School of Basic and Applied Sciences

Course Code : MSCH6001 Course Name: Photochemistry & Pericyclic reaction

RADIATIVE AND NON RADIATIVE TRANSITION

GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. Pooja Agarwal

Program Name: M.Sc. Chemistry

PREREQUISITE

- Types of excitation and Jablonski diagram
- Ground state and excited state

GALGOTIAS UNIVERSITY

LEARNING OUTCOMES

- Knowledge of Jablonski diagram
- Electronic energy state
- Absorbance and photochemical phenomenon
- Knowledge of fluorescence and phophoresence

ABSORBANCE / PRIMARY PROCESS

• When electron present in ground state S_0 , it absorb energy from photon and excited to higher excited state may be $S_1 S_{2}$ etc. This process is known as absorbance or primary process.

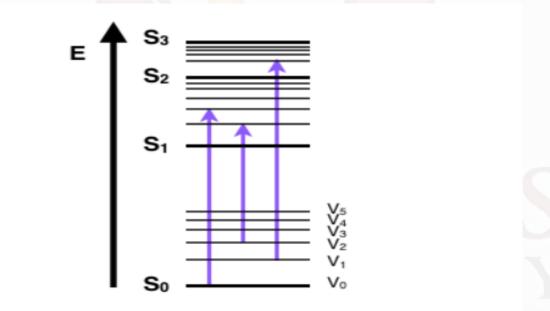


Figure 2: Three possible absorption transitions represented.

SECONDARY PROCESS VIBRATIONAL RELAXATION AND INTERNAL CONVERSION

- Once an electron is excited, there are a multitude of ways that energy may be dissipated. The first is through vibrational relaxation, a non-radiative process
- . This is indicated on the Jablonski diagram as a curved arrow between vibrational levels
- . Vibrational relaxation is where the energy deposited by the photon into the electron is given away to other vibrational modes as kinetic energy.
- This relaxation occurs between vibrational levels, so generally electrons will not change from one electronic level to another through this method.

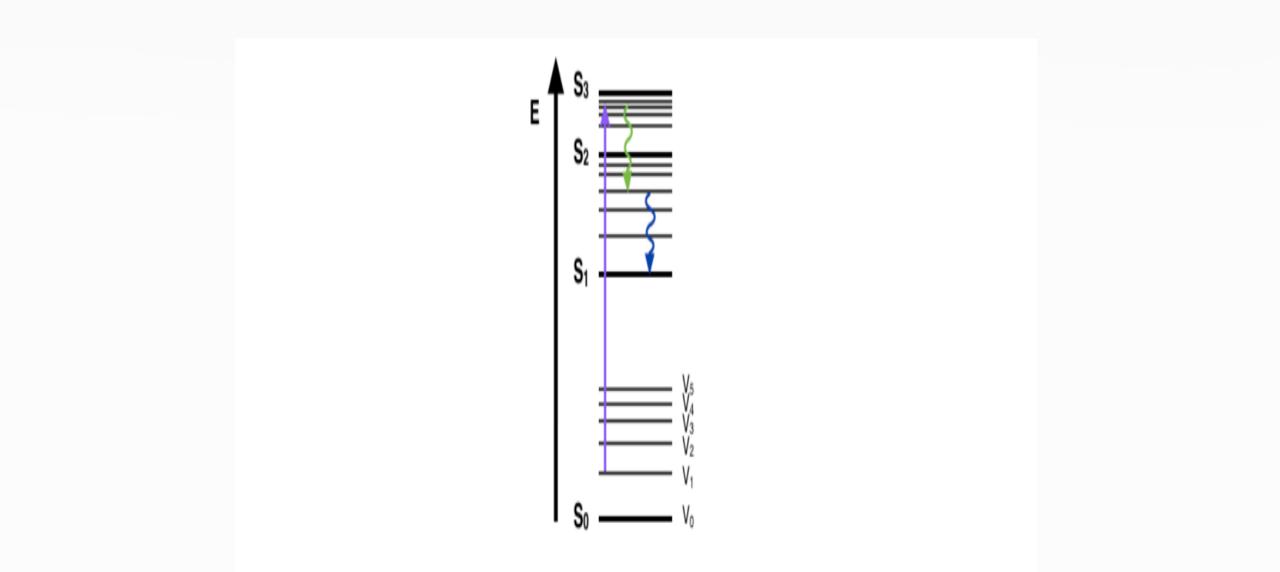
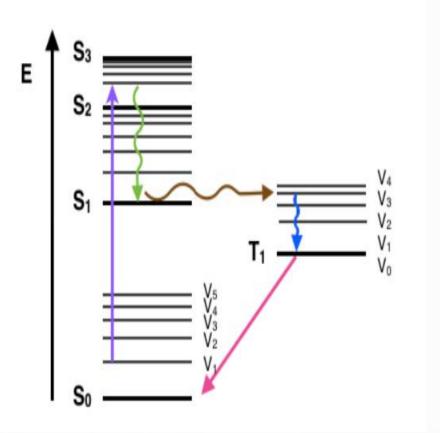


Figure 3: Possible scenario with absorption, internal conversion, and vibrational relaxation processes shown.

Fluorescence is most often observed between the first excited electron state and the ground state

While this transition is slow, it is an allowed transition with the electron staying in the same multiplicity manifold.

✤Fluorescence is a slow process on the order of 10⁻⁹ to 10⁻⁷ seconds


Intersystem Crossing / PHOSPHORESENCE

the electron changes spin multiplicity from an excited singlet state to an excited triplet state.

This is the slowest process in the Jablonski diagram, several orders of magnitude slower than fluorescence.

Intersystem crossing leads to several interesting routes back to the ground electronic state

One direct transition is phosphorescence, where a radiative transition from an excited triplet state to a singlet ground state occurs

Time Scales

Transition	Time Scale	Radiative Process?
Internal Conversion	10 ⁻¹⁴ - 10 ⁻¹¹ s	no
Vibrational Relaxation	10 ⁻¹⁴ - 10 ⁻¹¹ s	no
Absorption	10 ⁻¹⁵ s	yes
Phosphorescence	10 ⁻⁴ - 10 ⁻¹ s	yes
Intersystem Crossing	10 ⁻⁸ - 10 ⁻³ s	no
Fluorescence	10 ⁻⁹ - 10 ⁻⁷ s	yes

REFERENCES

- Lewis, G. N., & Kasha, M. (1944). Phosphorescence and the triplet state. Journal of the American Chemical Society, 66(12), 2100-2116.
- Lakowicz, J. R. (1999). Introduction to fluorescence. In Principles of fluorescence spectroscopy (pp. 1-23). Springer, Boston, MA.
- Valeur, B., & Berberan-Santos, M. N. (2011). A brief history of fluorescence and phosphorescence before the emergence of quantum theory. *Journal of Chemical Education*, 88(6), 731-738.
- McGOWN, L. B., & Nithipatikom, K. (2000). Molecular fluorescence and phosphorescence.