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nlogba  = nlog21  = n0 = 1  CASE 2 (k =0)
 T(n) = (lg n) .



Powering a number

Problem: Compute an, where n N.

Naive algorithm: (n).
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Problem: Compute an, where n N.

Naive algorithm: (n).

Divide-and-conquer algorithm:

T(n) = T(n/2) + (1)  T(n) = (lg n) .



Fibonacci numbers
Recursive definition:

Fn =

1 if n = 0;

2 if n = 1;

Fn–1 + Fn–2 if n  2.
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Naive recursive algorithm: ( n)  

(exponential time), where  = (1+
is the golden ratio.



Computing Fibonacci  numbers

Bottom-up:

• Compute F0, F1, F2, …, Fn in order, forming  
each number by summing the two previous.

• Running time: (n).



Computing Fibonacci  numbers

Bottom-up:

• Compute F0, F1, F2, …, Fn in order, forming  
each number by summing the two previous.

• Running time: (n).

Naive recursive squaring:

Fn  = n/ 5 rounded to the nearest integer.

• Recursive squaring: (lg n) time.

• This method is unreliable, since floating-point  
arithmetic is prone to round-off errors.
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Algorithm: Recursive squaring.

Time = (lg n) .

Proof of theorem. (Induction on n.)
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Recursive squaring

Inductive step (n  2):
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