School of Basic and Applied Sciences

Course Code : BSCC2003 Course Name: Inorganic Chemistry II

Add your content here

Add your content here

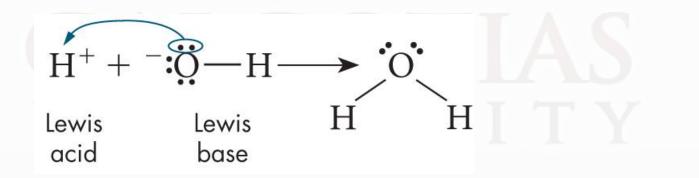
GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. Pooja Agarwal

Program Name: B.Sc. (H)Chemistry

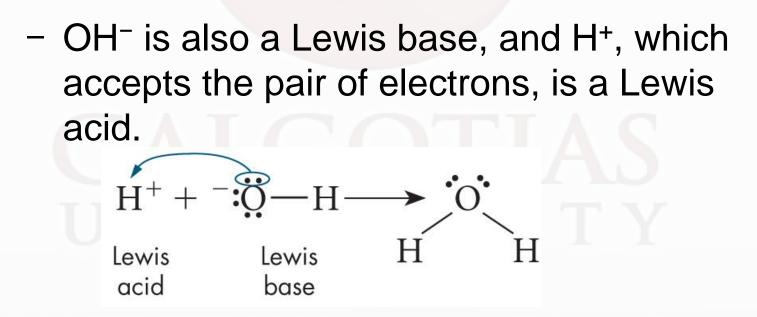
Lewis Acids and Bases

How did Lewis define an acid and a base?


According to Gilbert Lewis, an acid accepts a pair of electrons and a base donates a pair of electrons during a reaction.

 This definition is more general than those offered by Arrhenius or by Brønsted and Lowry.

- A Lewis acid is a substance that can accept a pair of electrons to form a covalent bond.
- A <u>Lewis base</u> is a substance that can donate a pair of electrons to form a covalent bond.
 - The Lewis definitions include all the Brønsted-Lowry acids and bases.


Consider the reaction of H⁺ and OH⁻.

- The hydrogen ion donates itself to the hydroxide ion.
 - H⁺ is a Brønsted-Lowry acid, and OH⁻ is a Brønsted-Lowry base.

Consider the reaction of H⁺ and OH⁻.

 The hydroxide ion can bond to the hydrogen ion because it has an unshared pair of electrons.

A second example of a reaction between a Lewis acid and a Lewis base is what happens when ammonia dissolves in water.

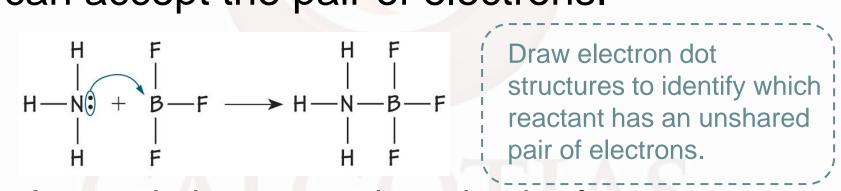
- Hydrogen ions from the dissociation of water are the electron-pair acceptor and the Lewis acid.
- Ammonia is the electron-pair donor and the Lewis base.

This table compares the definitions of acids and bases.

Acid-Base Definitions		
Туре	Acid	Base
Arrhenius	H ⁺ producer	OH ⁻ producer
Brønsted-Lowry	H ⁺ donor	H ⁺ acceptor
Lewis	electron-pair acceptor	electron-pair donor

- The Lewis definition is the broadest.
- It extends to compounds that the Brønsted-Lowry theory does not classify as acids and bases.

Identifying Lewis Acids and Bases


Identify the Lewis acid and the Lewis base in this reaction between ammonia and boron trifluoride.

 $NH_3 + BF_3 \rightarrow NH_3BF_3$

Analyze Identify the relevant concepts.

When a Lewis acid reacts with a Lewis base, the base donates a pair of electrons and the acid accepts the donated pair.

Solve Apply concepts to this problem. Identify the reactant with the unshared pair of electrons and the reactant that can accept the pair of electrons.

- Ammonia has an unshared pair of electrons to donate.
- The boron atom can accept the donated electrons.

2 Solve Apply concepts to this problem. Classify the reactants based on their

behavior.

 Lewis bases donate a pair of electrons, so ammonia is the Lewis base.

• Lewis acids accept a pair of electrons, so boron trifluoride is the Lewis acid.

UNIVERSITY

Are hydrogen-ion donors also electron-pair acceptors?

Are hydrogen-ion donors also electron-pair acceptors?

Yes. All substances defined as acids by the Brønsted-Lowry definition (an acid is a hydrogen-ion donor) are also defined as acids by the Lewis definition (an acid is an electron-pair acceptor). That means that these substances are both hydrogen-ion donors and electron-pair acceptors.

REFERENCES

- Stair, P. C. (1982). The concept of Lewis acids and bases applied to surfaces. Journal of the American Chemical Society, 104(15), 4044-4052.
- Stair, P. C. (1982). The concept of Lewis acids and bases applied to surfaces. Journal of the American Chemical Society, 104(15), 4044-4052.
- Gritzner, G. (1997). A critical view on the Lewis-donor (nucleophilic) properties of solvents. *Journal of molecular liquids*, 73, 487-500.
- Larson, J. W., & McMahon, T. B. (1985). Fluoride and chloride affinities of main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of Lewis acidities from ion cyclotron resonance halide-exchange equilibria. *Journal of the American Chemical Society*, *107*(4), 766-773.