

Course Code: BSCS3530 Course Name: Data Mining and Data Warehousing

Unit IV: Clustering

Cluster Analysis – Partitioning Methods – Hierarchical

Methods - Density Based Methods - Grid Based

Methods – Outlier Analysis

Course Code: BSCS3530 Course Name: Data Mining and Data Warehousing

Cluster Analysis

1. A Categorization of Major Clustering Methods

- 2. Partitioning Methods
- Hierarchical Methods
- 4. Density-Based Methods
- Grid-Based Methods

Course Code: BSCS3530 Course Name: Data Mining and Data Warehousing

Major Clustering Approaches (I)

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion,
 e.g., minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS

Hierarchical approach:

- Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON

Density-based approach:

- Based on connectivity and density functions
- Typical methods: DBSACN, OPTICS, DenClue

Course Code: BSCS3530 Course Name: Data Mining and Data Warehousing

Major Clustering Approaches (II)

- Grid-based approach:
 - based on a multiple-level granularity structure
 - Typical methods: STING, WaveCluster, CLIQUE
- Model-based:
 - A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
 - Typical methods: EM, SOM, COBWEB
- Frequent pattern-based:
 - Based on the analysis of frequent patterns
 - Typical methods: pCluster
- <u>User-guided or constraint-based</u>:
 - Clustering by considering user-specified or application-specific constraints
 - Typical methods: COD (obstacles), constrained clustering

Program Name: B.Sc., Computer Science Program Code: BSCS

Course Code: BSCS3530 Course Name: Data Mining and Data Warehousing

Typical Alternatives to Calculate the Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_i) = min(t_{ip}, t_{iq})$
- **Complete link:** largest distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_i) = max(t_{ip}, t_{iq})$
- Average: avg distance between an element in one cluster and an element in the other, i.e., dis(K_i, K_j) = avg(t_{ip}, t_{jq})
- Centroid: distance between the centroids of two clusters, i.e.,
 dis(K_i, K_j) = dis(C_i, C_j)
- Medoid: distance between the medoids of two clusters, i.e., dis(K_i, K_j) = dis(M_i, M_j)
 - Medoid: one chosen, centrally located object in the cluster

Course Code: BSCS3530 Course Name: Data Mining and Data Warehousing

Centroid, Radius and Diameter of a Cluster (for numerical data sets)

Centroid: the "middle" of a cluster

$$C_m = \frac{\sum_{i=1}^{N} (t_{ip})}{N}$$

Radius: square root of average distance from any point of the

cluster to its centroid

$$R_m = \sqrt{\frac{\sum_{i=1}^{N} (t_i - c_m)^2}{N}}$$

 Diameter: square root of average mean squared distance between all pairs of points in the cluster

$$D_{m} = \sqrt{\frac{\sum_{i=1}^{N} \sum_{i=1}^{N} (t_{ip} - t_{iq})^{2}}{N(N-1)}}$$

Course Code: BSCS3530 Course Name: Data Mining and Data Warehousing

Partitioning Methods

- 1. A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- 5. Grid-Based Methods

Course Code: BSCS3530 Course Name: Data Mining and Data Warehousing

Partitioning Algorithms: Basic Concept

<u>Partitioning method:</u> Construct a partition of a database *D* of *n* objects into a set of *k* clusters, s.t., min sum of squared distance

$$\sum_{m=1}^{k} \sum_{t_{mi} \in Km} (C_m - t_{mi})^2$$

- Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

The *K-Means* Clustering Method

- Given k, the k-means algorithm is implemented in four steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., *mean point*, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when no more new assignment

Course Code: BSCS3530

Course Name: Data Mining and Data Warehousing

The *K-Means* Clustering Method

Example

K=2

Arbitrarily choose K object as initial cluster center

each

Update

cluster

means

Update

the cluster means

the

Course Code: BSCS3530 Course Name: Data Mining and Data Warehousing

Comments on the *K-Means* Method

- Strength: Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.</p>
 - Comparing: PAM: O(k(n-k)²), CLARA: O(ks² + k(n-k))
- <u>Comment:</u> Often terminates at a *local optimum*. The *global optimum* may be found using techniques such as: *deterministic annealing* and *genetic algorithms*
- Weakness
 - Applicable only when *mean* is defined, then what about categorical data?
 - Need to specify k, the number of clusters, in advance
 - Unable to handle noisy data and outliers
 - Not suitable to discover clusters with non-convex shapes

Course Name: Data Mining and Data Warehousing

Course Code: BSCS3530

Variations of the *K-Means* Method

- A few variants of the k-means which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: k-modes (Huang'98)
 - Replacing means of clusters with <u>modes</u>
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters
 - A mixture of categorical and numerical data: k-prototype method

Program Name: B.Sc., Computer Science

Course Name: Data Mining and Data Warehousing

What Is the Problem of the K-Means Method?

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data.
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.

Course Code: BSCS3530 Course Name: Data Mining and Data Warehousing

The K-Medoids Clustering Method

- Find representative objects, called medoids, in clusters
- PAM (Partitioning Around Medoids, 1987)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - PAM works effectively for small data sets, but does not scale well for large data sets
- CLARA (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomized sampling
- Focusing + spatial data structure (Ester et al., 1995)

Course Code: BSCS3530

Course Name: Data Mining and Data Warehousing

A Typical K-Medoids Algorithm (PAM)

Arbitrary choose k object as initial medoids

Assign each remainin g object to nearest medoids

Do loop

Until no change

Swapping O and O_{ramdom} If quality is

improved.

Total Cost = 26

Compute total cost of swapping

Course Name: Data Mining and Data Warehousing

PAM (Partitioning Around Medoids) (1987)

- PAM (Kaufman and Rousseeuw, 1987), built in Splus
- Use real object to represent the cluster
 - Select k representative objects arbitrarily
 - For each pair of non-selected object h and selected object i, calculate the total swapping cost TC_{in}
 - For each pair of *i* and *h*,
 - If $TC_{ih} < 0$, **i** is replaced by **h**
 - Then assign each non-selected object to the most similar representative object
 - repeat steps 2-3 until there is no change

PAM Clustering: Total swapping cost $TC_{ih} = \sum_{j} C_{jih}$

$$C_{jih} = d(j, h) - d(j, i)$$

$$C_{jih} = 0$$

Course Name: Data Mining and Data Warehousing

What Is the Problem with PAM?

- Pam is more robust than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean
- Pam works efficiently for small data sets but does not scale well for large data sets.
 - O(k(n-k)²) for each iteration
 where n is # of data,k is # of clusters
- → Sampling based method,
 CLARA(Clustering LARge Applications)

Course Name: Data Mining and Data Warehousing

CLARA (Clustering Large Applications) (1990)

- CLARA (Kaufmann and Rousseeuw in 1990)
 - Built in statistical analysis packages, such as S+
- It draws multiple samples of the data set, applies PAM on each sample, and gives the best clustering as the output
- Strength: deals with larger data sets than PAM
- Weakness:
 - Efficiency depends on the sample size
 - A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased

Course Code: BSCS3530 Course Name: Data Mining and Data Warehousing

CLARANS ("Randomized" CLARA) (1994)

- CLARANS (A Clustering Algorithm based on Randomized Search) (Ng and Han'94)
- CLARANS draws sample of neighbors dynamically
- The clustering process can be presented as searching a graph where every node is a potential solution, that is, a set of k medoids
- If the local optimum is found, CLARANS starts with new randomly selected node in search for a new local optimum
- It is more efficient and scalable than both PAM and CLARA
- Focusing techniques and spatial access structures may further improve its performance (Ester et al.'95)