Course Code: BTME-3021 Course Name: Applied Thermodynamics

UNIT-3 RANKINE WITH FEED WATER HEATING

UNIVERSITY

Course Code: BTME-3021 Course Name: Applied Thermodynamics

Recap

- Concept and analysis of reheeating- and regeneration rankine cycle.
- **Application of Reh-Reg rankine cycle.**

GALGOTIAS UNIVERSITY

Course Code: BTME-3021 Course Name: Applied Thermodynamics

LEARNING OBJECTIVE OF LECTURE

Students will be able to learn thermodynamics of feed water heating for regeneration purpose and its effect on rankine cycle performance..

GALGOTIAS UNIVERSITY Feedwater

OPEN HEATERS

1. The extracted steam mixes with feedwater and both fluid leave at common temperature.

- 2. The advantages: lower cost, simplicity, and high heat transfer.
- 3. The disadvantage: more pumps.

CLOSED HEATERS

- 1. Extracted steam and feedwater are kept separately.
- 2. Closed heaters are shell-and-tube heat exchangers.
- 3. The advantages: no extra pump.
- 4. The disadvantage: complex, higher cost, lower heat transfer capacity.

http://www.ohio.edu/mechanical/thermo/Applied/Chapt.7_11/Chapter8b.html

OPEN Feedwater Heaters

- Mixing chamber: steam extracted from the turbine mixes with the feedwater from the pump.
- The mixture leaves the heater (3) as saturated liquid at the heater pressure.
- Heat of y at OFWH (6-3) at constant pressure increases feedwater temperature (2-3)

Two OPEN Feedwater

Heaters: Diagram

(c)

- Steam extract for each pressure stage (m1, m2).
- A pump is needed for each stage to flow low pressure fluid to higher pressure heater.

Two OPEN Feedwater

$$W_T = 1(h_1 - h_2) + (1 - m_1)(h_2 - h_3) + (1 - m_1 - m_2)(h_3 - h_4)$$

$$W_P = (1 - m_1 - m_2)(h_6 - h_5) + (1 - m_1)(h_8 - h_7) + 1(h_{10} - h_9)$$

$$Q_1 = I(h_1 - h_{10})$$

$$Q_2 = (1 - m_1 - m_2)(h_4 - h_5)$$

Two OPEN Feedwater Heaters:

FWHEnergy balance

Inflow Energy = Outflow Energy

$$m_1 h_2 + (1 - m_1) h_8 = 1 h_9$$

$$m_1 = \frac{h_9 - h_8}{h_2 - h_8}$$

FWH2

Inflow Energy = Outflow Energy

$$m_2 h_3 + (1 - m_1 - m_2) h_6 = (1 - m_1) h_7$$

$$m_2 = (1 - m_1) \frac{h_7 - h_6}{h_3 - h_6}$$

Two CLOSED Feedwater Heaters:

- Steam is extracted for each pressure stage (m1, m2).
- After condenser, pressure of (1-m1-m2) was increased to the highest pressure.
- After heat exchange at HP FWH, vapour in m1 is trapped and then it mixes with m2 at LP FWH.
- Next, vapor in m1 & m2 are trapped and finally pumped to the highest pressure.

Course Code: BTME-3021

FWH1

Inflow Energy = Outflow Energy

$$m_1 h_2 + h_{10} = m_1 h_{11} + h_{12}$$

$$m_1 = \frac{h_{12} - h_{10}}{h_2 - h_{11}}$$

FWH2

Inflow Energy = Outflow Energy

$$m_{2}h_{3} + (1 - m_{1} - m_{2})h_{6} + m_{1}h_{11} = (m_{2} + m_{1})h_{8} + (1 - m_{1} - m_{2})h_{7}$$

$$m_{2} = \frac{m_{1}(h_{6} - h_{7} + h_{8} - h_{11}) - h_{6} + h_{7}}{h_{3} - h_{6} - h_{7} - h_{8}}$$
(a)

Course Code: BTME-3021 Course Name: Applied Thermodynamics

References-

1-https://energyeducation.ca/encyclopedia/Rankine_cycle.

2-http://www.thermopedia.com/content/1072/

3-Çengel, Yunus A., and Michael A. Boles. Thermodynamics: An Engineering Approach. 7th ed. New York: McGraw-Hill, 2011. p. 299. Print.

4-N. A. Sinitsyn (2011). "Fluctuation Relation for Heat Engines". J. Phys. A: Math. Theor. 44 (40): 405001. arXiv:1111.7014. Bibcode:2011JPhA...44N5001S. doi:10.1088/1751-8113/44/40/405001. S2CID 119261929.

5-Carnot, Sadi, Reflections on the Motive Power of Fire