Course Code: BSCC2002 Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Solutions and Colligative Properties

Course Code: BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

TOPICS COVERED

- > Solution
- ➤ Concentration Expression
 - ➤ Mass Percentage or Percentage Expression
 - >% Concentration % w/w, % v/v, % w/v, % v/w
 - ➤ Parts per Million (ppm) and Parts per Billion (ppb)
 - ➤ Molarity (*M*)
 - ➤ Molality (m)
 - **≻**Normality
 - \triangleright Mole Fraction (X)

Course Code: BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Solution

- Solution: a mixture of two or more substances that is identical throughout (homogeneous)
- can be physically separated
- composed of *solutes* and *solvents*

the substance being dissolved

Salt water is considered a solution. How can it be physically separated?

the substance that dissolves the solute

Course Code: BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Definitions

A solution is a homogeneous mixture of two or more substances
OR

• A solution is a homogenous mixture of solute and solvent.

OR

- A solution is a homogenous mixture of two substances but consisting of one phase.
- A solute is dissolved in a solvent.
- solute is the substance being dissolved
- solvent is the liquid in which the solute is dissolved
- an *aqueous* solution has water as solvent

Course Code: BSCC2002 Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

- **Binary solution:** A homogenous mixture consisting of one phase and containing only two components i.e. one solute and one solvent e.g. Solution of NaCl in water.
- **Dilute Solutions:** A solution containing relatively small quantity of solute as compared with the amount of solvent.
- Concentrated Solution: A solution containing large amount of solute in the solution than that in dilute solution.
- Un-saturated solution: a solution in which more solute can be dissolved at a given temperature is called as an unsaturated solution.

Course Code: BSCC2002 Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Types of Solutions: Based on physical states of solute and solvent:

TABLE 13.1 Examples of Solutions			
State of Solution	State of Solvent	State of Solute	Example
Gas	Gas	Gas	Air
Liquid	Liquid	Gas	Oxygen in water
Liquid	Liquid	Liquid	Alcohol in water
Liquid	Liquid	Solid	Salt in water
Solid	Solid	Gas	Hydrogen in palladium
Solid	Solid	Liquid	Mercury in silver
Solid	Solid	Solid	Silver in gold
Copyright © 2006 Pearson Prentice Hall, Inc.			
Gas	Gas	Solid	Smoke in air
Gas	Gas	liquid	Water vapours in air

Course Code: BSCC2002 Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Concentration Expression

- 5 ways of expressing concentration
- Mass percent: (mass solute / mass of solution) * 100
- Molarity(M): moles solute / Liter solution
- Molality* (m) moles solute / Kg solvent
- Normality (N)- gram equivalent of solute/ liter solution
- Mole Fraction(cA) moles solute / total moles solution
- * Note that molality is the only concentration unit in which denominator contains only solvent information rather than solution.

Course Code: BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Mass Percentage or Percentage Expression

• Mass % of A =
$$\frac{\text{mass of A in solution}}{\text{total mass of solution}} \times 100$$

• Determine the mass percentage of hexane in a solution containing 11 g of butane in 110 g of hexane.

• Mass % of the component =
$$\frac{\text{mass of the component in solution}}{\text{total mass of solution}} \times 100$$

$$= \frac{110 \,\mathrm{g}}{110 \,\mathrm{g} + 11 \mathrm{g}} \times 100 = 91\%$$

Course Code: BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

% Concentration

•
$$\%$$
 (w/w) = $\frac{\text{mass solute}}{\text{mass solution}} \times 100$

•
$$\%$$
 (w/v) = $\frac{\text{mass solute}}{\text{volume solution}} \times 100$

•
$$\%$$
 (v/v) = $\frac{\text{volume solute}}{\text{volume solution}} \times 100$

Course Code: BSCC2002 Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

% w/w

- It expresses the no. of grams of the solute per 100 gram of the solution.
- e.g. a 10 % w/w aqueous glycerine solution means 10 g of glycerine dissolved in sufficient water to make overall 100 gram of the solution.

$^{\circ}/_{\circ}$ $_{\mathrm{V}}/_{\mathrm{V}}$

- It expresses the no. of milliliters of the solute per 100 milliliters of the solution.
- e.g. a 10 % v/v aqueous ethanolic solution means 10 ml of ethanol dissolved in sufficient water to make overall 100 mls of the solution.

$^{0}/_{0}$ w/v

- It expresses the no. of grams of the solute per 100 mls of the solution.
- e.g. a 10 % w/v aqueous NaCl solution means 10 g of NaCl dissolved in sufficient water to make overall 100 mls of the solution.

Course Code: BSCC2002 Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

% v/w

- It expresses the no. of mls of the solute per 100 gram of the solution.
- e.g. a 10 % v/w aqueous glycerine solution means 10 ml of glycerine dissolved in sufficient water to make overall 100 gram of the solution.

Parts per Million and Parts per Billion

This is another way to expressing concentration, particularly those of very dilute solutions. e.g. to express the impurities of substances in water.

- ppm denotes the amount of given substance in a total amount of 1,000,000 of solution e.g. one milligram per kilogram. 1 part in 10 ⁶
- ppb denotes the amount of given substance in a total amount of 1,000,000,000 of solution e.g. 0.001 milligram per kilogram. 1 part in 10 9

Course Code: BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Parts per Million (ppm) and Parts per Billion (ppb)

Parts per Million (ppm)

Parts per Billion (ppb)

• ppm =
$$\frac{\text{mass of A in the solution}}{\text{total mass of solution}} \times 10^6$$
 ppb = $\frac{\text{mass of A in the solution}}{\text{total mass of solution}} \times 10^9$

• If 3.6 mg of Na+ is detected in a 200g sample of water from Lake Erie, what is its concentration in ppm?

$$ppm = \frac{mass of A in the solution}{total mass of solution} \times 10^{6}$$

ppm =
$$\frac{3.6 \text{ mg}}{200 \text{ g}} = \frac{0.0036 \text{ g}}{200 \text{ g}} \times 10^6 = 18 \text{ ppm}$$

Course Code: BSCC2002 Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Molarity (M)

• It expresses the no. of moles of solute dissolved per liter of the solution.

$$\%$$
 (w/w) = $\frac{\text{mole of solute}}{\text{L of solution}}$

- molarity= Given weight / molecular weight substance x 1/ volume of solution in liters
- e.g.1 mole of Nacl= 58.5 gm of Nacl
- No. of moles= Given weight / molecular weight substance.
- Because volume is temperature dependent, molarity can change with temperature.

Course Code: BSCC2002 Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Molality (m)

It expresses the no. of moles of solute dissolved per kg of the solvent.

$$% (w/w) = \frac{\text{mole of solute}}{kg \text{ of solvent}}$$

- Because both moles and mass do not change with temperature, molality (unlike molarity) is not temperature dependent.
- \triangleright A solution is made by dissolving 4.35 g glucose ($C_6H_{12}O_6$) in 25.0 mL of water at 25°C. Calculate the molality of glucose in the solution.

molar mass of glucose, 180.2 g/mol

$$\operatorname{Mol} C_6 H_{12} O_6 = (4.35 \text{ g } C_6 H_{12} O_6) \left(\frac{1 \text{ mol } C_6 H_{12} O_6}{180.2 \text{ g } C_6 H_{12} O_6} \right) = 0.0241 \text{ mol } C_6 H_{12} O_6$$

Course Code: BSCC2002 Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

water has a density of 1.00 g/mL, so the mass of the solvent is

$$(25.0 \text{ mL})(1.00 \text{ g/mL}) = 25.0 \text{ g} = 0.0250 \text{ kg}$$

Molality of
$$C_6H_{12}O_6 = \frac{0.0241 \text{ mol } C_6H_{12}O_6}{0.0250 \text{ kg } H_2O} = 0.964 \text{ m}$$

Normality (N)

 It expresses the no. of gram equivalent of solute dissolved per liter of the solution.

$$N = \frac{Number\ of\ gram\ equivalent\ of\ solute}{L\ of\ solution}$$

Normality = Given weight / equivalent weight x 1/ volume of solution in liters

Course Code: BSCC2002 Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

Mole Fraction (X)

• The ratio of the number of the moles of that component to the total number of moles of all the components of the solution

$$X_A = \frac{moles\ of\ A}{total\ moles\ in\ solution}$$

The sum of the mole fractions of all the components is always equal to unity i.e. 1

Course Code: BSCC2002

Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

References

Text Books

1. Atkins, P. W. & Paula, J. de *Atkin's Physical Chemistry* 10th Ed., Oxford University Press (2014).

Reference Books

- 1. Castellan, G. W. *Physical Chemistry*4th Ed. Narosa (2004).
- 2. Engel, T. & Reid, P. *Physical Chemistry* 3rd Ed. Pearson (2013).
- 3. Levine, I.N. *Physical Chemistry*6th Ed., Tata Mc Graw Hill (2010)
- 4. Puri Sharma Pathania Physical Chemistry Book.
- 5. https://www.slideshare.net/DrSarahAyoub/1-ppt-solution

Course Code: BSCC2002 Course Name: Physical Chemistry II: Chemical Thermodynamics and its Applications

