School of Computing Science and Engineering Course Code : MCAS2140 Course Name: Algorithm Analysis and Design

 $T(n) = 1 T(n/2) + \Theta(1)$

RECURRENCE FOR BINARY SEARCH

subproblems

subproblem size

work dividing and combining

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Course Code : MCAS2140 Course Name: Algorithm Analysis and Design

 $T(n) = 1 T(n/2) + \Theta(1)$

Recurrence for binary search

subproblems

subproblem size

work dividing and combining

 $n^{\log_{b^a}} = n^{\log_{2^1}} = n^0 = 1 \implies \text{CASE 2} (k = 0)$ $\implies T(n) = \Theta(\lg n).$

Name of the Faculty: Unnikrishnan

Course Code : MCAS2140 Course Name: Algorithm Analysis and Design

Powering a number Problem: Compute a^n , where $n \in N$.

Naive algorithm: $\Theta(n)$.

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Course Code : MCAS2140 Course Name: Algorithm Analysis and Design

Powering a number Problem: Compute a^n , where $n \in N$.

Naive algorithm: $\Theta(n)$.

Divide-and-conquer algorithm:

 $a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even;} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd.} \end{cases}$

School of Computing Science and Engineering <u>Course Code : MCAS2140</u> Course Name: Algorithm Analysis and Design

Powering a number

Problem: Compute a^n , where $n \in N$.

Naive algorithm: $\Theta(n)$.

Divide-and-conquer algorithm:

 $a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even;} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd.} \end{cases}$ $T(n) = T(n/2) + \Theta(1) \implies T(n) = \Theta(\lg n).$

Course Code : MCAS2140 Course Name: Algorithm Analysis and Design

Fibonacci numbers Recursive definition:

 $F_{n} = \begin{cases} 1 & \text{if } n = 0; \\ 2 & \text{if } n = 1; \\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$

0 1 1 2 3 5 8 13 21 34 L GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Course Code : MCAS2140 Course Name: Algorithm Analysis and Design

Fibonacci numbers Recursive definition:

 $F_n = \begin{cases} 0 & \text{if } n = 0; \\ 1 & \text{if } n = 1; \\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$

0 1 1 2 3 5 8 13 21 34 L **Naive recursive algorithm:** $\Omega(\phi^n)$ (exponential time), where $\phi = (1+\sqrt{5})/2$ is the *golden ratio*.

Name of the Faculty: Unnikrishnan

School of Computing Science and Engineering Course Code : MCAS2140 Course Name: Algorithm Analysis and Design

Computing Fibonacci numbers

Bottom-up:

- Compute $F_0, F_1, F_2, ..., F_n$ in order, forming each number by summing the two previous.
- Running time: $\Theta(n)$.

GALGOTIAS UNIVERSITY

School of Computing Science and Engineering Course Code : MCAS2140 Course Name: Algorithm Analysis and Design

Computing Fibonacci numbers Bottom-up:

- Compute $F_0, F_1, F_2, ..., F_n$ in order, forming each number by summing the two previous.
- Running time: $\Theta(n)$.

Naive recursive squaring:

 $F_n = \phi^n / \sqrt{5}$ rounded to the nearest integer.

- Recursive squaring: $\Theta(\lg n)$ time.
- This method is unreliable, since floating-point arithmetic is prone to round-off errors.

Course Code : MCAS2140 Course Name: Algorithm Analysis and Design

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Course Code : MCAS2140 Course Name: Algorithm Analysis and Design

Recursive squaring Theorem: F_{n+1} $F_n / r 1 / n$ $F_n = F_n / r 1 / r$ $F_{n-1} = 0$ **Algorithm:** Recursive squaring. Time = $\Theta(\lg n)$.

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Course Code : MCAS2140 Course Name: Algorithm Analysis and Design

Recursive squaring Algorithm: Recursive squaring. Time = $\Theta(\lg n)$. *Proof of theorem*. (Induction on *n*.) Base (n = 1): $F_2 = F_1 / 1 / 1$ $F_1 = F_0 / 1 / 1$

Course Code : MCAS2140 Course Name: Algorithm Analysis and Design

Recursive squaring

Inductive step $(n \ge 2)$:



