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Unit IV : Clustering

Cluster Analysis — Partitioning Methods — Hierarchical
Methods — Density Based Methods — Grid Based
Methods — Outlier Analysis
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A Categorization of Major Clustering Methods e
Partitioning Methods

Hierarchical Methods
Density-Based Methods
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Major Clustering Approaches (I)

= Partitioning approach:

= Construct various partitions and then evaluate them by some criterion,
e.g., minimizing the sum of square errors

= Typical methods: k-means, k-medoids, CLARANS

s Hierarchical approach:

= Create a hierarchical decomposition of the set of data (or objects) using
some criterion

= Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON

= Density-based approach:

= Based on connectivity and density functions
= Typical methods: DBSACN, OPTICS, DenClue
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Major Clustering Approaches (II)

» Grid-based approach:

= based on a multiple-level granularity structure
= Typical methods: STING, WaveCluster, CLIQUE
= Model-based:

= A model is hypothesized for each of the clusters and tries to find the best
fit of that model to each other

= Typical methods: EM, SOM, COBWEB

= Frequent pattern-based:

= Based on the analysis of frequent patterns
= Typical methods: pCluster

s User-quided or constraint-based:

= Clustering by considering user-specified or application-specific constraints

= Typical methods: COD (obstacles), constrained clustering
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Typical Alternatives to Calculate the Distance between Clusters

= Single link: smallest distance between an element in one cluster
and an element in the other, i.e., dis(K;, K;) = min(t, t;,)

= Complete link: largest distance between an element in one cluster
and an element in the other, i.e., dis(K, K;) = max(t, t;)

= Average: avg distance between an element in one cluster and an
element in the other, i.e., dis(K; K) = avg(t;, t)

= Centroid: distance between the centroids of two clusters, i.e.,
dis(K;, K;) = dis(C;, C)

= Medoid: distance between the medoids of two clusters, i.e., dis(K,
Ky) = dis(M,, M))

= Medoid: one chosen, centrally located object in the cluster
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Centroid, Radius and Diameter of a Cluster (for numerical data sets)

= Centroid: the “middle” of a cluster >N 1(tip)

= Radius: square root of average distance from any point of the
cluster to its centroid
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= Diameter: square root of average mean squared distance between
all pairs of points in the cluster
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Partitioning Algorithms: Basic Concept

= Partitioning method: Construct a partition of a database D of m objects
into a set of k clusters, s.t., min sum of squared distance

Zlr(nzlztrmeKm (Cm o tmi)z

= Given a £, find a partition of k& clusters that optimizes the chosen
partitioning criterion

= Global optimal: exhaustively enumerate all partitions
= Heuristic methods: k-means and k-medoids algorithms

= k-means (MacQueen’67): Each cluster is represented by the center
of the cluster

= k-medoids or PAM (Partition around medoids) (Kaufman &
Rousseeuw’87): Each cluster is represented by one of the objects
in the cluster
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The K-Means Clustering Method

= Given &, the k-means algorithm is implemented in
four steps:

= Partition objects into A nonempty subsets

= Compute seed points as the centroids of the
clusters of the current partition (the centroid is the
center, i.e., mean point, of the cluster)

= Assign each object to the cluster with the nearest
seed point

= Go back to Step 2, stop when no more new
assignment
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The K-Means Clustering Method

= Example
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Comments on the K~-Means Method

= Strength: Relatively efficient. O(tkn), where nis # objects, kis #
clusters, and ¢ is # iterations. Normally, &, ¢ << n.

= Comparing: PAM: O(k(n-k)? ), CLARA: O(ks? + k(n-k))
= Comment: Often terminates at a /ocal optimum. The global optimum

may be found using techniques such as: deterministic annealing and
genetic algorithms

= Weakness

= Applicable only when mean is defined, then what about categorical
data?

= Need to specify &, the number of clusters, in advance
= Unable to handle noisy data and outliers
= Not suitable to discover clusters with non-convex shapes
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Variations of the K~-Means Method

= A few variants of the k-means which differ in

= Selection of the initial A means
= Dissimilarity calculations
= Strategies to calculate cluster means
= Handling categorical data: k-modes (Huang98)
= Replacing means of clusters with modes
= Using new dissimilarity measures to deal with categorical objects

= Using a frequency-based method to update modes of clusters

= A mixture of categorical and numerical data: k-prototype method
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What Is the Problem of the K-Means Method?

= The k-means algorithm is sensitive to outliers !

= Since an object with an extremely large value may substantially
distort the distribution of the data.

= K-Medoids: Instead of taking the mean value of the object in a
cluster as a reference point, medoids can be used, which is the most

centrally located object in a cluster.
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The K-Medoids Clustering Method

= Find representative objects, called medoids, in clusters

= PAM (Partitioning Around Medoids, 1987)

« starts from an initial set of medoids and iteratively replaces one
of the medoids by one of the non-medoids if it improves the
total distance of the resulting clustering

= PAM works effectively for small data sets, but does not scale
well for large data sets

= CLARA (Kaufmann & Rousseeuw, 1990)
s CLARANS (Ng & Han, 1994): Randomized sampling

= Focusing + spatial data structure (Ester et al., 1995)
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A Typical K-Medoids Algorithm (PAM)
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PAM (Partitioning Around Medoids) (1987)
= PAM (Kaufman and Rousseeuw, 1987), built in Splus

= Use real object to represent the cluster
» Select k representative objects arbitrarily

= For each pair of non-selected object A and selected
object /, calculate the total swapping cost 7TC,,

« For each pair of 7and A,
« If 7C, < 0, 7is replaced by A

= Then assign each non-selected object to the most
similar representative object

= repeat steps 2-3 until there is no change
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PAM Clustering: Total swapping cost 7C,=2.C;,
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What Is the Problem with PAM?

= Pam is more robust than k-means in the presence of
noise and outliers because a medoid is less influenced by
outliers or other extreme values than a mean

= Pam works efficiently for small data sets but does not
scale well for large data sets.

= O(k(n-k)? ) for each iteration
where n is # of data,k is # of clusters
= Sampling based method,
CLARA(Clustering LARge Applications)
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CLARA (Clustering Large Applications) (1990)

= CLARA (Kaufmann and Rousseeuw in 1990)

» Built in statistical analysis packages, such as S+

= It draws multiple samples of the data set, applies PAM on
each sample, and gives the best clustering as the output

= Strength: deals with larger data sets than PAM

= Weakness:

= Efficiency depends on the sample size

= A good clustering based on samples will not
necessarily represent a good clustering of the whole
data set if the sample is biased
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CLARANS (“Randomized” CLARA) (1994)

s CLARANS (A Clustering Algorithm based on Randomized
Search) (Ng and Han94)

= CLARANS draws sample of neighbors dynamically

= The clustering process can be presented as searching a
graph where every node is a potential solution, that is, a
set of £ medoids

= If the local optimum is found, CLARANS starts with new
randomly selected node in search for a new local optimum

s It is more efficient and scalable than both PAM and CLARA

= Focusing techniques and spatial access structures may
further improve its performance (Ester et al.’95)
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