
School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Lecture-32
Packing and unpacking of arguments in Python:

Using the Python args Variable in Function Definitions

*args can be really useful, because it allows you to pass a varying number of
positional arguments. Take the following example:

sum_integers_args.py

def my_sum(*args):

result = 0

Iterating over the Python args tuple

for x in args:

result += x

return result

print(my_sum(1, 2, 3))

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

In this example, you’re no longer passing a list to my_sum(). Instead, you’re passing three
different positional arguments. my_sum() takes all the parameters that are provided in the
input and packs them all into a single iterable object named args.

Note that args is just a name. You’re not required to use the name args. You can choose any
name that you prefer, such as integers:

sum_integers_args_2.py

def my_sum(*integers):

result = 0

for x in integers:

result += x

return result

print(my_sum(1, 2, 3))

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

The function still works, even if you pass the iterable object as integers instead of args. All that
matters here is that you use the unpacking operator (*).

Bear in mind that the iterable object you’ll get using the unpacking operator * is not a list but
a tuple. A tuple is similar to a list in that they both support slicing and iteration. However,
tuples are very different in at least one aspect: lists are mutable, while tuples are not. To
test this, run the following code. This script tries to change a value of a list:

change_list.py

my_list = [1, 2, 3]

my_list[0] = 9

print(my_list)

The value located at the very first index of the list should be updated to 9. If you execute this
script, you will see that the list indeed gets modified:

https://realpython.com/python-lists-tuples/
https://realpython.com/courses/immutability-python/

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

$ python change_list.py

[9, 2, 3]

The first value is no longer 0, but the updated value 9. Now, try to do the same
with a tuple:

change_tuple.py

my_tuple = (1, 2, 3)

my_tuple[0] = 9

print(my_tuple)

Here, you see the same values, except they’re held together as a tuple. If you try
to execute this script, you will see that the Python interpreter returns an error:

https://realpython.com/python-exceptions/

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Traceback (most recent call last):

File "change_tuple.py", line 3, in <module>

my_tuple[0] = 9

TypeError: 'tuple' object does not support item assignment

This is because a tuple is an immutable object, and its values cannot be changed
after assignment. Keep this in mind when you’re working with tuples
and *args.

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Using the Python kwargs Variable in Function Definitions

Okay, now you’ve understood what *args is for, but what about **kwargs? **kwargs works
just like *args, but instead of accepting positional arguments it accepts keyword (or named)
arguments. Take the following example:

concatenate.py

def concatenate(**kwargs):

result = “ "

Iterating over the Python kwargs dictionary

for arg in kwargs.values():

result += arg

return result

print(concatenate(a="Real", b="Python", c="Is", d="Great", e="!"))

When you execute the script above, concatenate() will iterate through the Python
kwargs dictionary and concatenate all the values it finds:

RealPythonIsGreat!

https://realpython.com/python-dicts/

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Like args, kwargs is just a name that can be changed to whatever you want. Again, what is
important here is the use of the unpacking operator (**).

So, the previous example could be written like this:

concatenate_2.py

def concatenate(**words):

result = ""

for arg in words.values():

result += arg

return result

print(concatenate(a="Real", b="Python", c="Is", d="Great", e="!"))

Note that in the example above the iterable object is a standard dict. If you iterate over the
dictionary and want to return its values, like in the example shown, then you must
use .values().

https://realpython.com/iterate-through-dictionary-python/

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

In fact, if you forget to use this method, you will find yourself iterating through the keys of
your Python kwargs dictionary instead, like in the following example:

def concatenate(**kwargs):

result = ""

Iterating over the keys of the Python kwargs dictionary

for arg in kwargs:

result += arg

return result

print(concatenate(a="Real", b="Python", c="Is", d="Great", e="!"))

Now, if you try to execute this example, you’ll notice the following output:

abcde

As you can see, if you don’t specify .values(), your function will iterate over the keys of your
Python kwargs dictionary, returning the wrong result.

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Unpacking With the Asterisk Operators: * & **

You are now able to use *args and **kwargs to define Python functions that take a varying
number of input arguments. Let’s go a little deeper to understand something more about
the unpacking operators.

The single and double asterisk unpacking operators were introduced in Python 2. As of the 3.5
release, they have become even more powerful, thanks to PEP 448. In short, the unpacking
operators are operators that unpack the values from iterable objects in Python. The single
asterisk operator * can be used on any iterable that Python provides, while the double
asterisk operator ** can only be used on dictionaries.

Let’s start with an example:

my_list = [1, 2, 3]

print(my_list)

This code defines a list and then prints it to the standard output:

[1, 2, 3]

https://www.python.org/dev/peps/pep-0448/

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Note how the list is printed, along with the corresponding brackets and commas.

Now, try to prepend the unpacking operator * to the name of your list:

print_unpacked_list.py

my_list = [1, 2, 3]

print(*my_list)

Here, the * operator tells print() to unpack the list first.

In this case, the output is no longer the list itself, but rather the content of the list:

1 2 3

Can you see the difference between this execution and the one from print_list.py? Instead of
a list, print() has taken three separate arguments as the input.

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Another thing you’ll notice is that in print_unpacked_list.py, you used the
unpacking operator * to call a function, instead of in a function definition. In
this case, print() takes all the items of a list as though they were single
arguments.

You can also use this method to call your own functions, but if your function
requires a specific number of arguments, then the iterable you unpack must
have the same number of arguments.

To test this behavior, consider this script:

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

def my_sum(a, b, c):

print(a + b + c)

my_list = [1, 2, 3]

my_sum(*my_list)

Here, my_sum() explicitly states that a, b, and c are required arguments.

If you run this script, you’ll get the sum of the three numbers in my_list:

OUTPUT:

6

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

The 3 elements in my_list match up perfectly with the required arguments in my_sum().

Now look at the following script, where my_list has 4 arguments instead of 3:

wrong_unpacking_call.py

def my_sum(a, b, c):

print(a + b + c)

my_list = [1, 2, 3, 4]

my_sum(*my_list)

In this example, my_sum() still expects just three arguments, but the * operator gets 4 items
from the list. If you try to execute this script, you’ll see that the Python interpreter is unable
to run it:

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

$ python wrong_unpacking_call.py

Traceback (most recent call last):

File "wrong_unpacking_call.py", line 6, in <module>

my_sum(*my_list)

TypeError: my_sum() takes 3 positional arguments but 4 were given

When you use the * operator to unpack a list and pass arguments to a function, it’s exactly as
though you’re passing every single argument alone. This means that you can use multiple
unpacking operators to get values from several lists and pass them all to a single function.

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

To test this behavior, consider the following example:

sum_integers_args_3.py

def my_sum(*args):

result = 0

for x in args:

result += x

return result

list1 = [1, 2, 3]

list2 = [4, 5]

list3 = [6, 7, 8, 9]

print(my_sum(*list1, *list2, *list3))

If you run this example, all three lists are unpacked. Each individual item is passed
to my_sum(), resulting in the following output:

45

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Merging Lists:

Another interesting thing you can do with the unpacking operator * is to split the items of any
iterable object. This could be very useful if you need to merge two lists, for instance:

my_first_list = [1, 2, 3]

my_second_list = [4, 5, 6]

my_merged_list = [*my_first_list, *my_second_list]

print(my_merged_list)

The unpacking operator * is prepended to both my_first_list and my_second_list.

If you run this script, you’ll see that the result is a merged list:

OUTPUT:

[1, 2, 3, 4, 5, 6]

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Unpacking string:

Remember that the * operator works on any iterable object. It can also be used to unpack
a string:

string_to_list.py

a = [*"RealPython"]

print(a)

In Python, strings are iterable objects, so * will unpack it and place all individual values in a
list a:

$ python string_to_list.py

['R', 'e', 'a', 'l', 'P', 'y', 't', 'h', 'o', 'n']

To see why, consider the following example:

*a, = "RealPython"

print(a)

https://realpython.com/python-strings/

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

** is used for dictionaries unpacking

A sample program to demonstrate unpacking of

dictionary items using **

def fun(a, b, c):

print(a, b, c)

A call with unpacking of dictionary

d = {'a':2, 'b':4, 'c':10}

fun(**d)

Output-

2 4 10

Here ** unpacked the dictionary used with it, and passed the items in the dictionary as keyword
arguments to the function. So writing “fun(1, **d)” was equivalent to writing “fun(1, b=4, c=10)”.

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Packing:
When we don’t know how many arguments need to be passed to a python function, we can
use Packing to pack all arguments in a tuple.

A Python program to demonstrate use of packing

This function uses packing to sum unknown number of arguments

def mySum(*args):

sum = 0

for i in range(0, len(args)):

sum = sum + args[i]

return sum

print(mySum(1, 2, 3, 4, 5))

print(mySum(10, 20))

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Output:

15

30

The above function mySum() does ‘packing’ to pack all the arguments that this method call
receives into one single variable. Once we have this ‘packed’ variable, we can do things with
it that we would with a normal tuple. args[0] and args[1] would give you the first and
second argument, respectively. Since our tuples are immutable, you can convert the args
tuple to a list so you can also modify, delete and re-arrange items in i.

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

A Python program to demonstrate packing of dictionary items using **

def fun(**kwargs):

kwargs is a dict

print(type(kwargs))

Printing dictionary items

for key in kwargs:

print("%s = %s" % (key, kwargs[key]))

Driver code

fun(name="geeks", ID="101", language="Python")

Output :

<class 'dict'>

language = Python

name = geeks

ID = 101

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

Merging of dictionaries:

You can even merge two different dictionaries by using the unpacking operator **:

merging_dicts.py

my_first_dict = {"A": 1, "B": 2}

my_second_dict = {"C": 3, "D": 4}

my_merged_dict = {**my_first_dict, **my_second_dict}

print(my_merged_dict)

Here, the iterables to merge are my_first_dict and my_second_dict.

Executing this code outputs a merged dictionary:

OUTPUT:

{'A': 1, 'B': 2, 'C': 3, 'D': 4}

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

References:

1.Introduction to Computation and Programming using Python, by John Guttag,
PHI Publisher

2. Fundamentals of Python first Programmes by Kenneth A Lambert,
Copyrighted material Course Technology Inc. 1 st edition (6th February 2009)

3. https://www.tutorialspoint.com/python/index.htm

4. https://www.geeksforgeeks.org/python-programming-language

5. https://www.w3schools.com/python/

https://www.tutorialspoint.com/python/index.htm
https://www.geeksforgeeks.org/python-programming-language

School of Basic and Applied Sciences

Course Code : BSCM 304 Course Name: Programming Using Python

Name of the Faculty: Dr. O P Verma Program Name: B.Sc. (Mathematics)

****End of the Lecture***

Thank You

