

Course Code : BSCM301

Course Name: Real Analysis-I

Theorem(Archimedean property): Let x and y be any two positive real numbers with y < x. Then, there exists a positive integer n (or natural number) such that ny > x.

if0.....y (real number).....x(real number).......y

Proof: Suppose not i.e., $ny \le x \forall n \in N$.

Let $A = \{ny: n \in \mathbb{N}\}$

Then, **A** is non empty (since it true for y = 1) and $ny \le x \forall n \in N$ this implies that x is an upper bound of set **A**. This implies **A** is bounded above.

υνινεκδιιγ

Name of the Faculty: Dr. Pradeep Kumar

Course Code : BSCM301

Course Name: Real Analysis-I

By completeness property in R, every bounded above subset has a supremum.

Sup $A = \alpha$ (say or assume)

This implies α is an upper bound ($ny \le \alpha \forall n \in N$ and $ny \in A$) as well as lowest of all upper bound.

If $n \in N$ then $n + 1 \in N$.

Therefore $(n + 1)y \in A$ this implies that $(n + 1)y \leq \alpha \forall n \in N$ and $ny \in A$.

Then, $ny + y \le \alpha$ this implies $ny \le \alpha - y \forall n \in N$.

This implies $\alpha - y$ is an upper bound but $\alpha - y < \alpha$.

UNIVERSITY

Name of the Faculty: Dr. Pradeep Kumar

6

Course Code : BSCM301

Course Name: Real Analysis-I

This contradict that α is lowest of all upper bounds.

This implies that $ny \le x \forall n \in N$ is wrong.

Thus, $ny > x \forall n \in N$. Proved.

Theorem: Suppose x and y be any two rational numbers. Then, there exists at least one rational number between x and y and hence infinitely many rational numbers.

UNIVERSITY

Name of the Faculty: Dr. Pradeep Kumar

Course Code : BSCM301

Course Name: Real Analysis-I

Theorem: Suppose x and y be any two rational numbers. Then, there exists at least one rational number between x and y and hence infinitely many rational numbers.

Proof: Given, x and y be any two rational numbers. Then, $\frac{x+y}{2}$ is also a rational number.

Also,
$$x < \frac{x+y}{2} = r1 < y$$
. Proved

Similarly we can prove that there exists infinitely many rational numbers.

Name of the Faculty: Dr. Pradeep Kumar

Course Code : BSCM301

Course Name: Real Analysis-I

Theorem: Suppose x and y be any two real numbers. Then, there exists at least one rational number and hence infinitely rational numbers.

Proof: Given, x and y be any two real numbers.

Let us assume that x < y or y < x this implies y - x > 0 or x - y > 0.

(since x - x < y - x or y - y < x - y or 0 < y - x or 0 < x - y)

Also **n=1** is a real number.

We have now two positive real numbers **n=1** and y - x > 0.

By Achimedean property (if we take x=1, Y=y-x) there exists an integer m

```
Such that m(y-x) > 1.
```

```
This implies my - mx > 1.
```

This implies that difference of two real numbers is strictly greater than 1.

Galgotias University

Course Code : BSCM301

Course Name: Real Analysis-I

Then, my and mx definitely contains an integer, say, n.

This implies mx < n < my.

Now divide by m on the both sides, we get

 $x < \frac{n}{m} = r(rational number) < y$. Proved

Similarly we can prove that there are infinitely many rational numbers.

UNIVERSITY

Name of the Faculty: Dr. Pradeep Kumar

Course Code : BSCM301

Course Name: Real Analysis-I

Theorem: Suppose x and y be any two real numbers. Then, there exists at least one irrational number and hence infinitely rational numbers.

Proof: Given x and y be any two real numbers then $\sqrt{2}$ x and $\sqrt{2}$ y also be real numbers.

Then, by above theorem there exists a rational number r between $\sqrt{2}$ x and $\sqrt{2}$ y such that

 $\sqrt{2} \times \sqrt{2} y$

Divide by $\sqrt{2}$ both the sides

 $x < \frac{r}{\sqrt{2}} = irrational numvber < y$. Proved

GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. Pradeep Kumar

Surgenus entreisity

Course Code : BSCM301

Course Name: Real Analysis-I

Corollaries of Archimedean properties:

Corollary 1. Let y be any positive real number and x be any real number. Then, there exists a positive integer n (or natural number) such that ny > x.

Corollary 2. For any real number x there exists an integer n such that n > x

Corollary 3. For any real number x there exists two integers m and n such that n < x < m.

GALGOTIAS UNIVERSITY

Reference book: Bansi Lal and Sanjay Arora; Introduction to Real Analysis, Satya Prakashan, 1st Vol (1991)