

PLANT IDENTIFICATION

A Project Report Of Capstone Project – 2

Submitted by

YASH SHARMA

(16SCSE101420)

in partial fulfillment for the award of the degree

B.TECH

IN

COMPUTER SCIENCE ENGINEERING

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

UNDER THE SUPERVISION OF

DR. R. RAJKUMAR ,ASST. PROFESSOR

 MAY 2020

SCHOOL OF COMPUTING SCIENCE AND

ENGINEERING

BONAFIDE CERTIFICATE

Certified that this project report “PLANT IDENTIFICATION USING

LEAVES” is the bonafide work of “YASH SHARMA(16SCSE101420)”

who carried out the project work under my supervision.

SIGNATURE OF HEAD SIGNATURE OF SUPERVISOR

DR.MUNISH SHABARWAL DR. SANJEEV KUMAR PIPAL,

Phd(Management),Phd(CS) M.Tech,Ph.D.,

Professor & Dean, Professor

School of Computing Science & School of Computing Science &

Engineering. Engineering.

TABLE OF CONTENTS

Chapter No. Title Page No.

 ABSTRACT i

1. INTRODUCTION . 1

 1.1 GENERAL 1

 1.2 OBJECTIVE 2

 1.3 SCOPE 2

 1.4 METHODOLOGIES USED 3

2. LITERATURE REVIEW. 4

 2.1 GENERAL 4

3. PROBLEM STATEMENT 5

 3.1 PROBLEM 5

4. PROPOSED SYSTEM 6

 4.1 PROPOSED MODEL 6

 4.2 RESEARCH AREA 7

5. EXISTING SYSTEM 8

 5.1 EXISTING MODEL 8

6. IMPLEMENTATION 9

 6.1 USING PYTHON AND

 TENSORFLOW 9

 6.2 USING API IMPLEMENTATION 19

7. RESULT 25

 7.1 OUTPUT 25

 7.2 SCREENSHOTS 26

8. FUTURE ENHANCEMENTS 32

9. REFERENCES 33

ABSTRACT

To present the Plant identification software with some functionalities and modules . and to

identify some common plants and provide information about them. and saving results for

searched plants and also for improvement of application by saving and providing unknown

plants and flowers. Out of all available organs of plant, leaf is selected to obtain the features of

plant. Plant identification is the process of matching a specimen plant to a known taxon. It uses

various methods, most commonly single-access keys or multi-access keys.

We are identifying plants by using image classifier which uses machine learning which is

implemented in this using tensorflow js . tensorflow provides database for machine learning .

By which we class identify different species of plants, leaves, flowers , barks this can be done

by clicking a photo with your camera and uploading image in software and get identify the

plant in just few seconds.

https://en.wikipedia.org/wiki/Taxon
https://en.wikipedia.org/wiki/Single-access_key
https://en.wikipedia.org/wiki/Multi-access_key

1. INTRODUCTION

Now, learning more about plants is just a photo click away. The Plant Identification app is

a journal guide for all types of plants, flowers, mushrooms, trees. A user just has to click a

photo and an instant report about that particular plant is shown through the mobile app.

The photo is stored safely in the app, and a user can go through that photo and its related

details whenever he wants to recall the plant. The most important in any plant identifier app

development is the database that is inbuilt in the app for quick information.

The unique algorithm of Plant identification makes it a very reliable and quick resolver for

any kind of plant or flower on the globe. To make sure that plant app has such a powerful

database to provide your customers with a vivid variety of nature’s knowledge.

In these plant identifiers application, a user can click a photo and get desired information.

He can also organically search for the plant species name by “search bar”. You can create

an app for plants with a “photo drag” feature. A user who is in a hurry to reach somewhere

pauses for a bit to take a photo of an unknown plant. He can put the photo afterward in the

plant identification app. Instead of clicking a photo opening the app at that very moment,

your app development will create this exception.

1.1 OBJECTIVE

To increase the awareness of distinct plants, flowers, trees this is a simple practical learning

based activity which provides details about plants by clicking real plant photo and

collecting its information.

It also helps to identify unknown plants and let you know about them just by clicking their

pictures.

1. To improve yields.

2. Protecting Crops.

3. Much more reliable source of food and medicines.

4. Better Plantation and caring of Plants.

5. Identification of poisonous plants.

1.2 SCOPE

It can help to know about undiscover plants . if no data is matched and can provide more

accurate predictions for plants by collecting real images and adding them to databases from

users.

1.3 METHODOLOGIES USED:

1. Machine learning is a data analytics technique that teaches computers to do what comes

naturally to humans and animals: learn from experience. Machine learning algorithms

use computational methods to “learn” information directly from data without relying

on a predetermined equation as a model. The algorithms adaptively improve their

performance as the number of samples available for learning increases. Deep

learning is a specialized form of machine learning.

2. Deep learning is a subset of machine learning in artificial intelligence (AI) that has

networks capable of learning unsupervised from data that is unstructured or unlabeled.

Also known as deep neural learning or deep neural network. In deep learning, a

computer model learns to perform classification tasks directly from images, text, or

sound. Deep learning models can achieve state-of-the-art accuracy, sometimes

exceeding human-level performance. Models are trained by using a large set of labeled

data and neural network architectures that contain many layers.

3. TensorFlow is an end-to-end open source platform for machine learning. It has a

comprehensive, flexible ecosystem of tools, libraries and community resources that lets

researchers push the state-of-the-art in ML and developers easily build and deploy ML

powered applications.

https://www.mathworks.com/discovery/deep-learning.html
https://www.mathworks.com/discovery/deep-learning.html

It is used fpr image classification and using neural network for identification .

2. LITERATURE REVIEW

Plant identification is the process of matching a specimen plant to a known taxon. It uses

various methods, most commonly single-access keys or multi-access keys.

The ability to know, or identify, plants allows us to assess many important rangeland or

pasture variables that are critical to proper management: range condition, proper stocking

rates, forage production, wildlife habitat quality, and rangeland trend, either upward or

downward.

Natural resource managers, especially those interested in grazing and wildlife management,

must be able to evaluate the presence or absence of many plant species in order to assess

these variables.

https://en.wikipedia.org/wiki/Taxon
https://en.wikipedia.org/wiki/Single-access_key
https://en.wikipedia.org/wiki/Multi-access_key

3. PROBLEM STATEMENT

There are various Plant identification softwares available in this world developed and

researched by various other developers. The variety of Plant identification softwares provide

user with the plenty of features and characteristics. As it goes the saying that you cannot have

happiness without sorrows, applies here. Every software has a drawback which pulls it back

from the race. The pros and cons of the various Plant identification softwares are given in

details here. And to overcome these problems we are devising the versatile Plant identification

software system.

Could use better access to identify plants, discover plants, to get information about plants

to know about distinct species of plants,

Many images are not clear which creates problem to identify plant.

Plants may not match to any species in the database or matches to more than 2 or more

plants. Same types of leaves are also problem.

• Many plants having similar type of leaves are more pragmatic to identify.

Environmental damages to plants due to various causes.

• Plant form or shape

• Plant size

• Where the plant is growing

• Site characteristics: Is the plant growing in wet or dry conditions, or in a sunny or shady

area?

• What are the color and sizes of any seeds or fruit? What is the fall color of plant.

• Bark characteristics: Is the bark smooth, or does it have a rough or flaky texture.

4. PROPOSED MODEL

• Purposed model we add the following functionalities and tools to make the current

version more better than the previous one by fulfilling the changes mentioned in scope

of plant identification and other tools management.

• This model can also identify flowers, leaf, barks and fruits

• It shows the regions where the particular type of plant can be found.

• Where the plants typically grow .

• caring tips for plants.

• Ordering of plants.

• Better AI system for identification in low vision and in more generalised way.

• To improve yields by farming good quality of crops. It identify disease in plants and

leaves.

4.2 RESEARCH AREA

This paper presents a computer based automatic plant identification system. Out of all available

organs of plant, leaf is selected to obtain the features of plant. Five geometrical parameters are

calculated using digital image processing techniques. On the basis of these geometrical

parameters six basic morphological features are extracted.

Vein feature as a derived feature is extracted based on leaf structure. At the first stage leaf

images are obtained using digital scanner. Then above mentioned morphological features are

extracted which act as input to the classification stage. Recognition accuracy of the proposed

algorithm is tested. Accuracy of this algorithm is tested on two different databases and

compared. False acceptance ratio and false rejection ratio for both databases is calculated. Total

12 kinds of plants are classified using this algorithm. Dataset consists of 92 images of total 12

plants. This method implements effective algorithm used for plant identification and

classification as it is independent of leaf maturity. Proposed method is easy to implement and

fast in execution. This research paper uses Euclidean classifier and statistical approach for

identifying plants.

Following are the features which are resulted by the research conducted for plant identification.

• Feature extraction.

• Plant identification.

• vein feature.

• false acceptance rate.

• false rejection rate.

5. EXISTING SYSTEM

In Existing models of plant identification there are so many applications which are based

on different api , different architecture different methods and technologies . there can be

many versions of applications on same technology like neural networks, big data , deep

 learning and can be implemented using javascript ,python ,java ,tensorflow .

It is possible by using machine learning algorithms and classification techniques such as

image classification , object detection ,Artificial intelligence and many other ways.

So the existing models are so many but none of them gives us full accuracy and this is not

Possible unless we have data of every plant species of this universe . so every method try

To get to the maximum accuracy with the available data.

In market there are so many apps available which identify plants , flower , leaves by images

 Within few seconds and provides every related info. Just Take a photo and upload it, let us

identify it with our 'magic' and view the results in seconds. Make sure you have clear photos

to be allowed to insert multiple photos of your plant to get the highest possible accuracy.

using cutting edge methods of machine learning (AKA artificial intelligence) and train

customized deep convolutional neural networks to ensure the best possible results.

6. IMPLEMENTATION

1. Simply getting text results using python.

Plant.py file

import base64

import requests

encode image to base64

with open("107.jpg", "rb") as file:

 images = [base64.b64encode(file.read()).decode("ascii")]

your_api_key = "SAWFOXTtXiRbopdb7K580"

json_data = {

 "images": images,

 "modifiers": ["similar_images"],

 "plant_details": ["common_names", "url", "wiki_description", "taxonomy"]

}

response = requests.post(

 "https://api.plant.identification ",

 json=json_data,

 headers={

 "Content-Type": "application/json",

 "Api-Key": "ldiuJBTtXiRbopdb7K580"

}).json()

for suggestion in response["suggestions"]:

 print(suggestion["plant_name"]) # Taraxacum officinale

 print(suggestion["plant_details"]["common_names"]) # ["Dandelion"]

 print(suggestion["plant_details"]["url"]) #

https://en.wikipedia.org/wiki/Taraxacum_officinale

2. For using image classification using tensorflow libraries.

And training data.

import numpy as np

import os

import sys

import tarfile

from six.moves.urllib.request import urlretrieve

from six.moves import cPickle as pickle

from PIL import Image

import math

import random

import re

import scipy.io

import PIL

from numpy import *

from pylab import *

from PIL import Image

from collections import defaultdict

import tensorflow as tf

import matplotlib.pyplot as plt

Load data

DROPOUT = 0.5

LEARNING_RATE = 0.1

VALIDATION_SIZE = 0

TRAINING_ITERATIONS = 50000

WEIGHT_DECAY = 0.00005

net_data = load("bvlc_alexnet.npy").item()

out_pool_size = [8, 6, 4]

hidden_dim = 0

for item in out_pool_size:

 hidden_dim = hidden_dim + item * item

data_folder = './102flowers'

labels = scipy.io.loadmat('imagelabels.mat')

setid = scipy.io.loadmat('setid.mat')

labels = labels['labels'][0] - 1

trnid = np.array(setid['tstid'][0]) - 1

tstid = np.array(setid['trnid'][0]) - 1

valid = np.array(setid['valid'][0]) - 1

num_classes = 102

data_dir = list()

for img in os.listdir(data_folder):

 data_dir.append(os.path.join(data_folder, img))

data_dir.sort()

--

Ultils

def print_activations(t):

 print(t.op.name, ' ', t.get_shape().as_list())

def dense_to_one_hot(labels_dense, num_classes):

 num_labels = labels_dense.shape[0]

 index_offset = np.arange(num_labels) * num_classes

 labels_one_hot = np.zeros((num_labels, num_classes))

 labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1

 return labels_one_hot

def read_images_from_disk(input_queue):

 label = input_queue[1]

 file_contents = tf.read_file(input_queue[0])

 example = tf.image.decode_jpeg(file_contents, channels=3)

 # example = tf.cast(example, tf.float32)

 return example, label

def weight_variable(shape, name):

 initial = tf.truncated_normal(shape, stddev=0.01, name=name)

 return tf.Variable(initial)

def bias_variable(shape, name):

 initial = tf.constant(0.1, shape=shape, name=name)

 return tf.Variable(initial)

def conv(input, kernel, biases, k_h, k_w, c_o, s_h, s_w, padding = "VALID", group = 1):

 '''From https://github.com/ethereon/caffe-tensorflow

 '''

 c_i = input.get_shape()[-1]

 assert c_i % group == 0

 assert c_o % group == 0

 convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding)

 if group == 1:

 conv = convolve(input, kernel)

 else:

 input_groups = tf.split(axis=3, num_or_size_splits=group, value=input)

 kernel_groups = tf.split(axis=3, num_or_size_splits=group, value=kernel)

 output_groups = [convolve(i, k) for i, k in zip(input_groups, kernel_groups)]

 conv = tf.concat(axis=3, values=output_groups)

 return tf.reshape(tf.nn.bias_add(conv, biases), [-1] + conv.get_shape().as_list()[1:])

def conv2d(x, W, stride_h, stride_w, padding='SAME'):

 return tf.nn.conv2d(x, W, strides=[1, stride_h, stride_w, 1], padding=padding)

def max_pool_2x2(x):

 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

def max_pool_3x3(x):

 return tf.nn.max_pool(x, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME')

def max_pool_4x4(x):

 return tf.nn.max_pool(x, ksize=[1, 4, 4, 1], strides=[1, 4, 4, 1], padding='SAME')

Spatial Pyramid Pooling block

https://arxiv.org/abs/1406.4729

def spatial_pyramid_pool(previous_conv, num_sample, previous_conv_size, out_pool_size):

 """

 previous_conv: a tensor vector of previous convolution layer

 num_sample: an int number of image in the batch

 previous_conv_size: an int vector [height, width] of the matrix features size of previous

convolution layer

 out_pool_size: a int vector of expected output size of max pooling layer

 returns: a tensor vector with shape [1 x n] is the concentration of multi-level pooling

 """

 for i in range(len(out_pool_size)):

 h_strd = h_size = math.ceil(float(previous_conv_size[0]) / out_pool_size[i])

 w_strd = w_size = math.ceil(float(previous_conv_size[1]) / out_pool_size[i])

 pad_h = int(out_pool_size[i] * h_size - previous_conv_size[0])

 pad_w = int(out_pool_size[i] * w_size - previous_conv_size[1])

 new_previous_conv = tf.pad(previous_conv, tf.constant([[0, 0], [0, pad_h], [0, pad_w], [0,

0]]))

 max_pool = tf.nn.max_pool(new_previous_conv,

 ksize=[1,h_size, h_size, 1],

 strides=[1,h_strd, w_strd,1],

 padding='SAME')

 if (i == 0):

 spp = tf.reshape(max_pool, [num_sample, -1])

 else:

 spp = tf.concat(axis=1, values=[spp, tf.reshape(max_pool, [num_sample, -1])])

 return spp

--

Modeling

size_cluster = defaultdict(list)

for tid in trnid:

 img = Image.open(data_dir[tid])

 key = (img.size[0] - img.size[0] % 10, img.size[1] - img.size[1] % 10)

 size_cluster[key].append(tid)

size_cluster_keys = size_cluster.keys()

train_accuracies = []

train_cost = []

validation_accuracies = []

x_range = []

batch_size = 20

print('Training ...')

Training block

1. Combime all iamges have the same size to a batch.

2. Then, train parameters in a batch

3. Transfer trained parameters to another batch

it = 0

while it < TRAINING_ITERATIONS:

 graph = tf.Graph()

 with graph.as_default():

 y_train = labels[size_cluster[size_cluster_keys[it%len(size_cluster_keys)]]]

 if len(y_train) < 50:

 batch_size = len(y_train)

 y_train = dense_to_one_hot(y_train, num_classes)

 x_train = [data_dir[i] for i in size_cluster[size_cluster_keys[it%len(size_cluster_keys)]]]

 input_queue_train = tf.train.slice_input_producer([x_train, y_train],

 num_epochs=None,

 shuffle=True)

 x_train, y_train = read_images_from_disk(input_queue_train)

 print(size_cluster_keys[it%len(size_cluster_keys)])

 x_train = tf.image.resize_images(x_train,

 [size_cluster_keys[it%len(size_cluster_keys)][1]/2,

 size_cluster_keys[it%len(size_cluster_keys)][0]/2],

 method=1, align_corners=False)

 x_train, y_train = tf.train.batch([x_train, y_train], batch_size = batch_size)

 x = tf.placeholder('float', shape = x_train.get_shape())

 y_ = tf.placeholder('float', shape = [None, num_classes])

 conv1W = tf.Variable(net_data["conv1"][0])

 conv1b = tf.Variable(net_data["conv1"][1])

 conv2W = tf.Variable(net_data["conv2"][0])

 conv2b = tf.Variable(net_data["conv2"][1])

 conv3W = tf.Variable(net_data["conv3"][0])

 conv3b = tf.Variable(net_data["conv3"][1])

 conv4W = tf.Variable(net_data["conv4"][0])

 conv4b = tf.Variable(net_data["conv4"][1])

 conv5W = tf.Variable(net_data["conv5"][0])

 conv5b = tf.Variable(net_data["conv5"][1])

 fc6W = weight_variable([hidden_dim * 256, 4096], 'fc6W')

 fc6b = tf.Variable(net_data["fc6"][1])

 fc7W = tf.Variable(net_data["fc7"][0])

 fc7b = tf.Variable(net_data["fc7"][1])

 fc8W = weight_variable([4096, num_classes], 'W_fc8')

 fc8b = bias_variable([num_classes], 'b_fc8')

 keep_prob = tf.placeholder('float')

 def model(x):

 # conv1

 conv1 = tf.nn.relu(conv(x, conv1W, conv1b, 11, 11, 96, 4, 4, padding="SAME",

group=1))

 # lrn1

 # lrn(2, 2e-05, 0.75, name='norm1')

 lrn1 = tf.nn.local_response_normalization(conv1,

 depth_radius=5,

 alpha=0.0001,

 beta=0.75,

 bias=1.0)

 # maxpool1

 maxpool1 = tf.nn.max_pool(lrn1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],

padding='VALID')

 # conv2

 conv2 = tf.nn.relu(conv(maxpool1, conv2W, conv2b, 5, 5, 256, 1, 1, padding="SAME",

group=2))

 # lrn2

 # lrn(2, 2e-05, 0.75, name='norm2')

 lrn2 = tf.nn.local_response_normalization(conv2,

 depth_radius=5,

 alpha=0.0001,

 beta=0.75,

 bias=1.0)

 # maxpool2

 maxpool2 = tf.nn.max_pool(lrn2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],

padding='VALID')

 # conv3

 conv3 = tf.nn.relu(conv(maxpool2, conv3W, conv3b, 3, 3, 384, 1, 1, padding="SAME",

group=1))

 # conv4

 conv4 = tf.nn.relu(conv(conv3, conv4W, conv4b, 3, 3, 384, 1, 1, padding="SAME",

group=2))

 # conv5

 conv5 = tf.nn.relu(conv(conv4, conv5W, conv5b, 3, 3, 256, 1, 1, padding="SAME",

group=2))

 print int(conv5.get_shape()[0]), int(conv5.get_shape()[1]), int(conv5.get_shape()[2])

 maxpool5 = spatial_pyramid_pool(conv5,

 int(conv5.get_shape()[0]),

 [int(conv5.get_shape()[1]), int(conv5.get_shape()[2])],

 out_pool_size)

 # fc6

 fc6 = tf.nn.relu_layer(tf.reshape(maxpool5, [-1, int(prod(maxpool5.get_shape()[1:]))]),

fc6W, fc6b)

 fc6_drop = tf.nn.dropout(fc6, keep_prob)

 # fc7

 fc7 = tf.nn.relu_layer(fc6_drop, fc7W, fc7b)

 fc7_drop = tf.nn.dropout(fc7, keep_prob)

 # fc8

 fc8 = tf.nn.xw_plus_b(fc7_drop, fc8W, fc8b)

 return fc8

 logits = model(x)

 cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits,

labels=y_))

 regularizers = tf.nn.l2_loss(conv1W) + tf.nn.l2_loss(conv1b) + \

 tf.nn.l2_loss(conv2W) + tf.nn.l2_loss(conv2b) + \

 tf.nn.l2_loss(conv3W) + tf.nn.l2_loss(conv3b) + \

 tf.nn.l2_loss(conv4W) + tf.nn.l2_loss(conv4b) + \

 tf.nn.l2_loss(conv5W) + tf.nn.l2_loss(conv5b) + \

 tf.nn.l2_loss(fc6W) + tf.nn.l2_loss(fc6b) + \

 tf.nn.l2_loss(fc7W) + tf.nn.l2_loss(fc7b) + \

 tf.nn.l2_loss(fc8W) + tf.nn.l2_loss(fc8b)

 loss = tf.reduce_mean(cross_entropy + WEIGHT_DECAY * regularizers)

 cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits,

labels=y_))

 # optimisation loss function

 global_step = tf.Variable(0)

 learning_rate = tf.train.exponential_decay(LEARNING_RATE, global_step, 1000, 0.9,

staircase=True)

 train_step = tf.train.AdagradOptimizer(learning_rate).minimize(loss)

 # evaluation

 correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y_, 1))

 accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))

 predict = tf.argmax(logits, 1)

 saver = tf.train.Saver({v.op.name: v for v in [conv1W, conv1b,

 conv2W, conv2b,

 conv3W, conv3b,

 conv4W, conv4b,

 conv5W, conv5b,

 fc6W, fc6b,

 fc7W, fc7b,

 fc8W, fc8b]})

 with tf.Session(graph=graph) as sess:

 init = tf.global_variables_initializer()

 sess.run(init)

 coord = tf.train.Coordinator()

 threads = tf.train.start_queue_runners(coord=coord)

 if os.path.exists('./alex_model_spp.ckpt'):

 saver.restore(sess, './alex_model_spp.ckpt')

 cnt_tmp = 0

 xtrain, ytrain = sess.run([x_train, y_train])

 for i in range(10):

 it = it + 1

 _, train_accuracy, cost = sess.run([train_step, accuracy, cross_entropy],

 feed_dict = {x: xtrain,

 y_: ytrain,

 keep_prob: 1.0})

 print('training_accuracy => %.4f, cost value => %.4f for step %d'

 %(train_accuracy, cost, it))

 if (train_accuracy > 0.95):

 cnt_tmp = cnt_tmp + 1

 if (cnt_tmp > 10):

 break

 train_accuracies.append(train_accuracy)

 x_range.append(it)

 train_cost.append(cost)

 saver.save(sess, './alex_model_spp.ckpt')

 coord.request_stop()

 coord.join(threads)

 sess.close()

 del sess

Plot accuracy and loss curve

plt.plot(x_range, train_cost,'-b')

plt.ylabel('spp_cost')

plt.xlabel('step')

plt.savefig('spp_cost.png')

plt.close()

plt.plot(x_range, train_accuracies,'-b')

plt.ylabel('spp_accuracies')

plt.ylim(ymax = 1.1)

plt.xlabel('step')

plt.savefig('spp_accuracy.png')

--

Testing block

1. Gather all images have the same size into a batch

2. Feed to Alexnet_SPP to predict the expected labels

it = 0

result = list()

f = open('result_spp.txt', 'w')

while it < len(tstid):

 if (it % 10 == 0):

 print(it)

 graph = tf.Graph()

 with graph.as_default():

 # with tf.device('/cpu:0'):

 img = Image.open(data_dir[tstid[it]])

 filename_queue = tf.train.string_input_producer([data_dir[tstid[it]]])

 reader = tf.WholeFileReader()

 key, value = reader.read(filename_queue)

 my_img = tf.image.decode_jpeg(value, channels = 3)

 # my_img = tf.cast(my_img, tf.float32)

 my_img = tf.image.resize_images(my_img,

 [img.size[1] / 2,

 img.size[0] / 2],

 method = 1,

 align_corners = False)

 my_img = tf.expand_dims(my_img, 0)

 x = tf.placeholder('float', shape=my_img.get_shape())

 print(my_img.get_shape())

 conv1W = tf.Variable(net_data["conv1"][0])

 conv1b = tf.Variable(net_data["conv1"][1])

 conv2W = tf.Variable(net_data["conv2"][0])

 conv2b = tf.Variable(net_data["conv2"][1])

 conv3W = tf.Variable(net_data["conv3"][0])

 conv3b = tf.Variable(net_data["conv3"][1])

 conv4W = tf.Variable(net_data["conv4"][0])

 conv4b = tf.Variable(net_data["conv4"][1])

 conv5W = tf.Variable(net_data["conv5"][0])

 conv5b = tf.Variable(net_data["conv5"][1])

 fc6W = weight_variable([hidden_dim * 256, 4096], 'fc6W')

 fc6b = tf.Variable(net_data["fc6"][1])

 fc7W = tf.Variable(net_data["fc7"][0])

 fc7b = tf.Variable(net_data["fc7"][1])

 fc8W = weight_variable([4096, num_classes], 'W_fc8')

 fc8b = bias_variable([num_classes], 'b_fc8')

 keep_prob = tf.placeholder('float')

 def model(x):

 # conv1

 conv1 = tf.nn.relu(conv(x, conv1W, conv1b, 11, 11, 96, 4, 4, padding="SAME",

group=1))

 # lrn1

 # lrn(2, 2e-05, 0.75, name='norm1')

 lrn1 = tf.nn.local_response_normalization(conv1,

 depth_radius=5,

 alpha=0.0001,

 beta=0.75,

 bias=1.0)

 # maxpool1

 maxpool1 = tf.nn.max_pool(lrn1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],

padding='VALID')

 # conv2

 conv2 = tf.nn.relu(conv(maxpool1, conv2W, conv2b, 5, 5, 256, 1, 1, padding="SAME",

group=2))

 # lrn2

 # lrn(2, 2e-05, 0.75, name='norm2')

 lrn2 = tf.nn.local_response_normalization(conv2,

 depth_radius=5,

 alpha=0.0001,

 beta=0.75,

 bias=1.0)

 # maxpool2

 maxpool2 = tf.nn.max_pool(lrn2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],

padding='VALID')

 # conv3

 conv3 = tf.nn.relu(conv(maxpool2, conv3W, conv3b, 3, 3, 384, 1, 1, padding="SAME",

group=1))

 # conv4

 conv4 = tf.nn.relu(conv(conv3, conv4W, conv4b, 3, 3, 384, 1, 1, padding="SAME",

group=2))

 # conv5

 conv5 = tf.nn.relu(conv(conv4, conv5W, conv5b, 3, 3, 256, 1, 1, padding="SAME",

group=2))

 maxpool5 = spatial_pyramid_pool(conv5,

 int(conv5.get_shape()[0]),

 [int(conv5.get_shape()[1]), int(conv5.get_shape()[2])],

 out_pool_size)

 # fc6

 fc6 = tf.nn.relu_layer(tf.reshape(maxpool5, [-1, int(prod(maxpool5.get_shape()[1:]))]),

fc6W, fc6b)

 fc6_drop = tf.nn.dropout(fc6, keep_prob)

 # fc7

 fc7 = tf.nn.relu_layer(fc6_drop, fc7W, fc7b)

 fc7_drop = tf.nn.dropout(fc7, keep_prob)

 # fc8

 fc8 = tf.nn.xw_plus_b(fc7_drop, fc8W, fc8b)

 prob = tf.nn.softmax(fc8)

 return prob

 logits = model(x)

 predict = tf.argmax(logits, 1)

 saver = tf.train.Saver({v.op.name: v for v in [conv1W, conv1b,

 conv2W, conv2b,

 conv3W, conv3b,

 conv4W, conv4b,

 conv5W, conv5b,

 fc6W, fc6b,

 fc7W, fc7b,

 fc8W, fc8b]})

 with tf.Session(graph=graph) as sess:

 init = tf.global_variables_initializer()

 sess.run(init)

 coord = tf.train.Coordinator()

 threads = tf.train.start_queue_runners(coord=coord)

 saver.restore(sess, './alex_model_spp.ckpt')

 image = sess.run(my_img)

 predict = predict.eval(feed_dict={x: image, keep_prob: 1.0})

 result.append(predict[0])

 f.write(data_dir[tstid[it]] + '\t' + str(predict[0]) + '\t' + str(labels[tstid[it]]))

 f.write('\n')

 coord.request_stop()

 coord.join(threads)

 sess.close()

 del sess

 it = it + 1

print('Test accuracy: %f' %(sum(np.array(result) ==

np.array(labels[tstid])).astype('float')/len(tstid)))

f.close()

3. For getting many results for more images same time.

import base64

import requests

from time import sleep

key = "K1AY53YkYJjsc8X8 --"

def encode_files(file_names):

 files_encoded = []

 for file_name in file_names:

 with open(file_name, "rb") as file:

 files_encoded.append(base64.b64encode(file.read()).decode("ascii"))

 return files_encoded

def identify_plant(file_names):

 images = encode_files(file_names)

 params = {

 "api_key": key,

 "images": images,

 "latitude": 49.1951239,

 "longitude": 16.6077111,

 "datetime": 1582830233,

 "modifiers": ["crops_fast", "similar_images"],

 }

 headers = {

 "Content-Type": "application/json"

 }

 response = requests.post("https://api.plant.identification ",

 json=params,

 headers=headers).json()

 return get_result(response["id"])

def get_result(identification_id):

 params = {

 "api_key": "G2AldiuJBTtXiRbopdb7K580",

 "plant_language": "en",

 "plant_details": ["common_names",

 "url",

 "name_authority,",

 "wiki_description",

 "taxonomy",

 "synonyms"],

 }

 headers = {

 "Content-Type": "application/json"

 }

 endpoint = "https://api.plant.identificationresult/"

 while True:

 print("Waiting for suggestions...")

 sleep(5)

 response = requests.post(endpoint + str(identification_id),

 json=params,

 headers=headers).json()

 if response["suggestions"] is not None:

 return response

if __name__ == '__main__':

 print(identify_plant(["101.jpg", "107.jpg"]))

4. Html file for front end and interface .

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Plant identification app</title>

 <base href="/">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <meta name="keywords" content="plant, flower, identification, recognition, plant name,

app, application, id, identifier, plant identification, plant identifier, plant id">

 <meta name="description" content="Take a photo, upload it, let us identify it with our

'magic' and view the results instantly. For free!">

 <link href="C:\Users\RUDRA\Desktop\cas.css" rel="stylesheet" type="text/css">

 <style>

 #loading-page .loader-container {

 margin: 100px auto;

 text-align: center;

 }

 #loading-page .loader {

 border: 1px solid rgba(73, 255, 86, 0.23);

 border-top: 2px solid #1b5e20;

 border-radius: 50%;

 width: 50px;

 height: 50px;

 margin: auto;

 animation: spin 1.4s linear infinite;

 }

 #loading-page .loader-container span {

 margin: 20px;

 display: block;

 }

 @keyframes spin {

 0% { transform: rotate(0deg); }

 100% { transform: rotate(360deg); }

 }

 </style>

 <meta property="og:image" content="assets/plantidcard.png"/>

 <!-- Google Tag Manager -->

 <script>(function(w,d,s,l,i){w[l]=w[l]||[];

 w[l].push({

 'gtm.start':new Date().getTime(),event:'gtm.js'});

 var

f=d.getElementsByTagName(s)[0],j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';

 j.async=true;j.src='https://www.googletagmanager.com/gtm.js?id='+i+dl;

 f.parentNode.insertBefore(j,f);

 })

 (window,document,'script','dataLayer','GTM-WJF2WZ4');

 </script>

 <!-- End Google Tag Manager -->

 <link rel="manifest" href="manifest.webmanifest">

 <meta name="theme-color" content="#1b5e20">

 <link rel="stylesheet" href="C:\Users\RUDRA\Desktop\stats.css"></head>

 <body>

 <!-- Google Tag Manager (noscript) -->

 <noscript>

 <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-WJF2WZ4"

 height="0" width="0" style="display:none;visibility:hidden">

 </iframe></noscript>

 <!-- End Google Tag Manager (noscript) -->

 <app-root></app-root>

 <div id="loading-page" style="text-align: center">

 <div style="height: 200px"></div>

 <div class="loader-container">

 <div class="loader"></div>

 </div>

 </div>

</body>

</html>

7. RESULT

7.1 OUTPUT

 OUTPUT FOR SIMPLE PYTHON PROGRAM FOR ANALYSIS OF DATA FOR

VERIFICATION OF PLANTS IMAGE.

7.2 SCREENSHOTS

a. Main page:containing upload image and take photo button or login option

b. Clicking on upload button to browse the image.

c. Selecting the plant image and uploading it.

d. Showing the selected image to identify image.

e. Giving the result of identify photo plant scientific name as

 “Echinocereus reichenbachi”

f. Onclicking plant details at shown result gives detailed info of that plant.

g. Trying the same for other plant image (2).

h. Showing the image for second plant and pressing identify button.

i. Showing the matched images in results.

j. Trying the same for a known plant which is available in locality and named as figs tree lets check

data for this plant.

Its shows correct result but with less accuracy this may vary with picture quality and climate also.

 But it recognize plants correctly.

8. FUTURE ENHANCEMENT

Further classification techniques and data training can lead to improve accuracy in blur

images (poor quality images) and researches in this area can make possible such

followings as Identification of poisonous plants, to improve yields, Protecting Crops,

Better Plantation and caring of Plants. And can provide more details about plants such

as Plant form or shape, Plant size and age, Where these plants grow such as Is the plant

growing in wet or dry conditions, or in a sunny or shady area, What are the colour and

sizes of any seeds or fruit? What is the colour of plant., Bark characteristics: Is the bark

smooth, or does it have a rough or flaky texture. These can be possible to know just by

clicking plants image in near future as many enhancements are going on this.

This is much helpful so that we can understand the importance of plants and nature.

Tensorflow team has make an app to identify infected plants which helped in

identifying that crops and plants to get safe from it in Africa it happened with cassava

leaves on which most farmers depend so that app helped them a lot so that they can

have more reliable source of food and fruits from plants.

9. REFERENCES

1. Bhardwaj, M. kaur, “A review on plant recognition and classification techniques

using leaf images,” International Journal of Engineering

Trends and Technology, Volume 4.

2. International Journal of Innovative Research in Science,

 Engineering and Technology Vol. 4, Special Issue 6, May 2015.

3. https://www.tensorflow.org/about/case-studies.

4. https://identifythatplant.com/benefits-from-mastering-the-skill-of-plant-identification.

5. The Research on the Application of Plant Identification and Mobile

 Learning APP based on Expert System Cixiao Wang

Graduate School of Education, Peking University, No.5 Yiheyuan Road Haidian

District,Beijing, P.R. China

https://www.tensorflow.org/about/case-studies
https://identifythatplant.com/benefits-from-mastering-the-skill-of-plant-identification.

