School of Medical & Allied Sciences

Course Code : BPHT1002 Course Name: Pharmaceutical Analysis-I

Impurities in Pharmaceuticals and Limit test

GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. Niranjan Kaushik

Program Name: B. Pharm

Disclaimer

All the content material provided here is only for teaching purpose.

Outline of the chapter

Definition of impurity Sources of Impurity Definition of Assay Impurities commonly found in medicinal preparations

Definition of limit test Importance of Limit test in pharmaceuticals Limit test for Iron, Arsenic, Chloride, Lead,

Sulphate, Heavy metals

Impure Chemical Compound:

A compound is said to be impure if it is having foreign matter i.e Impurities.

Pure Chemical Compound:

A pure chemical compound refers to that compound which is having no foreign matter i.e impurities.

Chemical purity means freedom from foreign matter.

Analytically 100 % pure substances are not available and traces of impurities must be present.

Normally undesirable foreign materials are present in the pharmaceutical substances.

What is impurity? Any material that affects the purity of the material of interest.

> Impurity means undesired particles

- Presence of Impurities in the pharmaceutical substances may produce toxic effects on the body and may also lower down the active strength of the pharmaceutical substance.
- Impurities commonly in chemical substances include small quantities of lead, Arsenic, Iron, Chloride and sulphate.

Impurities commonly found in medicinal preparations:

- Impurities which have toxic effects on body and bring about unpleasant reactions when present beyond certain limits. e.g Lead and Arsenic salts.
- ✤ The impurities which are able to make substance incompatible with other substances.
- ◆ The impurities which if present beyond the limit, affect the storage property of the pharmaceuticals.
- The impurities which are harmless, but if present beyond the limit, it will lower the active strength of the medicinal compound. E.g Sodium salt in potassium salt.
- ✤ The impurities which may bring about technical difficulties in the use of the substance.
- Impurities such as taste, odour, colour or appearance which can be easily detected by the senses and make the substance unhygienic and unaesthetic. E.g. Sodium chloride becomes damp because of the presence of traces of magnesium salts. Also phenolic impurities present in sodium salicylate alters its odour.

6

[GTU important]

Sources of Impurities in Pharmaceuticals

The type and amount of impurity present in the chemicals or pharmaceutical substances, depends upon several factors like those listed below:

- 1) Raw material used in manufacture
- 2) Reagents used in manufacturing process
- 3) Method/ process used in manufacture or method of manufacturing
- 4) Chemical processes used in the manufacture
- 5) Atmospheric contamination during the manufacturing process
- 6) Intermediate products in the manufacturing process
- 7) Defects in the manufacturing process
- 8) Manufacturing hazards
- 9) Inadequate Storage conditions
- **10) Decomposition of the product during storage**

11)Accidental substitution or deliberate adulteration with spurious or useless materials

1) Raw materials employed in manufacture

- Impurities known to be associated with these chemicals may be carried through the manufacturing process and contaminate the final product.
- Example

Rock salt------ Calcium Sulphate (CaSO₄) + Magnesium Chloride (MgCl₂)= NaCl

amounts of *Calcium sulphate and Magnesium chloride*. Thus Sodium chloride prepared from this source will contain traces of Calcium and Magnesium compounds.

Impurities such as Arsenic, Lead and Heavy metals are present in raw materials and hence are found in substances. So, it is necessary to use **pure chemicals** and substances as raw materials for the manufacturing process.

Calcium sulphate and Magnesium chloride

8

•Example:

□ Copper sulphate may be prepared by the action of sulphuric acid on copper turnings: Cu+ 2 H₂SO₄------→ CuSO₄ + 2 H₂O + SO₂

Copper turnings are known to have Iron and Arsenic as impurities.

If Large quantities of impurities are present in the raw material (e.g Copper turnings), they may enter the final product. $(CuSO_4.5H_2O)$

Due to this I.P. prescribes limit of tolerance for Arsenic as impurity to be not more than 8 parts per million in copper sulphate. Similarly it prescribes a limit of Iron as impurity.

2) Reagents used in the manufacturing process:

□ If reagents used in the manufacturing process are not completely removed by **washing**, these may find entry into the final products.

Example:

Ammoniated mercury may be prepared by adding a solution of Mercuric chloride to dilute ammonia solution.

HgCl₂+ $2NH_4OH------ > NH_2HgCl +$ SolublesolubleAmmoniated mercury (ppt)

 $\frac{NH_4Cl}{(soluble)} + 2H_2O$

The precipitate of Ammoniated mercury (Final Product)contains ammonium hydroxide. Thus, this precipitate is washed with cold water to remove ammonium hydroxide.

If it is not removed completely by washing with water, the final product may contain in it **Ammonium hydroxide as impurity**.

3) Method or the process used in the manufacture:

- Many drugs and chemicals (usually organic) are manufactured from different raw materials, by using different methods or processes.
- □ Some impurities are incorporated into the materials during the manufacturing process.
- □ The type and amount of impurity present in the drug/ chemical varies.
- □ In certain drugs , a multiple-step-synthesis procedure is used , which produces intermediate compounds.
- □ The purification of intermediates is also important, otherwise the impurities present in the intermediate will get incorporated in the final product.
- Usually **side reactions** occur during the synthesis.
- □ Impurities of the product side reactions also occur in the substances. This may introduce new impurities due to contamination by reagents and solvents at various stages of the process as described below:
- a) Reagents employed in the process
- b) Reagents added to remove other impurities
- c) Solvents
- d) Action of solvents and reagents on reaction vessels.

C) Solvents:

Water is the cheapest solvent available and has been used wherever possible.

Tap Water	It has Ca^{+2} , Mg^{+2} , Na^{+} , Cl^{-} , SO_4^{-2} and CO_3^{-2} as	
-	impurities in small amounts	
Softened water	It is obtained by allowing the tap water to pass through the sodium form of Zeolite which removes divalent cations like Ca^{+2} and Mg^{+2} from tap water in exchange of sodium. So, softened water contains Na+, Cl ⁻ ions as impurity.	Feed Water
De-mineralised water	It is obtained by passing tap water through columns packed with ion exchange resin. The water obtained from this process is free from Ca ⁺² , Mg ⁺² , Ma ⁺ , Cl ⁻ , SO ⁻² and CO ⁻² Thus the final product is free from these impurities. The water obtained from this source may still contain organic impurities and so final product contains organic impurities.	Inactive resin Regenerant collector
Distilled water	It is considered the best but it is very costly.	Treated

a) Reagents employed in the manufacturing process:

- Soluble alkali in Calcium carbonate arises from sodium carbonate used in the process.
- Calcium carbonate is obtained by interaction of a soluble calcium salt and a soluble carbonate and therefore the product will contain traces of soluble alkali, which the washing process has failed to remove.

b) Reagents added to remove other impurities:

• Potassium bromide contains traces of Barium, which is added in the manufacturing process to remove excess of sulphate.

d) Action of solvents and reagents on reaction vessels:

During manufacturing process, some of the solvents and reagent may undergo reaction with metals of reaction vessel and may dissolve these metals, which appear as impurities in the final product.

Example:

- ✓ Iron is known to contain Arsenic impurity.
- ✓ The inorganic compounds manufactured in **Iron vessel** will contain Arsenic and Iron as impurities.
- ✓ Thus IP has prescribed limit test for Arsenic and Iron for most inorganic compounds.

14

4) Chemical process used in the manufacture:

- For the synthesis of drugs, many chemical reactions such as Nitration, Halogenation, Oxidation, reduction, hydrolysis are involved.
- ✤ In these chemical processes, different chemicals are used.
- ✤ Tap water is generally used in the various processes and it is often having Cl⁻,Mg⁺², Ca⁺² ions, which are generally found in the substance which is being manufactured.

5) Atmospheric contamination during the manufacturing process

- □ In the industrial areas, the atmosphere is contaminated with **dust particles** and some gases like **Hydrogen** sulphide, Sulphur dioxide, and black smoke.
- During the manufacture or purification of the pharmaceutical products, these impurities enter the final products.
- There are many pharmaceutical products which when manufactured are contaminated with atmospheric CO₂ and water vapour. E.g NaOH absorbs atmospheric CO₂.

$\square 2NaOH + CO_2 ------ \rightarrow Na_2CO_3 + H_2O$

Due to this reaction, NaOH should not be kept open for a longer time during its manufacture.

□ Therefore, IP has prescribed that Sodium hydroxide should not contain more than 3% of sodium carbonate.

6) Defects in the manufacturing process:

In many manufacturing processes, there are defects like imperfect mixing, incompleteness, non-adherence to proper temperature, pressure, pH or reaction conditions, which may give chemical compounds with impurities in them.

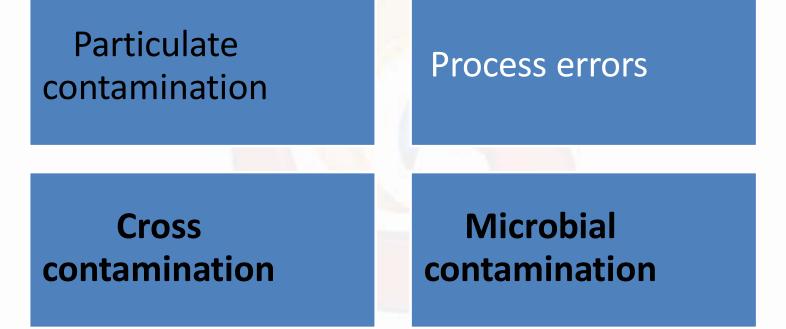
Example:

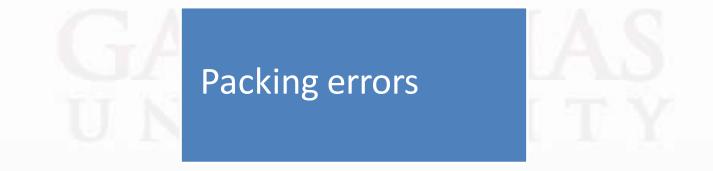
- Zinc oxide may be prepared by heating metallic zinc to bright redness in a current of air. The vapours of Zinc burn to form Zinc oxide which is collected as a fine white powder.
- But if there is **less heat or air or both**, zinc metal is not completely converted to zinc oxide.
- Thus the final product, Zinc oxide may still contain metallic zinc as impurity.
- So, IP has prescribed a test for Zinc metal in zinc oxide.

7) Intermediate products in the manufacturing process:

- □ There are some intermediates which are produced during the manufacturing process. Sometimes these intermediates may be carried through to the final product as impurity.
- **D** Example:

Potassium iodide is prepared by reacting Iodine with Potassium hydroxide. 6KOH+ 3I₂------


 \rightarrow 5KI + KIO₃ + 3H₂O


The resulting solution is first evaporated and then heated with charcoal.

 $KIO_3 + 3C \longrightarrow KI + 3CO$

□ In this process if the intermediate product (KIO₃) is not completely converted into KI, then it may be carried through to the final product as an impurity.

8) Manufacturing hazards:

19

Particulate contamination:

- □ The presence of unwanted particulate matter can arise due to dirt, dust, glass, porcelain or plastic fragments from sieves, granulating or tableting machines or from product containers.
- □ Ware and tare of equipment or improperly cleaned equipment may also cause particulate contamination.

Clarity of solutions for injection is particularly important.

E.g Metal particles which have been found in eye ointments packed in metal tubes.

20

Process errors:

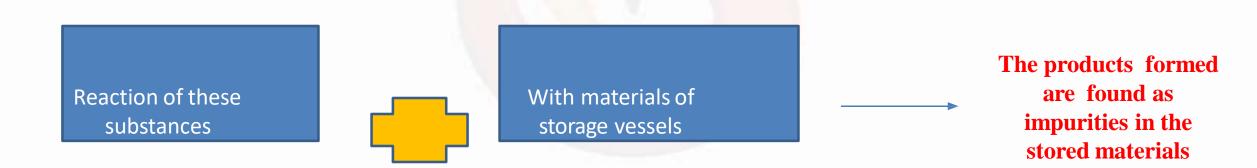
- Gross errors arising from incomplete solution of a solute in a liquid preparation must be detected readily by the normal analytical control procedures.
- □ Minor errors arise if the manufacturing tolerance for the quantity of active ingredient in the product has been wide.

Cross contamination:

- □ The handling of powders, granules, and tablets in large bulk creates air-borne dust, which leads to cross contamination of the product.
- □ So, face masks and special extraction equipment are used to protect operators from harmful effects of drugs.
- E.g penicillin preparation requires special handling during its manufacture.

Microbial contamination:

- *Parenteral preparations* and *ophthalmic preparations* require special care against microbial contamination.
- Many liquid preparations and creams are liable to bacterial and fungal contamination. So care should be taken.


• Eg. Acacia, senna, tragacanth--- \rightarrow They should be controlled for Salmonellae.

Packing errors:

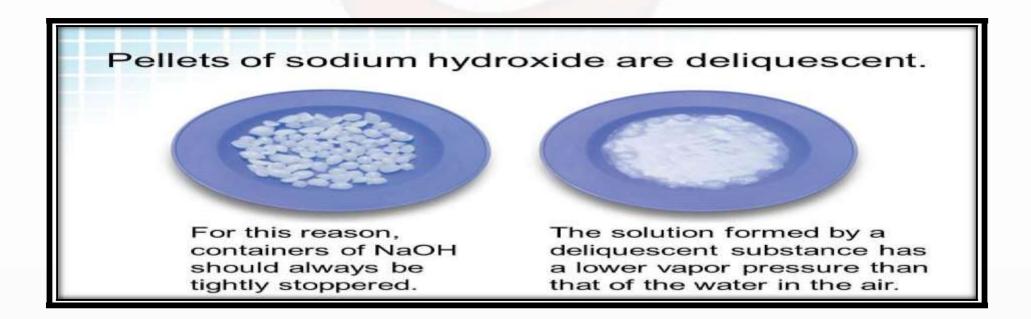
- Products of similar appearance such as tablets of same size, shape, colour packed in similar containers can constitute a potential source of danger.
- Improper labelling or destruction of stock of unused labels also constitutes a major packaging hazard.

D Stragenenidationstances when prepared have to be stored in different types of containers depending upon:

- \checkmark Nature of the material
- ✓ Batch size
- ✓ Quantity
- □ Many types of materials are used for storage purpose like plastic, polythene, iron vessels, stainless steel and aluminium.

- Leaching out effect: Alkalies stored in ordinary glass containers extract lead from it, which in found as impurity in the final product.
- □ Strong chemicals react with iron containers and extract Iron an impurity in final product.

Inadequate storage and their effects are as follows:


- a) Filth: Stored products may become contaminated with dust, bodies of insects, animal and insect excreta.
- b) Chemical instability: decomposition because of light, traces of acid or alkali, air oxidation, water vapour, CO2 and traces of metallic ions.

e.g light sensitive materials should be stored in amber colored bottles.

- c) Reactions with container materials: e.g salicylic acid ointment must not be stored in metal tubes.
- d) **Physical changes:** The occurance of changes in the physical form of drug like change in crystal size can lead to change in efficiency of product.
- e) Temperature effect: Chemical and physical changes occur if materials are not stored at proper temperature.

10) Decomposition of the product during storage:

- Chemical decomposition, analysis or breakdown is the separation of a chemical compound into elements or simpler compounds. It is sometimes defined as the exact opposite of a chemical synthesis. Chemical decomposition is often an undesired chemical reaction.
- □ Some substances decompose on storing due to presence of air, light and oxygen. So, the final product is contaminated.
- **Deliquescent substances, absorb water from the atmosphere and get liquefied.**
- **Decomposition products appear as impurities in the substances.**

11) Accidental substitution or deliberate adulteration with spurious or useless materials:

□ It is possible to avoid accidental substitution by storing the toxic substances together separately or in a locked cupboard.

□ Many pharmaceutical chemicals are adulterated with cheaper substances.

E.g The expensive potassium may be adulterated with sodium bromide.

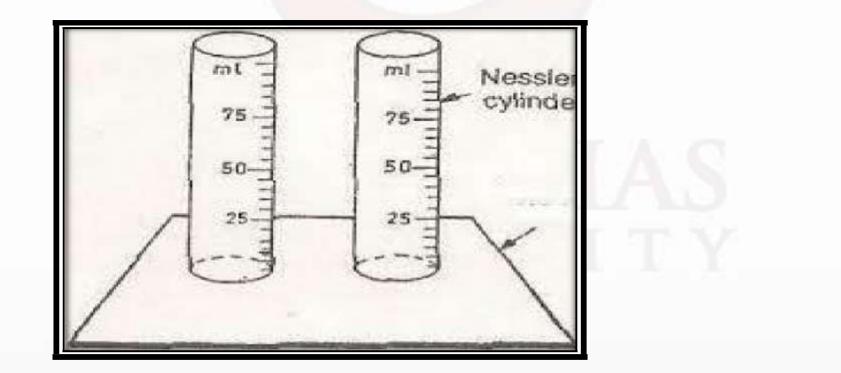
Effect of Impurities:

The impurities present in the substances may give following effects:

- □ Impurities having toxic effects may be injurious to health, if present above certain limits.
- □ Traces of impurities, may exert a cumulative toxic effect after a certain time.
- □ Impurities may lower the active strength of the substance.
- □ Impurity may decrease shelf life of substance.
- □ Impurity may cause incompatibility with other substances.
- Impurities may cause a physical or chemical change in the properties of the substance, so making the substance medicinally useless.
- □ May cause change in color, odour and taste.

Test for purity:

- Pharmacopoeia prescribes the "Test for purity" for pharmaceutical substances to check their freedom from undesirable impurities.
- Pharmacopoeia will decide and fix the limit of tolerance for these impurities.
- * For certain common impurities for which pharmacopoeia prescribes the test of purity are:
- ✓ Colour, odour, taste
- ✓ Physicochemical constants (Iodine value, saponification value, melting point, refractive index etc.)
- ✓ Acidity, alkalinity, pH
- ✓ Humidity (Estimation of moisture)
- \checkmark Cations and anions
- ✓ Ash
- \checkmark Arsenic or lead
- \checkmark Loss on drying
- \checkmark Loss on ignition


What is impurity? Any material that affects the purity of the material of interest.

> Impurity means undesired particles

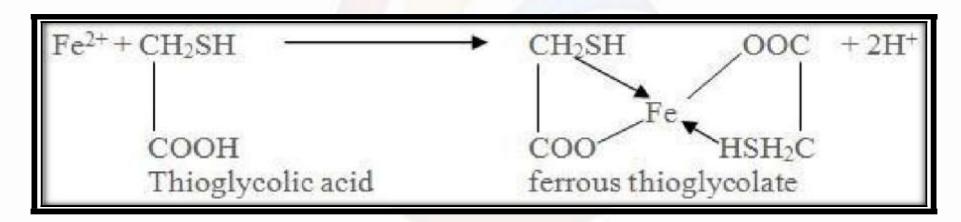
- Presence of Impurities in the pharmaceutical substances may produce toxic effects on the body and may also lower down the active strength of the pharmaceutical substance.
- Impurities commonly in chemical substances include small quantities of lead, Arsenic, Iron, Chloride and sulphate.

Limit tests:

- Tests being used to identify the impurity.
- Tests being used to control the impurity.
- Definition: Limit tests are quantitative or semi quantitative test designed to identify and control small quantities of impurities which are likely to be present in the substances.

Factors affecting limit tests:

- □ Specificity of the tests
- □ Sensitivity
- □ Control of personal errors (Analyst errors)
- Test in which there is no visible reaction
- Comparison methods
- Quantitative determination



Types: Tests in which there is no visible reaction Comparison methods Quantitative determinations

Limit test for IRON:

- Limit test of Iron is based on the reaction of iron in ammonical solution with thioglycollic acid in presence of citric acid to form iron thioglycolate (Ferrous thioglycolate complex) which produces pale pink to deep reddish purple color in alkaline media.
- ✤ Thioglycolic acid is used as reducing agent.

- ✤ The color of the Ferrous thioglycolate complex fades in the presence of air due to oxidation.
- ✤ Also, the color is destroyed in presence of oxidizing agents and strong alkalis.
- * The purple color is developed only in alkaline media. So ammonia solution is used.
- * But ammonia reacts with iron, forms precipitate of ferrous hydroxide.
- Thus citric acid is used which prevents the precipitate of iron with Ammonia by forming a complex with iron as iron citrate.

Procedure:

Test sample	Standard compound	
Sample is dissolved in specific amount	2 ml of standard solution of iron diluted	
of water and then volume is made up to 40 ml	with water upto 40 ml	
Add 2 ml of 20 % w/v of citric acid	Add 2 ml of 20 % w/v of citric acid	
(iron free)	(iron free)	
Add 2 drops of thioglycollic acid	Add 2 drops of thioglycollic acid	
Add ammonia to make the solution	Add ammonia to make the solution	
alkaline and adjust the volume to 50 ml	alkaline and adjust the volume to 50 ml	
Keep aside for 5 min	Keep aside for 5 min	
Color developed is viewed vertically	Color developed is viewed vertically and	
and compared with standard solution	compared with standard solution	

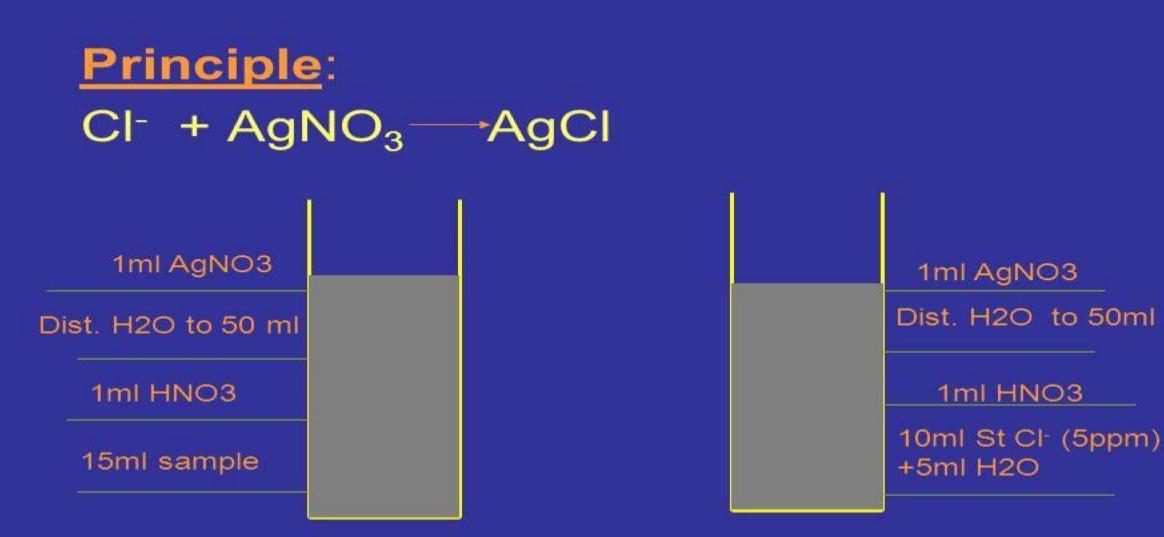
Note: All the reagents used in the limit test for Iron should themselves be iron free.

Observation:

The purple color produce in sample solution should not be greater than standard solution. If purple color produces in sample solution is less than the standard solution, the sample will pass the limit test of iron and vice versa.

Reasons:

- Citric acid forms complex with metal cation and helps precipitation of iron by ammonia by forming a complex with it.
- > Thioglycolic acid helps to oxidize iron (II) to iron (III).
- Ammonia is added to make solution alkaline. The pale pink color is visible only in the alkaline media. The color is not visible in acidic media as ferrous thioglycolate complex decomposes in high acidic media.



Limit test of chloride is based on the reaction of **soluble chloride** with **silver nitrate** in presence of **dilute nitric acid** to form silver chloride, which appears as solid particles (Opalescence) in the solution.

The silver chloride produced in the presence of dilute Nitric acid makes the test solution turbid, the extent of turbidity depending upon the amount of Chloride present in the substance is compared with the standard opalescence produced by the addition of Silver nitrate to a standard solution having a known amount of chloride and the same volume of dilute nitric acid as used in the test solution.

Limit Test for Chloride

Test sample	Standard compound
Specific weight of compound is dissolved in water or solution is prepared as directed in the pharmacopoeia and transferred in Nessler cylinder	Take 1 ml of 0.05845 % W/V solution of sodium chloride in Nessler cylinder
Add 1 ml of nitric acid	Add 1 ml of nitric acid
Dilute to 50 ml in Nessler cylinder	Dilute to 50 ml in Nessler cylinder
Add 1 ml of AgNO ₃ solution	Add 1 ml of AgNO ₃ solution
Keep aside for 5 min	Keep aside for 5 min
Observe the Opalescence/Turbidity	Observe the Opalescence/Turbidity

- ✤ The limit test involve simple comparisons of opalescence, turbidity, or colour with standard.
- These are semi-qualitative reactions in which extent of impurities present can be estimated by comparing visible reaction response of the test and standard.
- By this way, extent of reaction is readily determined by direct comparison of test solution with standard. So pharmacopoeia prefers comparison methods.

Limit test for sulphate:

The Sulfate Limit Test is designed to determine the allowable limit of sulfate contained in a sample.

Principle:

Limit test of sulphate is based on the reaction of **soluble sulphate** with **barium chloride** in presence of **dilute hydrochloric acid** to form **barium sulphate** which appears as solid particles (turbidity) in the solution.

$SO_{4\frac{1}{2}} BaCl_2 \longrightarrow BaSO_4 + 2Cl$

Then comparison of turbidity is done with a standard turbidity obtained from a known amount of Sulphate and same volume of dilute Hydrochloric acid have been added to both solutions.

The barium chloride test solution in the IP has been replaced by Barium sulphate reagent which is having **barium** chloride, sulphate free alcohol and a solution of potassium sulphate. Potassium sulphate has been added to increase the sensitivity of the test.

Proced

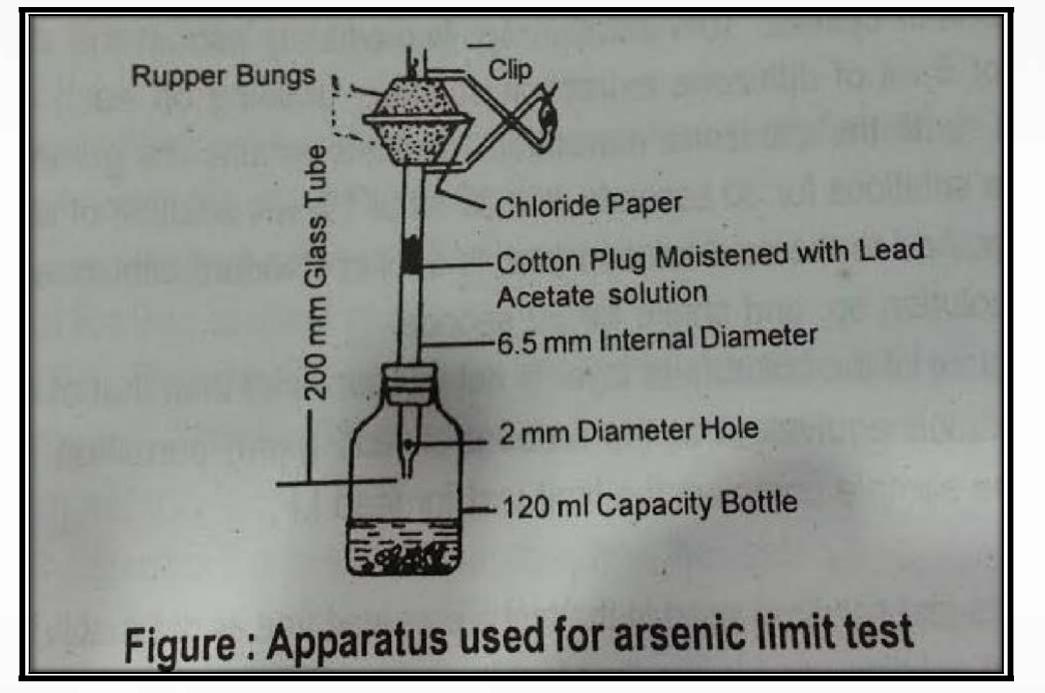
ure: Test sample	Standard compound
Specific weight of compound is dissolved in water or solution is prepared as directed in the pharmacopoeia and transferred in Nessler cylinder	Take 1 ml of 0.1089 % W/V solution of potassium sulphate in Nessler cylinder
Add 2 ml of dilute hydrochloric acid	Add 2 ml of dilute hydrochloric acid
Dilute to 45 ml in Nessler cylinder	Dilute to 45 ml in Nessler cylinder
Add 5 ml of barium sulphate reagent	Add 5 ml of barium sulphate reagent
Keep aside for 5 min	Keep aside for 5 min
Observe the Turbidity	Observe the Turbidity
	41

Limit test for Arsenic:

- Arsenic is a well known undesirable and harmful impurity which is present in medicinal substances.
- ✤ All pharmacopoeias prescribe a limit test for it.
- ✤ Pharmacopoeial method is based on the Gutzeit test.
- All the special reagents used in the limit test for Arsenic are marked and distinguished by letter 'As T', which means that they all should be Arsenic free and should themselves conform to the test for Arsenic.

Principle:

Limit test of Arsenic is based on the reaction of arsenic gas with hydrogen ion to form yellow stain on mercuric chloride paper in presence of reducing agents like potassium iodide. It is also called as Gutzeit test and requires special apparatus.


- Arsenic, present as arsenic acid (H₃AsO₄) in the sample is reduced to arsenious acid (H₃AsO₃) by reducing agents like potassium iodide, stannous acid, zinc, hydrochloric acid, etc. Arsenious acid is further reduced to arsine (gas) (AsH₃) by hydrogen and reacts with mercuric chloride paper to give a yellow stain.
- Substance + dil HCl ------→ H₃AsO₄ (contains Arsenic impurity) Arsenic acid
- $\begin{array}{ccc} & H_3AsO_4 + Arsenic & H_2SnO_2 --- \rightarrow H_3AsO_3 + H_2SnO_3 \\ & acid & Arsenious acid \end{array}$

 $\begin{array}{ll} H_3AsO_3 + & 6[H] & \longrightarrow AsH_3 + 3H_2O \\ Arsenious \ acid & nascent \ hydrogen & Arsine \ gas \end{array}$

The depth of yellow stain on mercuric chloride paper will depend upon the quantity of arsenic present in the sample.

- When the sample is dissolved in acid, the Arsenic present in the sample gets converted to Arsenic acid.
- Sy action of reducing agents like Potassium iodide, stannous acid etc., Arsenic acid gets reduced to arsenious acid.
- The nascent hydrogen formed during the reaction, further reduces Arsenious acid to Arsine gas, which reacts with mercuric chloride paper, giving a yellow stain.

Test sample	Standard compound
The test solution is prepared by dissolving specific amount in water and stannated HCI (arsenic free) and kept in a wide mouthed bottle.	A known quantity of dilute arsenic solution in water and stannated HCl (arsenic free) is kept in wide mouthed bottle.
1 g of KI	1 g of KI
5 ml of stannous chloride acid solution	5 ml of stannous chloride acid solution
10 g of granulated zinc is added (all this reagents must be arsenic free).	10 g of zinc is added (all this reagents must be arsenic free).
Keep the solution aside for 40 min	Keep the solution aside for 40 min

Stain obtained on mercuric chloride paper is compared with standard solution. Standard stain must be freshly prepared as it fades on keeping.

Inference: If the stain produced by the test is not deeper than the standard stain, then sample complies with the limit test for Arsenic.

Reasons:

Stannous chloride is used for complete evolution of arsine.

Zinc, potassium iodide and stannous chloride is used as a reducing agent.

Hydrochloride acid is used to make the solution acidic

Lead acetate paper are used to trap any hydrogen sulphide which may be evolved along with arsine.

Use of stannated Hydrochloric acid:

If pure zinc and HCl are used, the steady evolution of gas does not occur. This produces improper stain (e.g slow evolution produces short but intense stain while rapid evolution of gas produces long but diffused stain.) So, to get steady evolution of gas, stannated hydrochloric acid is used.

Use of Lead Acetate solution:

 H_2S gas may be formed during the experiment as zinc contains sulphides as impurities. It gives black stain to $HgCl_2$ paper and so will interfere the test.

Hence gases evolved are passed through cotton wool plug moistened with lead acetate, where H_2S gas is trapped as PbS.

Use of Potassium iodide:

KI is converted to HI which brings about reduction of unreacted pentavalent arsenic to trivalent Arsenic. Thus, reproducible results can be obtained. If it is not used then some pentavalent Arsenic may remain unreacted.

Limit test for lead:

Lead is a most undesirable impurity in medical compounds

• and comes through use of sulphuric acid, lead lined apparatus and glass bottles use for storage of chemicals.

• Principle:

• Limit test of lead is based on the reaction of lead and diphenyl thiocabazone (dithizone) in alkaline solution to form lead dithizone complex which is red in color.

49

- Dithizone in chloroform, is able to extract lead from alkaline aqueous solutions as a lead dithizone complex (Red in colour)
- The original dithizone is having a green colour in chloroform while the lead- dithizone is having a violet color.So, resulting color at the end of the process is read.
- ***** The intensity of the color of complex is dependant upon the amount of lead in the solution.
- The color of the lead-dithizone complex in chloroform has been compared with a standard volume of lead solution, treated in the same manner.
- In this method, the lead present as an impurity in the substances, gets separated by extracting an alkaline solution with a dithizone extraction solution.
- * The interference and influence of the other metal ions has been eliminated by adjusting the optimum pH for the extraction by employing Ammonium citrate/ potassium cyanide.

Method:

- Sample solution is transferred to a separating funnel.
- To it 6 ml of ammonium citrate, 2 ml potassium cyanide and 2 ml of hydroxalamine HCl are added.
- 2 drops of phenol red
- Solution is made alkaline by adding ammonia solution.
- This is then extracted with 5 ml portions of dithizone solution until it becomes green.
- The combined dithizone extracts are shaken for 30 seconds with 30 ml of nitric acid and chloroform layer is discarded.
- To the acid solution 5 ml of standard dithizone solution is added and 4 ml ammonium cyanide and solution is shaken for 30 sec.
- Similarly prepare standard.

Observation:

The intensity of the color of complex, is depends on the amount of lead in the solution. The color produced in sample solution should not be greater than standard solution. If color produces in sample solution is less than the standard solution, the sample will pass the limit test of lead and vice versa.

Reasons:

- Phenol red is used as indicator to develop the color at the end of process Lead present as an impurities in the substance, gets separated by extracting an alkaline solution with a dithizone extraction solution.

Reference

- 1. Mendhanm J, Denny R<mark>.C.,</mark> Barnes J.D., Thomas M, Jeffery G.H.,
- "Vogel's Textbook of Quantitative Chemical Analysis", Pearson Education Asia.
- 2. Conners K.A., "A Text book of Pharmaceutical Analysis", Wiley Interscience.
- 3. Beckett, A.H., and Stenlake, J.B., Practical Pharmaceutical Chemistry, Vol. I&II. The Atherden Press of the University of London.
- 4. Alexeyev V. "Quantitative Analysis". CBS Publishers & Distributors.
 - 5. The Pharmacopoeia of India.