

 Arduino Powered GPS Motor Vehicle.

 A Project Report of Capstone Project – 2

 Submitted by

 Saurav kumar verma

 16SCSE105082

 1613105109

 In partial fulfillment for the award of the degree

 Of

 Bachelor of technology

 In

 Computer science and engineering with specialization of

 Cloud computing and virtualization

 School of computer science and engineering

 Under the Supervision of

 Mr C vairavel

 April/ May, 2020

2

SCHOOL OF COMPUTING AND SCIENCE AND

ENGINEERING

BONAFIDE CERTIFICATE

Certified that this project report “Aurdino powered GPS motor vehicle” is the

 bonafide work of “Saurav kumar verma (1613105109)” who carried out the

 project work under my supervision.

Signature of the head of department Signature of the supervisor

 Professor & Dean, Professor

 School of Computing Science & Engineering School of Computing Science & Engineering

3

Table of Contents

1. Abstract...4

2. Executive Summary...4

3. Introduction... ...5

4. Integrated System...6

5. Mobile Platform ..7

6. Actuation ..8

7. Sensors..11

8. Navigation Algorithm..26

9. MCU {Microcontroller Unit}………………………………………………………………..………29

10. Behaviors...34

11. Experimental Layout and Results..36

12. Conclusion ..37

13. Appendices..38

14. Arduino IDE……………………………………………………………………………………………......39

15. Actual Layout………………………………………………………………………………………….……55

16. Reference...57

17. Actual Coding…………………………………………………………………………………………......58

4

1. Abstract

My robot is a mobile platform of any kind of exploration robot so that it can

navigates through designated waypoints while trying to avoid obstacles. And finally

comes back to the starting point or another place. To minimize the time and money

for building a new mobile platform, it is based on commonly used scale RC model

car with some modification. We can do potential future enhancements by adding a

SD card for logging GPS track. We can also add a camera for taking photos and

videos. The arduino board acts as a controller which help us to control the speed

and change the speed. It also controls the steering of the car to achieve automatic

obstacle avoidance. The vehicle’s speed is controlled with the help of pulse wave
modulation (PWM) provided to us by the Motor shield. GPS helps us in providing

global coordinates of the current location that where the vehicle is present in real

time and it also tell us that where that vehicle is heading towards. With the

combination of hardware and software we can easily navigate the vehicle and guide

it towards right direction.

2. Executive Summary

For many years, navigation of the robot has been the most basic and yet most

challenging stuff in developing a mobile robot. It is because moving the robot to the

required place is getting more important as they become mobile. For example, if

hundreds of researchers developed a bomb deactivation robot with great sensors

and arms but it cannot go to the target by it, how can we evaluate the robot as

useful? This shows how navigation is important in developing a mobile robot.

Especially for outdoor application, utilizing the GPS receiver became a significant

breakthrough in developing mobile robot. With an affordable GPS receiver and

better accuracy, now everyone can develop mobile robot much easier than before.

However, since the GPS is nothing more than just providing global coordinates of

the current location and heading information, it is required to implement a

hardware and software system that can navigate the robot. So this project will

cover comprehensively from building a hardware system of mobile robot and

complete navigation system with obstacle avoidance.

5

This article will discuss issues in developing autonomous GPS navigation based on

RC car. First, I will introduce hardware components including the car, motor driver,

GPS system and proximity sensors, and show how they are organized with micro

controller. Then, bring some idea about the navigation and problem solving

techniques. And finally analyze the result of testing and discussions.

3. Introduction

The concept of my robot starts from very basic requirement about the robot itself.

How to make the robot can have mobility? Extensive development in electronics

and software enabled robots in nowadays can do almost anything we can imagine

and its boundary will be expanded. However most of robots don’t have enough

mobility thus far and even some of mobile robots have to depend on inefficient

mobile platforms. First of all, they are too slow. It is obvious that 4 legs or biped

cannot be developed to be more efficient and fast enough then wheeled vehicle. If

we can have fully autonomous and independent vehicle then it will change our life

dramatically. Primary objective on this project is designing a car based robot that

can navigate through GPS coordinates automatically. The robot is based on regular

RC car and entire components including microprocessor and sensors are on the

same base. More details about the platform and system will be discussed first then

go through each components. And will talk about behavior of the robot and

experimental result fallowed by conclusions.

4. Integrated System

As we can imagine a driver in a car use his or her eyes to sense the road ahead and

makes decision with the brain then give a command to the hand and legs to control

the car, this robot has almost the same components. The robot is composed of four

components as microcontroller, sensors, servos and motor.

6

Fig 1 Behavior Control Diagram
Microcontroller, which is almost equivalent to brain of a driver, will process data,

make decision and give signal to its actuators. For this project, Arduino Mega 2560

16-bit microprocessor is selected. For the sensor part, ultrasonic sensors will be

attached as three in front and one in rear to detect obstacles and measure the

distance from them. To make the sensors more functional and flexible, each sensor

will be attached on a small stand. And GPS sensor will be placed on the top of the

platform in order to prevent interference with other objects. A compass module is

also used current heading detection.

7

Fig 2 Overall Hardware Integration

5. Mobile Platform

Since this robot is based on a regular RC model car, physical dimension and

mechanical specifications are limited to a given RC car.

8

 6. Actuation

 1. Motor

 RS-540SH, generic brushed DC motor is attached at the rear

section of the platform and produce main power to the car. DC

motor especially for this kind of cheap motors are known as

very difficult to control because it draws so much electricity

from the circuit board that the microcontroller become

unstable. To prevent such kind of harmful effect

from running motor, it is highly recommended to separate the source of electric

power.

Motor Controller L293D

An array of six L293D Dual-full-bridge motor drivers is

used for the motor driver. According to the datasheet of

L293D, each driver can draw 4A, hence by combining

them into 6, it can produce up to 24A theoretically.

The Device is a monolithic integrated high voltage, high current four channel driver

designed to accept standard DTL or TTL logic levels and drive inductive loads (such

as relays solenoides, DC and stepping motors) and switching power transistors. To

simplify use as two bridges each pair of channels is equipped with an enable input.

A separate supply input is provided for the logic, allowing operation at a lower
voltage and internal clamp diodes are included. This device is suitable for use in

switching applications at frequencies up to 5 kHz. The L293D is assembled in a 16

lead plastic packaage which has 4 center pins connected together and used for

heatsinking The L293DD is assembled in a 20 lead surface mount which has 8 center

pins connected together and used for heatsinking.

9

To control the DC motor more precisely and reliably, PID control is required. An

incremental encoder with resolution of 1440 ppr(Pulse Per Revolution) is

connected to the main spur gear which drive main shaft. This encoder will measure

the rotational speed of the shaft by counting the pulse at a specific timing. By

comparing the error between the input and output, the controller can determine if

it is going to increase or decrease the power of the motor.

PID control

10

2. Servo High speed HS-5925MG digital servo is mounted in front section of the car

to change the direction.

11

7. Sensors

 Some proximity sensors and encoder are used for this project. Proximity sensors are

essential for obstacle avoidance and encoder for motor control. In order to minimize

cost and time, each sensor is evaluated in terms of suitability, affordability and

feasibility. The point of choosing sensor is about doing more with less. I tried to

minimize requirement of sensors.

1. Obstacle Avoidance

 Obstacle avoidance requires a robot can detect or measure the distance from

the object in front or in the course. A robot or micro controller can perform

maneuvers to avoid obstacles according to the measured signal from those

sensors. Therefore it is easy to say that better sensor gives better outputs.

This table shows some common sensors that can be used for the robot.

Some sensors like IR sensors are very common in obstacle avoidance and/or proximity

measurements; however it works poorly in outdoor application. So I excluded this type

of sensor.

12

i. Ultrasonic sensor (SONAR) SONAR or Ultrasonic sensor is very common

type of sensor detecting object and measuring distance. Three ultrasonic

sensors are mounted in front of the car and one in rear. Front sensors are

mainly used for detecting obstacles and measuring the distance between

the car and the objects. To help microcontroller finding the way more

easily, these sensors can be tilted around the front area.

HC-SR04 Sensor

I choose HC-SR04 for the project because this is the cheapest of all

Kind and it also provides various types of output signal including PWM, RS-232 And

analogue voltage. One of the good things about using analogue output is that the

output is proportional to every inch. So the user does not have to worry about

handling timer interrupt and calculating distance with the flight time of ping.

1. 1 Ultrasonic Definition

13

The human ear can hear sound frequency around 20HZ ~ 20KHZ, and ultrasonic is the

sound wave beyond the human ability of 20KHZ .

 1.2 Ultrasonic distance measurement principle

Ultrasonic transmitter emitted an ultrasonic wave in one direction, and started

timing when it launched. Ultrasonic spread in the air, and would return

immediately when it encountered obstacles on the way. At last, the ultrasonic

receiver would stop timing when it received the reflected wave. As Ultrasonic

spread velocity is 340m / s in the air, based on the timer record t, we can calculate

the distance (s) between the obstacle and transmitter, namely: s = 340t / 2, which

is so- called time difference distance measurement principle The principle of

ultrasonic distance measurement used the already-known air spreading velocity,

measuring the time from launch to reflection when it encountered obstacle, and

then calculate the distance between the transmitter and the obstacle according

to the time and the velocity. Thus, the principle of ultrasonic distance

measurement is the same with radar.

Distance Measurement formula is expressed as: L = C X T

In the formula, L is the measured distance, and C is the ultrasonic spreading velocity
in air, also, T represents time (T is half the time value from transmitting to receiving

).

1.3 Ultrasonic Application

Ultrasonic Application Technology is the thing which developed in recent

decades. With the ultrasonic advance, and the electronic technology

development, especially as high-power semiconductor device technology

matures, the application of ultrasonic has become increasingly widespread:

Ultrasonic measurement of distance, depth and thickness;

• Ultrasonic testing;

• Ultrasound imaging;

• Ultrasonic machining, such as polishing, drilling;

• Ultrasonic cleaning;

• Ultrasonic welding;

1.3 Product Features

• Stable performance

14

• Accurate distance measurement

• High-density

• Small blin

Application Areas:

• Robotics barrier

• Object distance measurement

• Level detection

• Public security

• Parking detection

 1.4 Module operating Principle

Set low the Trig and Echo port when the module initializes , firstly, transmit at

least 10us high level pulse to the Trig pin (module automatically sends eight 40K

square wave), and then wait to capture the rising edge output by echo port, at the

same time, open the timer to start timing. Next, once again capture the falling

edge output by echo port, at the same time, read the time of the counter, which

is the ultrasonic running time in the air. According to the formular: test distance =

(high level time * ultrasonic spreading velocity in air) / 2, you can calculate the

distance to the obstacle.

15

2. GPS Navigation

Currently there are hundreds of different kinds of GPS receivers in the market.

2.1 Overview

The NEO-6 module series is a family of stand-alone GPS receivers featuring the high

performance u-blox 6 positioning engine. These flexible and cost effective receivers

offer numerous connectivity options in a miniature 16 x 12.2 x 2.4 mm package.

Their compact architecture and power and memory options make NEO-6 modules

ideal for battery operated mobile devices with very strict cost and space constraints.

The 50-channel u-blox 6 positioning engine boasts a Time-To-First-Fix (TTFF) of under

1 second. The dedicated acquisition engine, with 2 million correlators, is capable of

massive parallel time/frequency space searches, enabling it to find satellites instantly.

Innovative design and technology suppresses jamming sources and mitigates

multipath effects, giving NEO-6 GPS receivers excellent navigation performance even

in the most challenging environments.

2.2 Raw data

1.6 HC – SR04 Connection to Microcontroller

16

Raw data output is supported at an update rate of 5 Hz on the NEO-6T and NEO6P.

The UBX-RXM-RAW message includes carrier phase with half-cycle ambiguity

resolved, code phase and Doppler measurements, which can be used in external

applications that offer precision positioning, real-time kinematics (RTK) and attitude

sensing.

2.3 Automotive Dead Reckoning

Automotive Dead Reckoning (ADR) is u-blox’ industry proven off-the-shelf Dead

Reckoning solution for tier-one automotive customers. u-blox’ ADR solution

combines GPS and sensor digital data using a tightly coupled Kalman filter. This

improves position accuracy during periods of no or degraded GPS signal. The NEO-

6V provides ADR functionality over its software sensor interface. A variety of

sensors (such as wheel ticks and gyroscope) are supported, with the sensor data

received via UBX messages from the application processor. This allows for easy

integration and a simple hardware interface, lowering costs. By using digital

sensor data available on the vehicle bus, hardware costs are minimized since no

extra sensors are required for Dead Reckoning functionality. ADR is designed for

simple integration and easy configuration of different sensor options (e.g. with or

without gyroscope) and vehicle variants, and is completely self-calibrating.

2.4 Precise Point Positioning u-blox’ industry proven PPP algorithm provides extremely

high levels of position accuracy in static and slow moving applications, and makes the

NEO-6P an ideal solution for a variety of high precision applications such as surveying,

mapping, marine, agriculture or leisure activities.

Ionospheric corrections such as those received from local SBAS12 geostationary

satellites (WAAS, EGNOS, MSAS) or from GPS enable the highest positioning accuracy

with the PPP algorithm. The maximum improvement of positioning accuracy is

reached with PPP+SBAS and can only be expected in an environment with

unobstructed sky view during a period in the order of minutes.

2.5 Oscillators

NEO-6 GPS modules are available in Crystal and TCXO versions. The TCXO allows

accelerated weak signal acquisition, enabling faster start and reacquisition times.

2.6 Protocols and Interfaces

Protocol Type

17

NMEA Input/output, ASCII,

0183, 2.3 (compatible to

3.0)

UBX Input/output, binary, u-

blox proprietary

RTCM Input, 2.3

2.7 Display Data Channel (DDC)

The I2C compatible DDC interface can be used either to access external devices with

a serial interface EEPROM or to interface with a host CPU. It is capable of master and

slave operation. The DDC interface is I2C Standard Mode compliant. For timing

parameters consult the I2C standard.

The DDC Interface supports serial communication with u-blox wireless modules.

See the specification of the applicable wireless module to confirm compatibility. The

maximum bandwidth is 100kbit/s.

2.7.1 External serial EEPROM

NEO-6 modules allow an optional external serial EEPROM to be connected to the DDC

interface. This can be used to store Configurations permanently.

For more information see the LEA-6/NEO-6/MAX-6 Hardware Integration Manual

[1].

Use caution when implementing since forward compatibility is not guaranteed.

2.8 Power Management u-blox receivers support different power modes. These

modes represent strategies of how to control the acquisition and tracking engines

in order to achieve either the best possible performance or good performance

with reduced power consumption.

For more information about power management strategies, see the u-blox 6 Receiver

Description including Protocol Specification [2].

2.8.1 Maximum Performance Mode

During a Cold start, a receiver in Maximum Performance Mode continuously deploys

the acquisition engine to search for all satellites. Once the receiver has a position fix

18

(or if pre-positioning information is available), the acquisition engine continues to be

used to search for all visible satellites that are not being tracked.

2.8.2 Eco Mode

During a Cold start, a receiver in Eco Mode works exactly as in Maximum Performance

Mode. Once a position can be calculated and a sufficient number of satellites are

being tracked, the acquisition engine is powered off resulting in significant power

savings. The tracking engine continuously tracks acquired satellites and acquires

other available or emerging satellites.

Note that even if the acquisition engine is powered off, satellites continue to be acquired.

2.8.3 Power Save Mode

Power Save Mode (PSM) allows a reduction in system power consumption by selectively

switching parts of the receiver on and off.

Power Save mode is not available with NEO-6P, NEO-6T and NEO-6V.

2.9 Configuration

2.9.1 Boot-time configuration

NEO-6 modules provide configuration pins for boot-time configuration. These

become effective immediately after start-up. Once the module has started, the

configuration settings can be modified with UBX configuration messages. The

modified settings remain effective until power-down or reset. If these settings have

been stored in battery-backup RAM, then the modified configuration will be

retained, as long as the backup battery supply is not interrupted.

GPS Receiver

19

GPS data analysis

PARSE GPRMC DATA

(1) Current Time: hhmmss.ss

(2) Validity: A- AOK,

(3)Latitude: DDMM.SS.ss

(4) North South

(5) Longitude: DDMM.SS.ss

(6) East West

(7) Speed : Knots

(8) Heading: 0, 360: north (9) Date today

Reading and Parsing the Data

Processing the GPS data is composed of two parts as receiver and parser. Receiver

is simply an interrupt service routine that stores data into certain variable. Since

20

the interrupt is set very quickly, the code should be as small as possible to avoid

delayed interrupt problem.

Every time the controller receives a character through a SCI channel, an

interrupt is set and store it to a global variable. If it finds a character ‘$’ which

means the starting of GPS code, then the controller compare next 5 characters

with ‘GPRMC’ which I’m looking for. If the data contains GPRMC code, a flag is

set and the main program calls the Parsing function.

21

3. HMC5883 Magnetic Compass Module

The Honeywell HMC5883L is a surface-mount, multi-chip module designed for low-

field magnetic sensing with a digital interface for applications such as lowcost

compassing and magnetometry. The HMC5883L includes our state-of-the-art, high-

resolution HMC118X series magneto-resistive sensors plus an ASIC containing

amplification, automatic degaussing strap drivers, offset cancellation, and a 12-bit

22

ADC that enables 1° to 2° compass heading accuracy. The I2C serial bus allows for

easy interface. The HMC5883L is a 3.0x3.0x0.9mm surface mount 16-pin leadless

chip carrier (LCC). Applications for the HMC5883L include Mobile

Phones, Netbooks, Consumer Electronics, Auto Navigation Systems, and Personal

Navigation Devices. The HMC5883L utilizes Honeywell’s Anisotropic

Magnetoresistive (AMR) technology that provides advantages over other magnetic

sensor technologies. These anisotropic, directional sensors feature precision in-axis

sensitivity and linearity. These sensors’ solid-state construction with very low cross-

axis sensitivity is designed to measure both the direction and the magnitude of

Earth’s magnetic fields, from milli-gauss to 8 gauss. Honeywell’s Magnetic Sensors

are among the most sensitive and reliable low-field sensors in the industry.

23

Fig 6.Code Snippet of Compass Setup

4. 16 X 2 LCD Screen Module

4.1. Overview

LinkSprite’s LCD Shield provides a handy 16-character by 2-line display with

controllable backlight. It can be plugged to an Arduino board or other Arduino shield

boards. The LCD display is on the back of the shield. The board includes are panel

mounting screw holes. This shield makes it easy to build a stand-alone project with

its own user interface. With this shield, a computer is not required to send

commands to your Arduino. The 4 direction buttons ("left", "right", "up", "down",

and "select”) plus the selection button allow basic user control and input.This shield

24

works perfectly in 4-bit mode. With the "Liquid Crystal" library included in the

Arduino IDE, the shield allows control of the LCD through only six digital I/O pins.

Pins D4-D9 are deliberately selected to avoid possible interference with the pins of

other popular Arduino products, e.g., the Ethernet shield and the EtherTen.

Therefore, this shield can be stacked on top of other shields to provide a local

display.

4.2. Hardware Specification

4.2.1 Highlights of Hardware Features

· 16x2 LCD using HD44780-compatible display module (black characters on green

background).

· 5 buttons on one analog input (A0).

· LCD with current limiting, adjustable brightness, and on/off control by software through

a PWM pin.

· LCD contrast adjustable with a potentiometer.

· Recessed LCD, panel mount screw holes and button layout suitable for panel or cabinet

mounting.

· Reset button.

· Power supply smoothing capacitor.

4.2.2 Pin Definition

· A0: Buttons

· D4: LCD bit 4

· D5: LCD bit 5

· D6: LCD bit 6

· D7: LCD bit 7

· D8: LCD RS

· D9: LCD Enable

25

· D10:LCD backlight brightness adjustment

4.3 Connection to Arduino

26

27

Above code snippet shows that the compass module is used to determine the direction

& calculate the heading of the vehicle on giving GPS coordinates by using Great Circle

Formula and determine the shortest route to the destination co-ordinate.

can be calculated simply by subtracting current heading from goal heading. At

first, this simple algorithm worked fine with some waypoints, however it turns

out that only this process could be confusing when the target is in the north

and the robot is heading toward the north. This is due to the specialty of the

North pole. Simply because that the north pole can be represent either way as

0 degree or 360 degree and this makes the robot confused. These problematic

cases are discussed below.

difference of latitude and longitude between the two.

The dAngle which is directly related to control the servo to align the robot

28

The first case shows when the robot is almost aligned to the target but the

current angle is way smaller than the goal heading. At this moment, the robot

will turn opposite direction and keep confused and never get to the target. The

second case is an opposite case of the first one. In either case, the robot

becomes disoriented and would never get to the target in the experiment. I

solved this problem by adding some code here.

If case 1: dHDG = gHDG-360-cHDG

If case 2: dHDG =360-cHDG + gHDG

This works great with navigation and the robot wouldn’t be confused again.

 The Arduino Mega 2560 is a microcontroller board based on the ATmega2560

(datasheet). It has 54 digital input/output pins (of which 14 can be used as PWM

outputs), 16 analog inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal

oscillator, a USB connection, a power jack, an ICSP header, and a reset button. It

contains everything needed to support the microcontroller; simply connect it to a

computer with a USB cable or power it with a AC-to-DC adapter or battery to get

29

started. The Mega is compatible with most shields designed for the Arduino

Duemilanove or Diecimila.

Power

The Arduino Mega can be powered via the USB connection or with an external

power supply. The power source is selected automatically. External (non-USB)

power can come either from an AC-to-DC adapter (wall-wart) or battery. The

adapter can be connected by plugging a 2.1mm center-positive plug into the

board's power jack. Leads from a battery can be inserted in the Gnd and Vin pin

headers of the POWER connector. The board can operate on an external supply of

6 to 20 volts. If supplied with less than 7V, however, the 5V pin may supply less than

five volts and the board may be unstable. If using more than 12V, the voltage

regulator may overheat and damage the board. The recommended range is 7 to 12

volts. The Mega2560 differs from all preceding boards in that it does not use the

FTDI USB-to-serial driver chip. Instead, it features the Atmega8U2 programmed as

a USB-to-serial converter.

The power pins are as follows:

VIN. The input voltage to the Arduino board when it's using an external power

source (as opposed to 5 volts from the USB connection or other regulated power

source). You can supply voltage through this pin, or, if supplying voltage via the

power jack, access it through this pin.

. 9 Microcontroller Unit

 Arduino Mega 2560 - R3

30

5V. The regulated power supply used to power the microcontroller and other

components on the board. This can come either from VIN via an on-board regulator,

or be supplied by USB or another regulated 5V supply.

3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw

is 50 mA.

GND. Ground pins.

Memory

The ATmega2560 has 256 KB of flash memory for storing code (of which 8 KB is used

for the bootloader), 8 KB of SRAM and 4 KB of EEPROM (which can be read and

written with the EEPROM library).

Input and Output

Each of the 54 digital pins on the Mega can be used as an input or output, using

pinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 volts.

Each pin can provide or receive a maximum of 40 mA and has an internal pull-up

resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have

specialized functions:

Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and 16 (TX);

Serial 3: 15 (RX) and 14 (TX). Used to receive (RX) and transmit (TX) TTL serial data.

Pins 0 and 1 are also connected to the corresponding pins of the ATmega8U2 USB-

to-TTL Serial chip.

External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5), 19 (interrupt

4), 20 (interrupt 3), and 21 (interrupt 2). These pins can be configured to trigger an

interrupt on a low value, a rising or falling edge, or a change in value. See the

attachInterrupt() function for details.

PWM: 0 to 13. Provide 8-bit PWM output with the analogWrite() function.

31

SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI communication

using the SPI library. The SPI pins are also broken out on the ICSP header, which is

physically compatible with the Uno, Duemilanove and Diecimila.

LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value,

the LED is on, when the pin is LOW, it's off.

I2C: 20 (SDA) and 21 (SCL). Support I2C (TWI) communication using the Wire library

(documentation on the Wiring website). Note that these pins are not in the same

location as the I2C pins on the Duemilanove or Diecimila.

The Mega2560 has 16 analog inputs, each of which provide 10 bits of resolution (i.e.

1024 different values). By default they measure from ground to 5 volts, though is it

possible to change the upper end of their range using the AREF pin and

analogReference() function.

There are a couple of other pins on the board:

AREF. Reference voltage for the analog inputs. Used with analogReference().

Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset

button to shields which block the one on the board.

Communication

The Arduino Mega2560 has a number of facilities for communicating with a

computer, another Arduino, or other microcontrollers. The ATmega2560 provides

four hardware UARTs for TTL (5V) serial communication. An ATmega8U2 on the

board channels one of these over USB and provides a virtual com port to software

on the computer (Windows machines will need a .inf file, but OSX and Linux

machines will recognize the board as a COM port automatically. The Arduino

software includes a serial monitor which allows simple textual data to be sent to

and from the board. The RX and TX LEDs on the board will flash when data is being

transmitted via the ATmega8U2 chip and USB connection to the computer (but not

for serial communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the

32

Mega2560's digital pins. The ATmega2560 also supports I2C (TWI) and SPI communication.

The Arduino software includes a Wire library to simplify use of the I2C bus; see the

documentation on the Wiring website for details. For SPI communication, use the SPI

library.

Programming

The Arduino Mega can be programmed with the Arduino software (download).

For details, see the reference and tutorials. The ATmega2560 on the Arduino Mega

comes preburned with a bootloader that allows you to upload new code to it

without the use of an external hardware programmer. It communicates using the

original STK500 protocol (reference, C header files). You can also bypass the

bootloader and program the microcontroller through the ICSP (In-Circuit Serial

Programming) header; see these instructions for details. The ATmega8U2 firmware

source code is available in the Arduino repository. The ATmega8U2 is loaded with a

DFU bootloader, which can be activated by connecting the solder jumper on the

back of the board (near the map of Italy) and then resetting the 8U2. You can then

use Atmel's FLIP software (Windows) or the DFU programmer (Mac OS X and Linux)

to load a new firmware. Or you can use the ISP header with an external programmer

(overwriting the DFU bootloader). See this usercontributed tutorial for more

information.

Automatic (Software) Reset

Rather then requiring a physical press of the reset button before an upload, the

Arduino Mega2560 is designed in a way that allows it to be reset by software

running on a connected computer. One of the hardware flow control lines (DTR) of

the ATmega8U2 is connected to the reset line of the ATmega2560 via a 100

nanofarad capacitor. When this line is asserted (taken low), the reset line drops long

enough to reset the chip. The Arduino software uses this capability to allow you to

upload code by simply pressing the upload button in the Arduino environment. This

means that the bootloader can have a shorter timeout, as the lowering of DTR can

be well-coordinated with the start of the upload.

This setup has other implications. When the Mega2560 is connected to either a

computer running Mac OS X or Linux, it resets each time a connection is made to it

from software (via USB). For the following half-second or so, the bootloader is

33

running on the Mega2560. While it is programmed to ignore malformed data (i.e.

anything besides an upload of new code), it will intercept the first few bytes of data

sent to the board after a connection is opened. If a sketch running on the board

receives one-time configuration or other data when it first starts, make sure that

the software with which it communicates waits a second after opening the

connection and before sending this data. The Mega2560 contains a trace that can

be cut to disable the auto-reset. The pads on either side of the trace can be soldered

together to re-enable it. It's labeled "RESET-EN". You may also be able to disable

the auto-reset by connecting a 110 ohm resistor from 5V to the reset line; see this

forum thread for details.

USB Overcurrent Protection

The Arduino Mega2560 has a resettable polyfuse that protects your computer's USB

ports from shorts and overcurrent. Although most computers provide their own

internal protection, the fuse provides an extra layer of protection. If more than 500

mA is applied to the USB port, the fuse will automatically break the connection until

the short or overload is removed.

Physical Characteristics and Shield Compatibility

The maximum length and width of the Mega2560 PCB are 4 and 2.1 inches

respectively, with the USB connector and power jack extending beyond the former

dimension. Three screw holes allow the board to be attached to a surface or case.

Note that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an even

multiple of the 100 mil spacing of the other pins. The Mega2560 is designed to be

compatible with most shields designed for the Uno, Diecimila or Duemilanove.

Digital pins 0 to 13 (and the adjacent AREF and GND pins), analog inputs 0 to 5, the

power header, and ICSP header are all in equivalent locations. Further the main

UART (serial port) is located on the same pins (0 and 1), as are external interrupts 0

and 1 (pins 2 and 3 respectively). SPI is available through the ICSP header on both

the Mega2560 and Duemilanove / Diecimila. Please note that I2C is not located on

the same pins on the Mega (20 and 21) as the Duemilanove / Diecimila (analog

inputs 4 and 5).

34

10. Behaviors

1. Navigation Mode

i. Initialization

Boot up the GPS module and find the current coordinate.

ii. Set the course

 Load designated waypoints into the list. Select the first waypoint and turn

to the direction.

35

36

11. Experimental Layouts & Results

 Fig 9.Experimental Data on GPS Navigation

Actual GPS navigation test conducted in one of the empty road in city of Ranchi. We

conducted two experiments with same starting point and with some obstacle in the

road. Each point is recorded on the externally attached logger module whenever a

GPS signal received by MCU. Data is saved as a text file and processed using

spreadsheet package. No filtering and smoothing has been made during data

processing. Notice that a distance from the starting point to the first waypoint is

approximately 75 meters.

This experiment shows how the robot accurately can go through the waypoints.

Initial instability of tracking can be observed and this is caused by disorientation at

the beginning part of navigation. This problem happens when the robot is stopped

for a while and the GPS could not calculate orientation of the robot. I have attached

a compass module to the robot helps a lot to determine orientation of the robot.

37

12. Conclusion

 Before choosing this project, I have researched what students who took this class

had previously created in the internet and it inspired me to go with GPS navigation.

This decision was made simply because that nobody actually made successful robot

with this theme. Another reason is that I was interested in autonomous GPS

navigation. So, receiving the data would be the highest goal in my project

Processing the GPS signal and controlling the robot is much difficult than I initially

anticipated. It took me about one full month just to get the reliable GPS data from

the receiver. I started writing a data processing code right after receiving the GPS

receiver and I thought to be almost successful but it gets the data on and off. I was

almost desperate when time passed more than two weeks and almost giving up.

One significant breakthrough was made when I got some suggestions and source

code from a researcher in Korea who I added as a reference. Thanks to his work, I

could change my crappy GPS receiving source code and finally can grab the data I

needed. But this was just a beginning of the whole project. Implementing the

navigation system was a big challenge and demanding work since it requires lots of

actual tests. Moving the robot according to a navigation algorithm is not just simple

as making software. I was literally exhausted after countless testing of the robot in

the field. I had to perform the test in the campus parking lot during late night when

people drive their car out of the place to avoid accident.

In sum, I was satisfied with the result that my robot performed with limited number

of components. Actually this project was done with just a RC car, controller and a

GPS module. This robot doesn’t even have any accelerometers or gyros which is

very common in mobile robot! Although I still think I should have applied digital

compass I think keeping the hardware as simple as possible enabled me to

accomplish this project.

38

 13. Appendices
1. Budget

Item Desec. Price Qty Sub Total Remark

MCU Arduino Mega 2560R3 725 1 725 Amazon.in

Motor Driver Adafruit Motor

Controller L293D

220 1 220 Amazon.in

GPS u-Blox Neo-6M-0-001 1100 1 1100 Snapdeal.com

Compass GY-271 HMC5883L 328 1 328 Amazon.in

Ping Sensor Adafruit HC-SR04 164 4 656 Amazon.in

RC-Car Cross Country* 1 Pre owned

Battery Li-Po 1800mAh 500 3 1500 Ebay.in

Servo Tower-Pro SG-90 200 1 200 Amazon.in

Motor Brushed RS-540SH 175 1 175 Amazon.in

Misc. Stuff Wire, Jack, etc.* Pre owned

 Total : 4904

*Pre owned items are excluded from the budget

2. Project Schedule

Following Table shows development schedule of the project. I divided the project as

Hardware part and software part. Each arrow represents the duration of each task.

39

14. Arduino IDE

The Arduino Integrated Development Environment - or Arduino Software (IDE) -

contains a text editor for writing code, a message area, a text console, a toolbar with

buttons for common functions and a series of menus. It connects to the Arduino and

Genuino hardware to upload programs and communicate with them.

Writing Sketches

Programs written using Arduino Software (IDE) are called sketches. These sketches

are written in the text editor and are saved with the file extension .ino. The editor

has features for cutting/pasting and for searching/replacing text. The message area

gives feedback while saving and exporting and also displays errors. The console

displays text output by the Arduino Software (IDE), including complete error

messages and other information. The bottom righthand corner of the window

displays the configured board and serial port. The toolbar buttons allow you to

verify and upload programs, create, open, and save sketches, and open the serial

monitor.

NB: Versions of the Arduino Software (IDE) prior to 1.0 saved sketches with the

extension .pde. It is possible to open these files with version 1.0, you will be prompted

to save the sketch with the .ino extension on save.

40

• Verify

 Checks your code for errors compiling it.

• Upload

Compiles your code and uploads it to the configured board.

See uploading below for details.

• Note: If you are using an external programmer with your board,

you can hold down the "shift" key on your computer when using

this icon. The text will change to "Upload using Programmer"

• New

Creates a new sketch.

• Open

Presents a menu of all the sketches in your sketchbook. Clicking
one will open it within the current window overwriting its
content.

• Note: due to a bug in Java, this menu doesn't scroll; if you need to
open a sketch late in the list, use the File | Sketchbookmenu
instead.

• Save

Saves your sketch.

• Serial Monitor

Opens the serial monitor.
Additional commands are found within the five menus: File, Edit, Sketch, Tools,

Help. The menus are context sensitive, which means only those items relevant

to the work currently being carried out are available.

41

Sketchbook

The Arduino Software (IDE) uses the concept of a sketchbook: a standard place to

store your programs (or sketches). The sketches in your sketchbook can be opened

from the File > Sketchbook menu or from the Open button on the toolbar. The first

time you run the Arduino software, it will automatically create a directory for your

sketchbook. You can view or change the location of the sketchbook location from

with the Preferences dialog.

Beginning with version 1.0, files are saved with a .ino file extension. Previous versions

use the .pde extension. You may still open .pde named files in version 1.0 and later,

the software will automatically rename the extension to .ino.

Tabs, Multiple Files, and Compilation

Allows you to manage sketches with more than one file (each of which appears in its

own tab). These can be normal Arduino code files (no visible extension), C files (.c

extension), C++ files (.cpp), or header files (.h).

Uploading

Before uploading your sketch, you need to select the correct items from the Tools

> Board and Tools > Port menus. The boards are described below. On the Mac, the

serial port is probably something like /dev/tty.usbmodem241 (for an Uno or

Mega2560 or Leonardo) or /dev/tty.usbserial-1B1 (for a Duemilanove or earlier

USB board), or /dev/tty.USA19QW1b1P1.1 (for a serial board connected with a

Keyspan USB-to-Serial adapter). On Windows, it's probably COM1 or COM2 (for a

serial board) or COM4, COM5, COM7, or higher (for a USB board) - to find out, you

look for USB serial device in the ports section of the Windows Device Manager. On

Linux, it should be /dev/ttyACMx , /dev/ttyUSBx or similar. Once you've selected

the correct serial port and board, press the upload button in the toolbar or select

the Upload item from the Sketch menu. Current Arduino boards will reset

automatically and begin the upload. With older boards (pre-Diecimila) that lack

auto-reset, you'll need to press the reset button on the board just before starting

the upload. On most boards, you'll see the RX and TX LEDs blink as the sketch is

https://www.arduino.cc/en/Guide/Environment#boards
https://www.arduino.cc/en/Guide/Environment#boards
https://www.arduino.cc/en/Guide/Environment#boards

42

uploaded. The Arduino Software (IDE) will display a message when the upload is

complete, or show an error.

When you upload a sketch, you're using the Arduino bootloader, a small program that

has been loaded on to the microcontroller on your board. It allows you to upload code

without using any additional hardware. The bootloader is active for a few seconds

when the board resets; then it starts whichever sketch was most recently uploaded

to the microcontroller. The bootloader will blink the on-board (pin 13) LED when it

starts (i.e. when the board resets).

Libraries

Libraries provide extra functionality for use in sketches, e.g. working with

hardware or manipulating data. To use a library in a sketch, select it from the

Sketch > Import Library menu. This will insert one or more #include statements

at the top of the sketch and compile the library with your sketch. Because

libraries are uploaded to the board with your sketch, they increase the amount

of space it takes up. If a sketch no longer needs a library, simply delete its

#includestatements from the top of your code.

There is a list of libraries in the reference. Some libraries are included with the

Arduino software. Others can be downloaded from a variety of sources or through

the Library Manager. Starting with version 1.0.5 of the IDE, you do can import a

library from a zip file and use it in an open sketch. See these instructions for

installing a third-party library.

To write your own library, see this tutorial.

Third-Party Hardware

Support for third-party hardware can be added to the hardware directory of your

sketchbook directory. Platforms installed there may include board definitions (which

appear in the board menu), core libraries, bootloaders, and programmer definitions.

To install, create the hardware directory, then unzip the third-party platform into its

own sub-directory. (Don't use "arduino" as the sub-directory name or you'll override

the built-in Arduino platform.) To uninstall, simply delete its directory.

https://www.arduino.cc/en/Reference/Libraries
https://www.arduino.cc/en/Reference/Libraries
https://www.arduino.cc/en/Guide/Libraries
https://www.arduino.cc/en/Guide/Libraries
https://www.arduino.cc/en/Hacking/LibraryTutorial
https://www.arduino.cc/en/Hacking/LibraryTutorial

43

For details on creating packages for third-party hardware, see the Arduino IDE 1.5 3rd

party Hardware specification.

Serial Monitor

Displays serial data being sent from the Arduino or Genuino board (USB or serial

board). To send data to the board, enter text and click on the "send" button or press

enter. Choose the baud rate from the drop-down that matches the rate passed to

Serial.begin in your sketch. Note that on Windows, Mac or Linux, the Arduino or

Genuino board will reset (rerun your sketch execution to the beginning) when you

connect with the serial monitor.

You can also talk to the board from Processing, Flash, MaxMSP, etc (see the

interfacing page for details).

Preferences

Some preferences can be set in the preferences dialog (found under the Arduino

menu on the Mac, or File on Windows and Linux). The rest can be found in the

preferences file, whose location is shown in the preference dialog.

Boards

The board selection has two effects: it sets the parameters (e.g. CPU speed and baud

rate) used when compiling and uploading sketches; and sets and the file and fuse

settings used by the burn bootloader command. Some of the board definitions differ

only in the latter, so even if you've been uploading successfully with a particular

selection you'll want to check it before burning the bootloader. You can find a

comparison table between the various boards here.

Arduino Software (IDE) includes the built in support for the boards in the following

list, all based on the AVR Core. The Boards Manager included in the standard

installation allows to add support for the growing number of new boards based on

different cores like Arduino Due, Arduino Zero, Edison, Galileo and so on.

• Arduino Yùn

https://github.com/arduino/Arduino/wiki/Arduino-IDE-1.5-3rd-party-Hardware-specification
https://github.com/arduino/Arduino/wiki/Arduino-IDE-1.5-3rd-party-Hardware-specification
https://github.com/arduino/Arduino/wiki/Arduino-IDE-1.5-3rd-party-Hardware-specification
http://www.arduino.cc/playground/Main/Interfacing
http://www.arduino.cc/playground/Main/Interfacing
http://www.arduino.cc/playground/Main/Interfacing
https://www.arduino.cc/en/Products/Compare
https://www.arduino.cc/en/Products/Compare
https://www.arduino.cc/en/Guide/Cores
https://www.arduino.cc/en/Guide/Cores
https://www.arduino.cc/en/Guide/Cores

44

An ATmega32u4 running at 16 MHz with auto-reset, 12 Analog In, 20 Digital I/O and

7 PWM.

• Arduino/Genuino Uno

An ATmega328 running at 16 MHz with auto-reset, 6 Analog In, 14 Digital I/O and 6 PWM.

• Arduino Diecimila or Duemilanove w/ ATmega168 An ATmega168 running at 16 MHz with

auto-reset.

• Arduino Nano w/ ATmega328

An ATmega328 running at 16 MHz with auto-reset. Has eight analog inputs.

• Arduino/Genuino Mega 2560

An ATmega2560 running at 16 MHz with auto-reset, 16 Analog In, 54 Digital I/O and

15 PWM.

• Arduino Mega

An ATmega1280 running at 16 MHz with auto-reset, 16 Analog In, 54 Digital I/O and

15 PWM.

• Arduino Mega ADK

An ATmega2560 running at 16 MHz with auto-reset, 16 Analog In, 54 Digital I/O and

15 PWM.

• Arduino Leonardo

An ATmega32u4 running at 16 MHz with auto-reset, 12 Analog In, 20 Digital I/O and

7 PWM.

• Arduino/Genuino Micro

An ATmega32u4 running at 16 MHz with auto-reset, 12 Analog In, 20 Digital I/O and

7 PWM.

• Arduino Esplora

An ATmega32u4 running at 16 MHz with auto-reset.

• Arduino Mini w/ ATmega328

An ATmega328 running at 16 MHz with auto-reset, 8 Analog In, 14 Digital I/O and 6

PWM.

• Arduino Ethernet

Equivalent to Arduino UNO with an Ethernet shield: An ATmega328 running at 16

MHz with auto-reset, 6 Analog In, 14 Digital I/O and 6 PWM.

• Arduino Fio

45

An ATmega328 running at 8 MHz with auto-reset. Equivalent to Arduino Pro or Pro

Mini (3.3V, 8 MHz) w/ ATmega328, 6 Analog In, 14 Digital I/O and 6 PWM.

 Arduino BT w/ ATmega328

ATmega328 running at 16 MHz. The bootloader burned (4 KB) includes codes to initialize

the on-board bluetooth module, 6 Analog In, 14 Digital I/O and 6 PWM..

• LilyPad Arduino USB

An ATmega32u4 running at 8 MHz with auto-reset, 4 Analog In, 9 Digital I/O and 4

PWM.

• LilyPad Arduino

An ATmega168 or ATmega132 running at 8 MHz with auto-reset, 6 Analog In, 14 Digital

I/O and 6 PWM.

• Arduino Pro or Pro Mini (5V, 16 MHz) w/ ATmega328

An ATmega328 running at 16 MHz with auto-reset. Equivalent to Arduino

Duemilanove or Nano w/ ATmega328; 6 Analog In, 14 Digital I/O and 6 PWM.

• Arduino NG or older w/ ATmega168

An ATmega168 running at 16 MHz without auto-reset. Compilation and upload is

equivalent to Arduino Diecimila or Duemilanove w/ ATmega168, but the bootloader

burned has a slower timeout (and blinks the pin 13 LED three times on reset); 6

Analog In, 14 Digital I/O and 6 PWM.

• Arduino Robot Control

An ATmega328 running at 16 MHz with auto-reset.

• Arduino Robot Motor

An ATmega328 running at 16 MHz with auto-reset.

• Arduino Gemma

An ATtiny85 running at 8 MHz with auto-reset, 1 Analog In, 3 Digital I/O and 2

PWM.

46

• Language Support

Since version 1.0.1 , the Arduino Software (IDE) has been translated into 30+

different languages. By default, the IDE loads in the language selected by your

operating system. (Note: on Windows and possibly Linux, this is determined

by the locale setting which controls currency and date formats, not by the

language the operating system is displayed in.)

If you would like to change the language manually, start the Arduino Software

(IDE) and open the Preferences window. Next to the Editor Language there is

a dropdown menu of currently supported languages. Select your preferred

language from the menu, and restart the software to use the selected

language. If your operating system language is not supported, the Arduino

Software (IDE) will default to English.

You can return the software to its default setting of selecting its language

based on your operating system by selecting System Default from the Editor

Language drop-down. This setting will take effect when you restart the

Arduino Software (IDE). Similarly, after changing your operating system's

settings, you must restart the Arduino Software (IDE) to update it to the new

default language.

47

Arduino Software Release Notes

ARDUINO 1.8.2 2017.03.22

[ide]

* Fix command line: works again with relative paths (regression)

* Fix command line: "--save-prefs" works again (regression)

* AVR toolchain has been updated with a tentative fix for the ld-returned-5-exit-

status bug

* Update arduino-builder to 1.3.25

- avoid name clashing for libraries

- cache core archives to speedup compilation consistently

* Allow BoardManager to fetch FreeBSD tools (thanks @kevans91)

* Serial monitor: the input string box is automatically focused when window is

selected

* Serial monitor: now can not be opened during upload

* Serial monitor: now properly decodes UTF8 characters (thanks

@aknrdureegaesr)

* Serial monitor: added 500k, 1M and 2M baudrates (thanks @dsstutts)

* Updated RSyntaxTextArea to 2.6.1 (textarea component)

* Updated jmdsn (mDNS discovery)

* Allow plugins to attach a listener to compile progress (thanks @tomneutens)

[core]

* Add Atmel-ICE and JTAGICE3 programmers for AVR chips (thanks

@matthijskooijman)

* AVR: Set unused bits of extended fuse to 1, should remove some avrdude

warning during burn bootloader (thanks @descampsa)

* AVR: USB: send ZLP when needed (allows full 64 bytes packets)

* AVR: USB: use IAD descriptors instead than Generic (thanks @cuitoldfish)

[other]

52

* SAM platform source code has been moved to its own repository

(https://github.com/arduino/ArduinoCore-sam) - all PRs and issues have been

moved as well

* Update Wifi101 Firmware Updater plugin

ARDUINO 1.8.1 - 2017.01.09

[ide]

* Fixed font rendering not anti-aliased on Windows (regression)

* Increased number of colors on serial plotter to 8, thanks

53

@cousteaulecommandant

[libraries]

* Fixed regression in SD library. Thanks @greiman

ARDUINO 1.8.0 - 2016.12.20

[ide]

* Linux: running in command line mode doesn't require an X11 display anymore

* "Save as" now clears the "modified" status

54

* builder: Paths with strange UTF8 chars are now correctly handled

* builder: .hpp and .hh file extensions are now considered valid sketch extension

* builder: core.a is not rebuild if not needed (improve build time in particular for

big projects)

* Fixed swapped actions "Copy for Forum" and "Copy as HTML"

* Linux/osx: If an editor tab is a symbolic link it is no more replaced with a real file

when saving (see #5478)

* Increased the upload timeout to 5 minutes (it was 2 min, but it may be not

sufficient when uploading via UART a big sketch)

55

[core]

* Added Arduino.org boards

* Added Adafruit Circuit Playground board

* Added "-g" option to linker to keep debug information in the .elf file (see #5539)

* avrdude: Added fake configuration for EFUSE on atmega8 part. This solves a

long standing issue with "Burn bootloader".

 Thanks @rigelinorion, @awatterott

15. Actual Layout

Front View

56

Side {Left} View

Top View

Side {Right} View

57

Back View

16. References

[1]. Compass & Base Design & Calculation , By CPARKTK –

Instructables ,
“http://www.instructables.com/id/ArduinoPowered/”

[2]. Basic Arduino Concept , Arduino Forum ,

“http://forum.arduino.cc/index.php?topic=165987.0/”

[3]. Jason , GPS Navigation,

“http://www.ke4nyv.com/navigation.htm”

[4]. SlashDevin , Neo GPS Library , GITHub ,

“http://www.github.com/slashdevin/NeoGps/ ”

[5]. Jarzebski , HMC5883L – Compass Module Library ,

“http://www.github.com/jarzebski/arduino-HMC5883L/ ”

[6]. Great Circle Formula , Wikipedia ,

“http://en.wikipedia.org/wiki/Great_Circle_Formula ”

[7]. GPS NMEA PASER , Wikipedia ,
http://en.wikipedia.org/wiki/NMEA_0183

[8]. Arduino Mega-2560 R3 Specs , Arduino.cc ,
http://arduino.cc/en/main/arduinoBoardMega2560

http://www.instructables.com/id/Arduino-Powered/
http://www.instructables.com/id/Arduino-Powered/
http://www.ke4nyv.com/navigation.htm
http://en.wikipedia.org/wiki/NMEA_0183
http://arduino.cc/en/main/arduinoBoardMega2560

58

[9]. u-blox GPS 6M Module Specs , u-blox.com ,
“http://www.ublox.com/en/product/neo-6-series/”

[10]. L293D Motor Controller Board , Adafruit.com,

“http://www.adafruit.com/product/807/”

[11]. Arduino IDE , Arduino.cc ,

“http://www.arduino.cc/en/main/software”

17. Actual Coding

// ---

// Final Sketch for Automous Object Aviodance Gps car With Ping & Compass

Sensor

// ---

/*

 ------------------Pin Configation For modules

 Pins POWERS

 GPS- 3.3V

 Compass- SDA- & SCL- {ANALOG PINS} 5.0V

 Ping - TRIGER- & ECHO - 5.0V

 Drive MOtor- Motor No. 2 {Motor Shield} EXTERNAL POWER

REQURIED FOR BETTER WORKING FOR BOTH MOTOR

 Turn Motor- Motor No. 4 {Motor Shield}

*/

//Include Files///

#include "IRremote.h"

#include <NewPing.h> ////For ping sensor

#include <AFMotor.h> ////For motor Sheild

// Reference the I2C Library

#include <Wire.h>

http://www.u-blox.com/en/product/neo-6-series/
http://www.adafruit.com/product/807/
http://www.arduino.cc/en/main/software

59

// Reference the HMC5883L Compass Library

#include <HMC5883L.h>

//LIBARY FOR GPS

#include <Adafruit_GPS.h>

#include <SoftwareSerial.h>

#include <math.h> // used by: GPS

#include <waypointClass.h>

#include <LiquidCrystal.h>

//

// initialize the library with the numbers of the interface pins

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

// Signal Pin of IR receiver to Arduino Digital Pin 33 int

receiver = 33;

/*-----(Declare objects)-----*/

IRrecv irrecv(receiver); // create instance of 'irrecv' decode_results

results; // create instance of 'decode_results'

////////////////////defination of motor//////////////////////////////

AF_DCMotor motor(2);

AF_DCMotor motork(4);

///

//////////////////////////////////Defination of ping sensor///

#define TRIGGER_PIN 22 // Arduino pin tied to trigger pin on the ultrasonic

sensor.

#define ECHO_PIN 23// Arduino pin tied to echo pin on the ultrasonic sensor.

#define TigR 24

#define EchR 25

#define TigL 26

#define EchL 27

#define TigB 28

60

#define EchB 29

#define MAX_DISTANCE 200 // Maximum distance we want to ping for (in

centimeters). Maximum sensor distance is rated at 400-500cm.

NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE); // NewPing

setup of pins and maximum distance.

NewPing sonar_RT(TigR , EchR , MAX_DISTANCE);

NewPing sonar_LT(TigL , EchL , MAX_DISTANCE);

NewPing sonar_BK(TigB , EchB , MAX_DISTANCE);

//

//Extra Configration//

// Object avoidance distances (in inches)

#define SAFE_DISTANCE 70

#define TURN_DISTANCE 21

#define STOP_DISTANCE 12

#define SSD 70

#define TURN_LEFT BACKWARD

#define TURN_RIGHT FORWARD

#define TURN_STRAIGHT RELEASE

// Speeds (range: 0 - 255)

#define FAST_SPEED 150

#define NORMAL_SPEED 125

#define TURN_SPEED 100 #define

SLOW_SPEED 75

int speed = NORMAL_SPEED;

int sonarDistance, SR, SL, BckDist = 0;

// Steering/turning

enum directions {left = TURN_LEFT, right = TURN_RIGHT, straight =

TURN_STRAIGHT} ;

directions turnDirection = straight;

61

///

//Configr. For GPS

System//////////////////////////////////

// If you're using the Adafruit GPS shield, change

// SoftwareSerial mySerial(30, 31); -> SoftwareSerial mySerial(8, 7);

// and make sure the switch is set to SoftSerial

// If using software serial, keep this line enabled

// (you can change the pin numbers to match your wiring):

SoftwareSerial mySerial(31, 30);

Adafruit_GPS GPS(&mySerial);

float currentLat, currentLong,

targetLat, targetLong;

int distanceToTarget, // current distance to target (current waypoint)

originalDistanceToTarget; // distance to original waypoing when we started

navigating to it

// Waypoints

#define WAYPOINT_DIST_TOLERANE 5 // tolerance in meters to waypoint;

once within this tolerance, will advance to the next waypoint

#define NUMBER_WAYPOINTS 5 // enter the numebr of way points here

(will run from 0 to (n-1)) int waypointNumber = -1; // current waypoint

number; will run from 0 to (NUMBER_WAYPOINTS -1); start at -1 and gets

initialized during setup() waypointClass

waypointList[NUMBER_WAYPOINTS] = {

waypointClass(23.371809,85.323378), waypointClass(24.037528,84.058476),

waypointClass(24.037387,84.058550), waypointClass(24.037092,84.058844),

waypointClass(24.038089, 84.059084)};

// Set GPSECHO to 'false' to turn off echoing the GPS data to the Serial console //

Set to 'true' if you want to debug and listen to the raw GPS sentences.

#define GPSECHO true

62

// this keeps track of whether we're using the interrupt //

off by default!

boolean usingInterrupt = false; void useInterrupt(boolean); // Func

prototype keeps Arduino 0023 happy

///

///confi for compasss//////////////////////////////////////

// Store our compass as a variable.

HMC5883L compass;

// Record any errors that may occur in the compass.

int error = 0;

// Compass navigation

int targetHeading = 0; // where we want to go to reach current waypoint

int currentHeading; // where we are actually facing now int

headingError; // signed (+/-) difference between targetHeading and

currentHeading

#define HEADING_TOLERANCE 5 // tolerance +/- (in degrees) within which

we don't attempt to turn to intercept targetHeading

///

//Setup

programs//

void setup() {

 // set up the LCD's number of columns and rows:

 lcd.begin(16, 2);

 // Print a message to the LCD.

 lcd.print("Welcome!");

 //////Setup IR Remote

 Serial.println("IR Receiver Button Decode");

irrecv.enableIRIn(); // Start the receiver

63

// // Setup for

motor////////////////////////

 Serial.begin(115200); // Open serial monitor at 115200 baud to see ping results.

 // turn on motor

motor.setSpeed(200);

motork.setSpeed(255);

Serial.println("Motor test!");

motor.run(RELEASE);

 motork.run(RELEASE);

 ///End-of motor//////////////////

//Steup. For GPS

System//////////////////////////////////

Serial.println("Adafruit GPS library basic test!");

 // 9600 NMEA is the default baud rate for Adafruit MTK GPS's- some use 4800

GPS.begin(9600);

 // uncomment this line to turn on RMC (recommended minimum) and GGA (fix

data) including altitude

 GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_RMCGGA);

 // uncomment this line to turn on only the "minimum recommended" data

 //GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_RMCONLY);

 // For parsing data, we don't suggest using anything but either RMC only or

RMC+GGA since

 // the parser doesn't care about other sentences at this time

 // Set the update rate

 GPS.sendCommand(PMTK_SET_NMEA_UPDATE_1HZ); // 1 Hz update rate

 // For the parsing code to work nicely and have time to sort thru the data, and

 // print it out we don't suggest using anything higher than 1 Hz

64

 // Request updates on antenna status, comment out to keep quiet

 GPS.sendCommand(PGCMD_ANTENNA);

 // the nice thing about this code is you can have a timer0 interrupt go off

// every 1 millisecond, and read data from the GPS for you. that makes the

// loop code a heck of a lot easier!

 useInterrupt(true);

 delay(1000);

 // Ask for firmware version

 mySerial.println(PMTK_Q_RELEASE);

 //

 // get initial waypoint; also sets the distanceToTarget and courseToTarget

varilables

 // nextWaypoint();

///

///setup for

compasss////////////////////////////////////// // Initialize

the serial port.

 Serial.println("Starting the I2C interface.");

Wire.begin(); // Start the I2C interface.

 compass = HMC5883L(); // Construct a new HMC5883 compass.

 error = compass.SetScale(1.3); // Set the scale of the compass.

 if(error != 0) // If there is an error, print it out.

 Serial.println(compass.GetErrorText(error));

 Serial.println("Setting measurement mode to continous.");

 error = compass.SetMeasurementMode(Measurement_Continuous); // Set the

measurement mode to Continuous if(error != 0) // If there is an error, print it

out.

 Serial.println(compass.GetErrorText(error));

65

///

}

//END OF

SETUP//////////////////////////////////////

//////////////////////////EXTRA GPS CONFIGRATION//

// Interrupt is called once a millisecond, looks for any new GPS data, and stores it

SIGNAL(TIMER0_COMPA_vect) {

 char c = GPS.read();

 // if you want to debug, this is a good time to do it!

#ifdef UDR0 if

(GPSECHO)

 if (c) UDR0 = c;

 // writing direct to UDR0 is much much faster than Serial.print

 // but only one character can be written at a time.

#endif

}

void useInterrupt(boolean v) {

if (v) {

 // Timer0 is already used for millis() - we'll just interrupt somewhere

 // in the middle and call the "Compare A" function above

 OCR0A = 0xAF;

 TIMSK0 |= _BV(OCIE0A);

usingInterrupt = true;

 } else {

 // do not call the interrupt function COMPA anymore

 TIMSK0 &= ~_BV(OCIE0A);

 usingInterrupt = false;

 }

}

66

uint32_t timer = millis();

///

/// Main Loop of

Sketch///

void loop() {

 lcd.setCursor(0, 0); lcd.print("Aquring-GPS...");

lcd.setCursor(1, 0); lcd.print("Please-Wait....");

processGPS(); if (GPS.fix) { lcd.setCursor(0, 0);

lcd.print("GPS-Aquried......"); if (irrecv.decode(&results)) //

have we received an IR signal?

 {

 lcd.setCursor(0, 0);

lcd.print("Engaging-IR....");

lcd.setCursor(1, 0); lcd.print("Please-

Wait.."); translateIR();

irrecv.resume(); // receive the next value

 } else{ lcd.setCursor(0,

0); lcd.print("Enaging-

AutoCont"); lcd.setCursor(1,

0); lcd.print("Starting-Navgt..");

 // navigate

 currentHeading = readCompass(); // get our current heading

calcDesiredTurn(); // calculate how we would optimatally turn, without

regard to obstacles

 checkSonar();

moveAndAvoid();

 updatelcd();

 }

}

}

///

67

///Update-Lcd//

void updatelcd() {

 // set the cursor to column 0, line 1

 // (note: line 1 is the second row, since counting begins with 0):

 lcd.setCursor(0, 0);

lcd.print("TaD:");

lcd.setCursor(0, 4);

lcd.print(distanceToTarget);

lcd.setCursor(0, 7);

lcd.print(" ");

lcd.setCursor(0, 8);

lcd.print("TrH:");

lcd.setCursor(0, 12);

lcd.print(currentHeading);

lcd.setCursor(1, 0);

lcd.print("TrD:");

lcd.setCursor(1, 4);

lcd.print(turnDirection);

lcd.setCursor(1, 7);

lcd.print(" ");

lcd.setCursor(1, 8);

lcd.print("ObD:");

lcd.setCursor(1, 12);

lcd.print(sonarDistance);

}

///

///Function-For-

IRRemote///

/*-----(Function)-----*/

void translateIR() // takes action based on IR code received

// describing Remote IR codes

{

 switch(results.value)

68

 {

 case 0xFF629D: Serial.println(" FORWARD"); motor.run(FORWARD);

motork.run(straight); break; case 0xFF22DD: Serial.println(" LEFT");

motor.run(FORWARD); motork.run(left);

 break; case 0xFF02FD: Serial.println(" -OK-"); break; case 0xFFC23D:

Serial.println(" RIGHT"); motor.run(FORWARD);

motork.run(right); break; case 0xFFA857: Serial.println(" REVERSE");

motor.run(BACKWARD); motork.run(straight); break; default:

 Serial.println(" other button ");

 }// End Case

 delay(500); // Do not get immediate repeat

}

///

//GPS MODULE////////////////////////////////////

//Function for gps parsing void

processGPS(void)

{

 // in case you are not using the interrupt above, you'll

 // need to 'hand query' the GPS, not suggested :(

 if (! usingInterrupt) {

 // read data from the GPS in the 'main loop'

 char c = GPS.read();

 // if you want to debug, this is a good time to do it!

 if (GPSECHO)

 if (c) Serial.print(c);

 }

 // if a sentence is received, we can check the checksum, parse it...

 if (GPS.newNMEAreceived()) {

69

 // a tricky thing here is if we print the NMEA sentence, or data

// we end up not listening and catching other sentences!

 // so be very wary if using OUTPUT_ALLDATA and trytng to print out data

//Serial.println(GPS.lastNMEA()); // this also sets the newNMEAreceived()

flag to false

 if (!GPS.parse(GPS.lastNMEA())) // this also sets the newNMEAreceived() flag

to false return; // we can fail to parse a sentence in which case we should just

wait for another

 }

 // if millis() or timer wraps around, we'll just reset it

if (timer > millis()) timer = millis();

 // approximately every 2 seconds or so, print out the current stats

if (millis() - timer > 2000) {

 timer = millis(); // reset the timer

 Serial.print("Fix: "); Serial.print((int)GPS.fix);

 Serial.print(" quality: "); Serial.println((int)GPS.fixquality);

if (GPS.fix) {

 Serial.print("Location (in degrees, works with Google Maps): ");

 Serial.print(GPS.latitudeDegrees, 4);

 Serial.print(", ");

 Serial.println(GPS.longitudeDegrees, 4);

 Serial.print("Satellites: "); Serial.println((int)GPS.satellites);

 currentLat = GPS.latitudeDegrees;

 currentLong = GPS.longitudeDegrees;

 if (GPS.lat == 'S') // make them signed

currentLat = -currentLat; if (GPS.lon == 'W')

 currentLong = -currentLong;

 // update the course and distance to waypoint based on our new position

distanceToWaypoint();

 courseToWaypoint();

70

 Serial.print(" \n Current Latitude ");

 Serial.print(currentLat);

 Serial.print(", "); Serial.print(", \n Current Longtitude ");

 Serial.print(currentLong);

 Serial.print(", \n");

 }

 }

}

/* converts lat/long from Adafruit degree-minute format to decimal-degrees;

requires <math.h> library double convertDegMinToDecDeg (float degMin)

{ double min =

0.0;

 double decDeg = 0.0;

 //get the minutes, fmod() requires double

 min = fmod((double)degMin, 100.0);

 //rebuild coordinates in decimal degrees

degMin = (int) (degMin / 100);

 decDeg = degMin + (min / 60);

 return decDeg;

}*/

void nextWaypoint(void)

{

 waypointNumber++; targetLat =

waypointList[waypointNumber].getLong(); targetLong

= waypointList[waypointNumber].getLat();

 if ((targetLat == 0 && targetLong == 0) || waypointNumber >=

NUMBER_WAYPOINTS) // last waypoint reached?

71

 {

 motor.run(RELEASE); // make sure we stop

motork.run(RELEASE);

 Serial.println("* LAST WAYPOINT *");

 loopForever();

 }

 processGPS(); distanceToTarget = originalDistanceToTarget =

distanceToWaypoint(); courseToWaypoint();

} // nextWaypoint()

// returns distance in meters between two positions, both specified //

as signed decimal-degrees latitude and longitude. Uses great-circle

// distance computation for hypothetical sphere of radius 6372795 meters.

// Because Earth is no exact sphere, rounding errors may be up to 0.5%.

// copied from TinyGPS library int

distanceToWaypoint()

{

 float delta = radians(currentLong - targetLong);

float sdlong = sin(delta); float cdlong =

cos(delta); float lat1 = radians(currentLat);

float lat2 = radians(targetLat); float slat1 =

sin(lat1); float clat1 = cos(lat1);

 float slat2 = sin(lat2); float clat2 = cos(lat2);

delta = (clat1 * slat2) - (slat1 * clat2 * cdlong);

delta = sq(delta); delta += sq(clat2 * sdlong);

 delta = sqrt(delta); float denom = (slat1 * slat2) + (clat1

* clat2 * cdlong); delta = atan2(delta, denom);

distanceToTarget = delta * 6372795;

 // check to see if we have reached the current waypoint

 if (distanceToTarget <= WAYPOINT_DIST_TOLERANE)

nextWaypoint();

72

 Serial.print(", \n Printing From DistanceToWayPt. ");

 Serial.print(distanceToTarget);

 return distanceToTarget; } //

distanceToWaypoint()

// returns course in degrees (North=0, West=270) from position 1 to position 2, //

both specified as signed decimal-degrees latitude and longitude.

// Because Earth is no exact sphere, calculated course may be off by a tiny fraction.

// copied from TinyGPS library int

courseToWaypoint()

{

 float dlon = radians(targetLong-currentLong);

float cLat = radians(currentLat); float tLat =

radians(targetLat); float a1 = sin(dlon) *

cos(tLat); float a2 = sin(cLat) * cos(tLat) *

cos(dlon); a2 = cos(cLat) * sin(tLat) - a2; a2

= atan2(a1, a2); if (a2 < 0.0)

 {

 a2 += TWO_PI;

 }

 Serial.print(", \n Printing From CourseToWayPt. ");

 Serial.print(degrees(a2));

 targetHeading = degrees(a2);

 return targetHeading;

} // courseToWaypoint()

//

///Module For

Compass///

// Output the data down the serial port.

void Output(MagnetometerRaw raw, MagnetometerScaled scaled, float heading,

float headingDegrees)

73

{

 Serial.print(" \tHeading:\t");

 Serial.print(heading);

 Serial.print(" Radians \t");

 Serial.print(headingDegrees);

 Serial.println(" Degrees \t");

}

int readCompass(void)

{

 // Retrive the raw values from the compass (not scaled).

 MagnetometerRaw raw = compass.ReadRawAxis();

 // Retrived the scaled values from the compass (scaled to the configured scale).

 MagnetometerScaled scaled = compass.ReadScaledAxis();

 // Values are accessed like so:

 int MilliGauss_OnThe_XAxis = scaled.XAxis;// (or YAxis, or ZAxis)

 // Calculate heading when the magnetometer is level, then correct for signs of

axis. float heading = atan2(scaled.YAxis, scaled.XAxis);

 // Once you have your heading, you must then add your 'Declination Angle',

which is the 'Error' of the magnetic field in your location. // Find yours here:

http://www.magnetic-declination.com/

 // Mine is: 2ï¿½? 37' W, which is 2.617 Degrees, or (which we need)

0.0456752665 radians, I will use 0.0457

 // If you cannot find your Declination, comment out these two lines, your

compass will be slightly off. float declinationAngle = 0.0005585;

 heading += declinationAngle;

 // Correct for when signs are reversed.

 if(heading < 0)

 heading += 2*PI;

 // Check for wrap due to addition of declination.

74

 if(heading > 2*PI)

 heading -= 2*PI;

 // Convert radians to degrees for readability.

float headingDegrees = heading * 180/M_PI;

 return ((int)headingDegrees);

 // Output the data via the serial port.

 Output(raw, scaled, heading, headingDegrees);

 // Normally we would delay the application by 66ms to allow the loop

// to run at 15Hz (default bandwidth for the HMC5883L).

 // However since we have a long serial out (104ms at 9600) we will let

// it run at its natural speed.

 // delay(66);m m

}

void calcDesiredTurn(void)

{

 // calculate where we need to turn to head to destination

headingError = targetHeading - currentHeading;

 // adjust for compass wrap

if (headingError < -180)

headingError += 360;

 if (headingError > 180)

 headingError -= 360;

 // calculate which way to turn to intercept the targetHeading

 if (abs(headingError) <= HEADING_TOLERANCE){ // if within tolerance,

don't turn

 turnDirection = straight;

75

 Serial.print(" Turning Straight "); }

else if (headingError < 0){

Serial.print(" Turning Left ");

turnDirection = left;} else if

(headingError > 0){ Serial.print("

Turning Right "); turnDirection =

right;}

 else{

 Serial.print(" Going Straight ");

turnDirection = straight;

 }

} // calcDesiredTurn()

///--

///

// Check Sonar & Obstacle Aviodance

System///

void checkSonar(void)

{

 delay(50); // Wait 50ms between pings (about 20 pings/sec). 29ms

should be the shortest delay between pings.

 Serial.print("Ping: ");

 Serial.print(sonar.ping_cm()); // Send ping, get distance in cm and print result (0

= outside set distance range)

Serial.println("cm");

 sonarDistance = sonar.ping_cm();

}

void checkTurn (void)

{

 if (turnDirection == right)

 {

76

 { if (SR >= SSD)

 exit;}

 else{

 motork.run(left);}

 }

 if (turnDirection == left)

 {

 if (SL >= SSD)

 { exit;}

 else

 {motork.run(right);}

 }

}

void moveAndAvoid(void)

{

 if (sonarDistance >= SAFE_DISTANCE) // no close objects in front of car

 {

 if (turnDirection == straight)

 {checkStraight ();

 speed = FAST_SPEED;

 } else

 speed = TURN_SPEED;

motor.setSpeed(speed);

motor.run(FORWARD);

checkTurn ();

 motork.run(turnDirection);

Serial.print("\nMoving Forward");

return;

 }

if (sonarDistance > TURN_DISTANCE && sonarDistance < SAFE_DISTANCE)

// not yet time to turn, but slow down

77

 {

 if (turnDirection == straight)

 { checkStraight ();

 speed = NORMAL_SPEED;

 } else

 {

 checkTurn ();

 speed = TURN_SPEED;

 motork.run(turnDirection); // alraedy turning to navigate

 }

 motor.setSpeed(speed);

motor.run(FORWARD);

 Serial.print("\nSlowing Down & Moving Forward");

return;

 }

 if (sonarDistance < TURN_DISTANCE && sonarDistance >

STOP_DISTANCE) // getting close, time to turn to avoid object

 {

 speed = SLOW_SPEED;

motor.setSpeed(speed); // slow down

 motor.run(FORWARD);

 switch (turnDirection)

 {

 case straight: // going straight currently, so start new turn

 {

 checkStraight ();

 if (headingError <= 0)

turnDirection = left; else

 turnDirection = right;

motork.run(turnDirection); // turn in the new direction

break; }

 case left: // if already turning left, try right

 {

 checkTurn ();

78

 motork.run(TURN_RIGHT);

break;

 }

 case right: // if already turning right, try left

 {

 checkTurn ();

 motork.run(TURN_LEFT);

 break;

 }

 } // end SWITCH

return;

 }

 if (sonarDistance < STOP_DISTANCE) // too close, stop and back up

 {

 motor.run(RELEASE); // stop

motork.run(RELEASE); // straighten up turnDirection =

straight; motor.setSpeed(NORMAL_SPEED); // go back at

higher speet if (BckDist >= SAFE_DISTANCE)

 {

 motor.run(BACKWARD);

 }

 else

 {

 motor.run(RELEASE);

 }

 while (sonarDistance < TURN_DISTANCE) // backup until we get safe

clearance

 {

 processGPS();

 currentHeading = readCompass(); // get our current heading

calcDesiredTurn(); // calculate how we would optimatally turn, without

regard to obstacles checkSonar();

79

 delay(100);

 } // while (sonarDistance < TURN_DISTANCE)

 motor.run(RELEASE);

 // stop backing up

 Serial.print("\nBreaking & Moving Backward");

return;

 } // end of IF TOO CLOSE

} // moveAndAvoid()

void checkStraight (void)

{

 if(turnDirection == straight && SR >= SSD && SL >= SSD)

 {exit;}

 else if(turnDirection == straight && SR >= SSD && SL < SSD)

 {speed = TURN_SPEED; motor.run(right);} else

if(turnDirection == straight && SR < SSD && SL >= SSD)

 { speed = TURN_SPEED;

 motor.run(left);} else if(turnDirection == straight && SR <

SSD && SL < SSD)

 {

 motor.run(RELEASE); // stop

motork.run(RELEASE); // straighten up turnDirection =

straight; motor.setSpeed(NORMAL_SPEED); // go back at

higher speet

 if (BckDist >= SAFE_DISTANCE)

 {

 motor.run(BACKWARD);

 }

else

 {

 motor.run(RELEASE);

 }

 }

80

}

// end of program routine, loops forever void

loopForever(void)

{ while

(1)

 ;

}

//////////////////////////////////---------------End Of Code ------------/////////////////////////////////

