
RECURRENCE FOR BINARY SEARCH

T(n) = 1 T(n/2) +(1)

subproblems

subproblem size

work dividing
and combining

Recurrence for binary search

T(n) = 1 T(n/2) +(1)

subproblems

subproblem size

work dividing
and combining

nlogba = nlog21 = n0 = 1  CASE 2 (k =0)
 T(n) = (lg n) .

Powering a number

Problem: Compute an, where n N.

Naive algorithm: (n).

Powering a number

an =
a n/2  a n/2

a (n–1)/2  a (n–1)/2  a

if n is even;

if n is odd.

Problem: Compute an, where n N.

Naive algorithm: (n).

Divide-and-conquer algorithm:

Powering a number

an =
a n/2  a n/2

a (n–1)/2  a (n–1)/2  a

if n is even;

if n is odd.

Problem: Compute an, where n N.

Naive algorithm: (n).

Divide-and-conquer algorithm:

T(n) = T(n/2) + (1)  T(n) = (lg n) .

Fibonacci numbers
Recursive definition:

Fn =

1 if n = 0;

2 if n = 1;

Fn–1 + Fn–2 if n  2.

0 1 1 2 3 5 8 13 21 34 L

Fibonacci numbers
Recursive definition:

Fn =

0

1

Fn–1 + Fn–2

if n = 0;

if n = 1;

if n  2.

0 1 1 2 3 5 8 13 21 34 L

5)/2
Naive recursive algorithm: ( n)

(exponential time), where  = (1+
is the golden ratio.

Computing Fibonacci numbers

Bottom-up:

• Compute F0, F1, F2, …, Fn in order, forming
each number by summing the two previous.

• Running time: (n).

Computing Fibonacci numbers

Bottom-up:

• Compute F0, F1, F2, …, Fn in order, forming
each number by summing the two previous.

• Running time: (n).

Naive recursive squaring:

Fn = n/ 5 rounded to the nearest integer.

• Recursive squaring: (lg n) time.

• This method is unreliable, since floating-point
arithmetic is prone to round-off errors.

Recursive squaring

Fn


= 
1

1
n

Fn  1

n−1

Fn+1


 F

Theorem:
0

.

Recursive squaring

F 

= 
1

1
n

Fn  1

n n−1

Fn+1


 F

Theorem:
0

.

Algorithm: Recursive squaring.

Time = (lg n) .

Recursive squaring

F 

= 
1

1
n

Fn  1

n n−1

Fn+1


 F

Theorem:
0

.

Algorithm: Recursive squaring.

Time = (lg n) .

Proof of theorem. (Induction on n.)

.
1 0

1
1


1 0


F F 



F1  =
1

Base (n = 1): F2

Recursive squaring

Inductive step (n  2):

n



F Fn

= 



 Fn

F F

= 
1

1

0
. 

1

1

0

1
n

0

= 
1

1
n−1

11

1
.

 1 

Fn−2 1Fn−1

n−1

  0Fn−1

n+1

