic principles. More important is that these five basic principles are consistent with one

another. From these five principles, we derive a vast set of equations which explains or promise to

explain all the phenomena of the physical world.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

Box2d physics system

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

• Box2D is a 2D rigid body simulation library for games. Programmers can use it in their games to

make objects move in realistic ways and make the game world more interactive. From the game

engine's point of view, a physics engine is just a system for procedural animation.

• Box2D is written in portable C++. Most of the types defined in the engine begin with the b2 prefix.

Hopefully this is sufficient to avoid name clashing with your game engine.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

• Box2D works with several fundamental concepts and objects. We briefly define these objects
here and more details are given later in this document.

• shape

• A shape is 2D geometrical object, such as a circle or polygon.

• rigid body

• A chunk of matter that is so strong that the distance between any two bits of matter on the chunk
is constant. They are hard like a diamond. In the following discussion we use body
interchangeably with rigid body.

• fixture

• A fixture binds a shape to a body and adds material properties such as density, friction, and
restitution. A fixture puts a shape into the collision system (broad-phase) so that it can collide
with other shapes.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

• constraint

• A constraint is a physical connection that removes degrees of freedom from bodies. A 2D body
has 3 degrees of freedom (two translation coordinates and one rotation coordinate). If we take a
body and pin it to the wall (like a pendulum) we have constrained the body to the wall. At this
point the body can only rotate about the pin, so the constraint has removed 2 degrees of
freedom.

• contact constraint

• A special constraint designed to prevent penetration of rigid bodies and to simulate friction and
restitution. You do not create contact constraints; they are created automatically by Box2D.

• joint

• This is a constraint used to hold two or more bodies together. Box2D supports several joint types:
revolute, prismatic, distance, and more. Some joints may have limits and motors.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

• joint limit

• A joint limit restricts the range of motion of a joint. For example, the human elbow only allows a
certain range of angles.

• joint motor

• A joint motor drives the motion of the connected bodies according to the joint's degrees of
freedom. For example, you can use a motor to drive the rotation of an elbow.

• world

• A physics world is a collection of bodies, fixtures, and constraints that interact together. Box2D
supports the creation of multiple worlds, but this is usually not necessary or desirable.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

• solver

• The physics world has a solver that is used to advance time and to resolve contact and joint
constraints. The Box2D solver is a high performance iterative solver that operates in order N time,
where N is the number of constraints.

• continuous collision

• The solver advances bodies in time using discrete time steps. Without intervention this can lead
to tunneling.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

• Box2D contains specialized algorithms to deal with tunneling. First, the collision algorithms can

interpolate the motion of two bodies to find the first time of impact (TOI). Second, there is a sub-

stepping solver that moves bodies to their first time of impact and then resolves the collision.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

Modules

• Box2D is composed of three modules: Common, Collision, and Dynamics. The Common module

has code for allocation, math, and settings. The Collision module defines shapes, a broad-phase,

and collision functions/queries. Finally the Dynamics module provides the simulation world,

bodies, fixtures, and joints.

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

School of Computing Science and Engineering

 Course Code : CSGG4024 Course Name: MOBILE GAME PROGRAMMING

Name of the Faculty: Mr.Karthick.R Program Name: B.Tech(Spl)

