Course Code : MCAS2140 Course Name: Algorithm Analysis and Design

CORRECTNESS OF DIJKSTR&'S &LGORITHM GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Correctness — Part | Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps. *Proof.* Suppose not. Let v be the first vertex for

Proof. Suppose not. Let v be the first vertex for which $d[v] < \delta(s, v)$, and let u be the vertex that caused d[v] to change: d[v] = d[u] + w(u, v). Then, $d[v] < \delta(s, v)$ supposition

 $\leq \delta(s, u) + \delta(u, v)$ triangle inequality $\leq \delta(s, u) + w(u, v)$ sh. path \leq specific path $\leq d[u] + w(u, v)$ v is first violation

Contradiction.

Name of the Faculty: Unnikrishnan

Correctness — Part II

Lemma. Let *u* be *v*'s predecessor on a shortest path from *s* to *v*. Then, if $d[u] = \delta(s, u)$ and edge (u, v) is relaxed, we have $d[v] = \delta(s, v)$ after the relaxation.

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Correctness — Part II Lemma. Let *u* be *v*'s predecessor on a shortest path from *s* to *v*. Then, if $d[u] = \delta(s, u)$ and edge (u, v) is relaxed, we have $d[v] = \delta(s, v)$ after the relaxation.

Proof. Observe that $\delta(s, v) = \delta(s, u) + w(u, v)$. Suppose that $d[v] > \delta(s, v)$ before the relaxation. (Otherwise, we're done.) Then, the test d[v] > d[u] + w(u, v) succeeds, because $d[v] > \delta(s, v) = \delta(s, u) + w(u, v) = d[u] + w(u, v)$, and the algorithm sets $d[v] = d[u] + w(u, v) = \delta(s, v)$.

Correctness — Part III

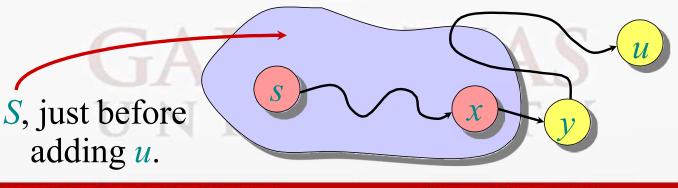
Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Correctness — Part III **Theorem.** Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

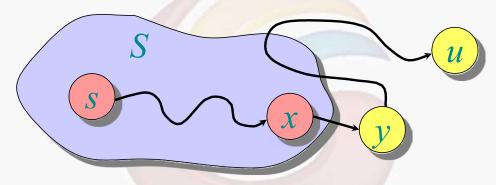
Proof. It suffices to show that $d[v] = \delta(s, v)$ for every $v \in V$ when v is added to S. Suppose u is the first vertex added to S for which $d[u] > \delta(s, u)$. Let y be the first vertex in V - S along a shortest path from s to u, and let x be its predecessor:



Name of the Faculty: Unnikrishnan

Course Code : MCAS2140 Course Name: Algorithm Analysis and Design

Correctness — Part III (continued)



Since *u* is the first vertex violating the claimed invariant, we have $d[x] = \delta(s, x)$. When *x* was added to *S*, the edge (x, y) was relaxed, which implies that $d[y] = \delta(s, y) \le \delta(s, u) < d[u]$. But, $d[u] \le d[y]$ by our choice of *u*. Contradiction.

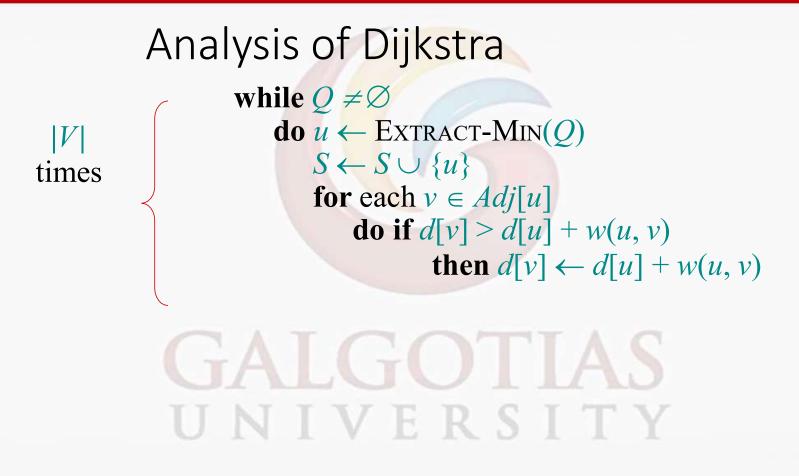
Name of the Faculty: Unnikrishnan

Analysis of Dijkstra

while $Q \neq \emptyset$ do $u \leftarrow \text{EXTRACT-MIN}(Q)$ $S \leftarrow S \cup \{u\}$ for each $v \in Adj[u]$ do if d[v] > d[u] + w(u, v)then $d[v] \leftarrow d[u] + w(u, v)$

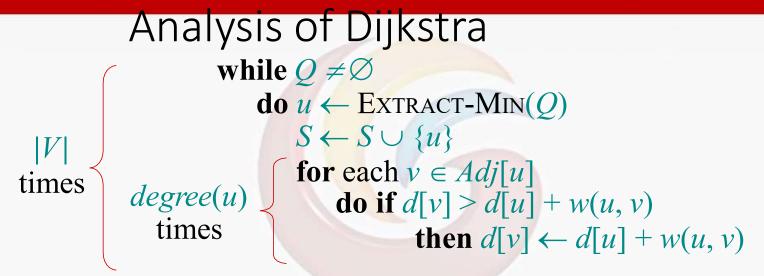
Name of the Faculty: Unnikrishnan

Course Code : MCAS2140 Course Name: Algorithm Analysis and Design



Name of the Faculty: Unnikrishnan

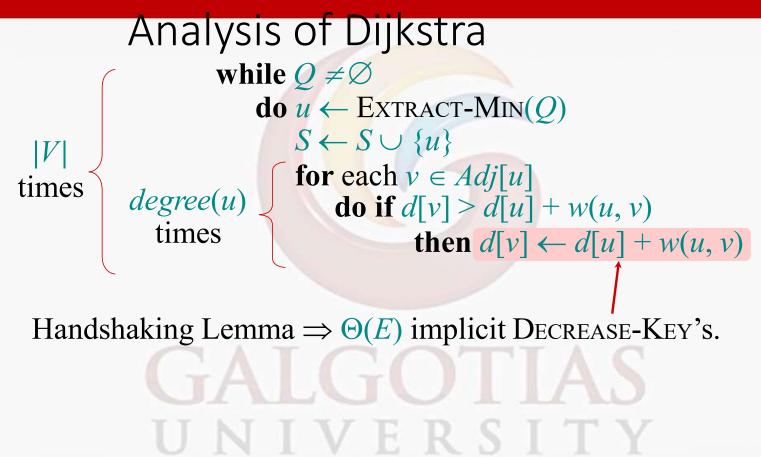
Course Code : MCAS2140 Course Name: Algorithm Analysis and Design



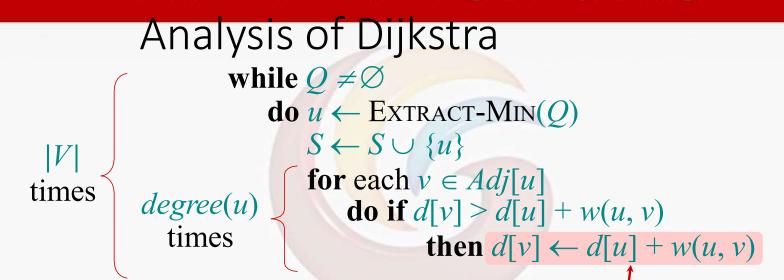
GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Course Code : MCAS2140 Course Name: Algorithm Analysis and Design



Name of the Faculty: Unnikrishnan



Handshaking Lemma $\Rightarrow \Theta(E)$ implicit DECREASE-KEY's. Time = $\Theta(V \cdot T_{\text{EXTRACT-MIN}} + E \cdot T_{\text{DECREASE-KEY}})$ Note: Same formula as in the analysis of Prim's minimum spanning tree algorithm. Name of the Faculty: Unnikrishnan Program Name: MCA

Analysis of Dijkstra (continued) Time = $\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$

 $Q \quad T_{\text{EXTRACT-MIN}} \quad T_{\text{DECREASE-KEY}} \quad \text{Total}$

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

School of Computing Science and Engineering Course Code : MCAS2140 Course Name: Algorithm Analysis and Design Analysis of Dijkstra (continued) Time = $\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$ $T_{\rm EXTRACT-MIN}$ $T_{\rm DECREASE-KEY}$ Total OO(1) $O(V^2)$ O(V)array GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

School of Computing Science and Engineering Course Code : MCAS2140 Course Name: Algorithm Analysis and Design Analysis of Dijkstra (continued) Time = $\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$ Total $T_{\text{EXTRACT-MIN}}$ $T_{\text{DECREASE-KEY}}$ Q O(1) $O(V^2)$ O(V)array binary $O(\lg V)$ $O(E \lg V)$ $O(\lg V)$ heap VERSITY

Name of the Faculty: Unnikrishnan

Analysis of Dijkstra (continued) Time = $\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$ Total $T_{\text{EXTRACT-MIN}}$ $T_{\text{DECREASE-KEY}}$ Q O(1) $O(V^2)$ array O(V)binary $O(\lg V)$ $O(E \lg V)$ $O(\lg V)$ heap $+ V \lg V$ O(1) $O(\lg V)$ Fibonacci amortized amortized worst case heap

Name of the Faculty: Unnikrishnan

