
School of Computing

Science and Engineering

Program: BSC (Hons) CS

Course Code: BSCS3560

Course Name: Linux Administration

School of Computing Science and Engineering
C Course Code : BSCS3560 Course Name: Linux Administration

Program Name: Program Code:

Linux - Using Shell Variables
• A variable is a character string to which we assign a

value. The value assigned could be a number, text,

filename, device, or any other type of data.

• A variable is nothing more than a pointer to the actual

data. The shell enables you to create, assign, and delete

variables.

Variable Names

• The name of a variable can contain only letters (a to z

or A to Z), numbers (0 to 9) or the underscore character.

• By convention, Unix shell variables will have their
names in UPPERCASE.

School of Computing Science and Engineering
Course Code : BSCS3560 Course Name: Linux Administration

Program Name: Program Code:

Variable Names

The following examples are valid variable names −
_ALI

TOKEN_A

VAR_1

VAR_2

Following are the examples of invalid variable names −
2_VAR

-VARIABLE

VAR1-VAR2

VAR_A!

The reason you cannot use other characters such as !, *,

or - is that these characters have a special meaning for

the shell.

School of Computing Science and Engineering
Course Code :BSCS3560 Course Name: Linux Administration

• Variables are defined as follows −

• variable name = variable value

• For example:

• NAME=“ Zara Ali ”

• The above example defines the variable NAME and assigns the value "Zara

Ali" to it. Variables of this type are called scalar variables. A scalar variable

can hold only one value at a time.

• Shell enables you to store any value you want in a variable. For example −

o VAR1="Zara Ali“

o VAR2=100

Program Name: Program Code:

Defining Variables

School of Computing Science and Engineering
Course Code :BSCS3560 Course Name: Linux Administration

• To access the value stored in a variable, prefix its name
with the dollar sign ($) −

• For example, the following script will access the value of
defined variable NAME and print it on STDOUT −

• #!/bin/sh

• NAME= “ Zara Ali ”

• echo $NAME

• The above script will produce the following value-

Zara Ali

Program Name: Program Code:

Accessing Values

School of Computing Science and Engineering
Course Code :BSCS3560 Course Name: Linux Administration

• Shell provides a way to mark variables as read-only by using the read-only

command. After a variable is marked read-only, its value cannot be changed.

• For example, the following script generates an error while trying to change

the value of NAME −

#!/bin/sh

NAME= “ Zara Ali ”

readonly NAME

NAME=“ASHISH”

• The above script will produce the following value-

/bin/sh: NAME: This variable is read only

Program Name: Program Code:

Read-only Variables

School of Computing Science and Engineering
Course Code :BSCS3560 Course Name: Linux Administration

Program Name: Program Code:

Unsetting Variables

Unsetting or deleting a variable directs the shell to remove the

variable from the list of variables that it tracks. Once you unset a
variable, you cannot access the stored value in the variable.

Following is the syntax to unset a defined variable using

the unset command −

unset variable_name

The above command unsets the value of a defined variable. Here is a

simple example that demonstrates how the command works −

#!/bin/sh

NAME= “ Zara Ali ”

unset NAME

Echo $ NAME

The above example does not print anything. You cannot use the unset

command to unset variables that are marked readonly.

School of Computing Science and Engineering
Course Code :BSCS3560 Course Name: Linux Administration

• When a shell is running, three main types of variables are present −

• Local Variables − A local variable is a variable that is present within the

current instance of the shell. It is not available to programs that are started

by the shell. They are set at the command prompt.

• Environment Variables − An environment variable is available to any child

process of the shell. Some programs need environment variables in order

to function correctly. Usually, a shell script defines only those environment

variables that are needed by the programs that it runs.

• Shell Variables − A shell variable is a special variable that is set by the

shell and is required by the shell in order to function correctly. Some of

these variables are environment variables whereas others are local

variables.

Program Name: Program Code:

Variable Types

School of Computing Science and Engineering
Course Code :BSCS3560 Course Name: Linux Administration

• A shell variable is capable enough to hold a single value.
These variables are called scalar variables.

• Shell supports a different type of variable called an array
variable. This can hold multiple values at the same time.
Arrays provide a method of grouping a set of variables.
Instead of creating a new name for each variable that is
required, you can use a single array variable that stores all
the other variables.

• All the naming rules discussed for Shell Variables would
be applicable while naming arrays.

Program Name: Program Code:

Linux - Using Shell Arrays

School of Computing Science and Engineering
Course Code :BSCS3560 Course Name: Linux Administration

• The difference between an array variable and a scalar variable can

be explained as follows.

• Suppose you are trying to represent the names of various students

as a set of variables. Each of the individual variables is a scalar

variable as follows −

• NAME01=“Ram"

• NAME02=“Shyam"

• NAME03=“RAVI"

• NAME04=“Gyan"

• NAME05="Daisy"

Program Name: Program Code:

Defining Array Values

School of Computing Science and Engineering
Course Code :BSCS3560 Course Name: Linux Administration

• We can use a single array to store all the above mentioned names.
Following is the simplest method of creating an array variable. This helps
assign a value to one of its indices.

• array_name[index]=value

• Here array_name is the name of the array, index is the index of the item in
the array that you want to set, and value is the value you want to set for that
item.

• If you are using the ksh shell, here is the syntax of array initialization −

• set -A array_name value1 value2 ... valuen

• If you are using the bash shell, here is the syntax of array initialization −

• array_name=(value1 ... valuen)

Program Name: Program Code:

Array Values

School of Computing Science and Engineering
Course Code :BSCS3560 Course Name: Linux Administration

• After you have set any array variable, you access it as follows −

• ${array_name[index]}

• Here array_name is the name of the array, and index is the index of the
value to be accessed. Following is an example to understand the concept −

• #!/bin/sh

•

• NAME[0]="Zara"

• NAME[1]="Qadir"

• NAME[2]="Mahnaz"

• NAME[3]="Ayan"

• NAME[4]="Daisy"

• echo "First Index: ${NAME[0]}"

• echo "Second Index: ${NAME[1]}"

Program Name: Program Code:

Accessing Array Values

School of Computing Science and Engineering
Course Code :BSCS3560 Course Name: Linux Administration

• The above example will generate the following result −

• $./test.sh

• First Index: Zara

• Second Index: Qadir

• You can access all the items in an array in one of the following ways

−

• ${array_name[*]}

• ${array_name[@]}

Program Name: Program Code:

Accessing Array Values

