GALGOTIAS UNIVERSITY

Email: <u>admissions@galgotiasuniversity.edu.in</u> Website: www.galgotiasuniversity.edu.in

COURSE BOOK SOBAS-2020 **Volume-I**

Curriculum and syllabus for School of Basic and Applied Sciences

THE F

Fr

CONTENTS

1.	B.Sc. (H) Chemistry	2
2.	BSc (H) Physics	75
3.	B.Sc (Hons.) Microbiology	
4.	B.Sc (Hons.) Biochemistry	
5.	B.Sc (H) Forensic Science	
6.	B.Sc (Hons.) Biological Science	
7.	B.Sc (Hons.) Biomedical Science	
8.	B.Sc (Hons) in Mathematics	
9.	B.Sc. (Hons.) Chemistry	

School of Basic and Applied Sciences

Program: B.Sc (Hons) Chemistry

Scheme: 2020 - 2023

Curriculum

Semester I										
Sl. No	Course Code	Name of the Course						Asse	ssment P	attern
			L	Т	1	Р	С	IA	MTE	ETE
1	BSCC1003	Inorganic Chemistry I	4	0		0	4	30	20	50
2	BSCC1051	Inorganic Chemistry-I	0	0		4	2	50	-	50
		Lab								
3	BMAT1041	Foundation Course in	5	1		0	6	30	20	50
		Mathematics				-			• •	
4	BCSE1021	Programming in C and	4	0		0	4	30	20	50
5	DCSE1021	Python Decomposition of a cond	•	0		4	2	50		50
5	BCSE1051	Programming in C and Python I ab	U	U		4	4	50	-	50
6	BR\$00P1101	Hands on Basic	0	0		1	2	50	_	50
U	DD 50911101	Techniques and	U	v		-	4	50	-	50
		Instrumentation								
7	XXXX	Environmental Science	0	0		1	0.5			
8	XXXX	AI and Machine learning					2			
9	XXXX	Liberal Art					0.5			
10	XXXX	BEC-B1					3			
11	XXXX	Soft Skill								
12	XXXX	Computer Awareness								
		Total	13	3 1		13	26			
	I	Seme	ester I	Ι					1	
Sl No	Course Code	Name of the Course						Asse	ssment P	attern
			L	Т		Р	С	IA	MTE	ETE
1	BSCC1002	Physical Chemistry I	4	0		0	4	30	20	50
2	BSCC1052	Physical Chemistry-I	0	0		4	2	50	-	50
		Lab								
3	BSCG1001	Nanoscience and	4	0		0	4	30	20	50
		Nanotechnology								
4	BSCG1051	Nanoscience and	0	0		4	2	50	-	50
-		Nanotechnology lab		0	_			20	•••	
5	BSCP1043	General Physics	4	0		0	4	30	20	50
	BSCP1044	Physics Lab	0	0		4	2	50	-	50
6	BBS0515101	Elective (Analytical	3	0		0	3	30	20	50
		ivietnous in Chemistry)								
7	BSCS1062	Analytical Techniques	2	0		0	2	50	-	50
		and Instrumentation								
Q					_		2			
0	XXXX	DEC- B2					3			

9	XXXX	***Two week social							
		internship (during							
		summer)							
		Total	17	0	12	26			
		Se	mester I	Π		1	1		
Sl No	Course Code	Name of the Course					Asse	ssment P	attern
			L	Т	Р	С	IA	MTE	ETE
1	BSCC2001	Organic Chemistry	4	0	0	4	30	20	50
_		I	-		-				
2	BSCC2051	Organic Chemistry-	0	0	4	2	50	-	50
		I Lab							
3	BSCC2002	Physical Chemistry	4	0	0	4	30	20	50
		II							
4	BSCC2052	Physical Chemistry	0	0	4	2	50	-	50
		II Lab							
5	BSCC2003	Inorganic	4	0	0	4	30	20	50
		Chemistry II							
6	BSCC2053	Inorganic	0	0	4	2	50	-	50
		Chemistry II Lab							
7	BSCC2004	Organic Chemistry	4	0	0	4	30	20	50
		II	•	0					
8	BSCC2054	Organic Chemistry	0	0	4	2	50	-	50
0				0	0		20	20	50
9	BB20212107	Industrial	3	U	U	3	30	20	50
		Total	10		16	27			
		Total	19 mastar F	17	10	21			
C1 N	C C 1	Sel	mester I	v				(D	
SI NO	Course Code	Name of the Course	T		D	0	Asse	ssment P	attern
			L	Т	P	С	IA	MTE	ETE
1		Physical Chemistry	4	0	0	4	30	20	50
	BBS0512101		0	0			50		50
2	DDC05D2101	Physical Chemistry	0	0	4	2	50	-	50
2	BB505P2101		4	0	0	4	20	20	50
3	DSCC2000	Chomistry III	4	U	U	4	50	20	50
4	BSCC2056	Inorganic	0	0	4	2	50	_	50
-	D 5CC2050	Chemistry III Lah	U	U	-		50	_	50
5	BSCC2007	Organic Chemistry	4	0	0	4	30	20	50
C	Diecion	III	•	v	Ŭ	•	20		20
6	BSCC2057	Organic Chemistry	0	0	4	2	50	-	50
-		III Lab		-					
7	BSCC2101	Green Chemistry	4	0	0	4	30	20	50
8	Xxxx	Waste Management	0	0	2	1	50	-	50
9	BBS09T2411	Research	2	0	0	2	30	20	50
		Methodology and		-					
1	1					1	1		

10	Xxxx	IPR				0.5				
11	XXXX	Foreign Language				0.5				
		Total	18	0	14	26				
	Semester V									
Sl No	Course Code	Name of the Course					Asses	attern		
			L	Т	Р	С	IA	MTE	ETE	
1	BSCC3001	Organic Chemistry IV	4	0	0	4	30	20	50	
2	BBS05P3101	Organic Chemistry IV Lab	0	0	4	2	50	-	50	
3	BSCC3002	Physical Chemistry IV	4	0	0	4	30	20	50	
4	BSCC3052	Physical Chemistry IV Lab	0	0	4	2	50	-	50	
5	BSCC3003	Inorganic Chemistry IV	4	0	0	4	30	20	50	
6	BSCC3053	Inorganic Chemistry IV Lab	0	0	4	2	50	-	50	
7	BSCC3004	Organic Chemistry V	4	0	0	4	30	20	50	
8	BBS05T5103	Battery Technology	3	0	0	3	30	20	50	
9	XXXX	Campus to corporate				2				
		Total	19	0	12	27				
		Se	mester V	/I						
Sl No	Course Code	Name of the Course	Assessment Patte				attern			
			L	Т	Р	C	IA	MTE	ETE	
1	BSCC3151	Project	-	-	-	12	50	-	50	
		Total	Credit=	=144						

List of Electives

Sl	Course Code	Name of the Electives					Assess	sment Pa	attern
No			L	Т	Р	С	IA	MTE	ETE
1	BBS05T5101	Analytical Methods in	3	0	0	3	30	20	50
		Chemistry							
2	BSCC2101	Green Chemistry	4	0	0	4	30	20	50
3	BSCC2102	COMPUTATIONAL	4	0	0	3	30	20	50
		CHEMISTRY							
4	BBS05T5102	Industrial Chemistry	3	0	0	3	30	20	50
5	BSCC3102	NOVEL INORGANIC	4	0	0	3	30	20	50
		SOLIDS							
6	BSCC3103	POLYMER	4	0	0	3	30	20	50
		CHEMISTRY							
7	BSCC3104	MOLECULAR	4	0	0	3	30	20	50
		MODELLING & DRUG							
		DESIGN							
8	BBS05T5103	Battery Technology	3	0	0	3	30	20	50

Name of The Course	INORGANICCHEMISTRY I					
Course Code	BSCC1003					
Prerequisite Students should qualify 10+2 or equivalent examination in Scie stream with Chemistry as major subject					nce	
Corequisite	Students should have fundamental knowledge of Inorganic Chemistry.					
Antirequisite						
		L	Т	Р	С	
		4	0	0	4	

Course Objectives: The course reviews the structure of the atom, which is a necessary pre-requisite in understanding the nature of Chemical Bonding in compounds. It provides basic knowledge about Ionic, Covalent and Metallic bonding and explains that Chemical Bonding is best regarded as a continuum between the three cases. It discusses the Periodicity in properties with reference to the sand *p* block, which is necessary in understanding their group chemistry.

Course Outcomes:

CO1	Describe the basic concept and principle of atomic structure (K2).
CO2	Discuss the periodic properties of s and p block element to locate their position in periodic
	table. (K2)
CO3	Determine the properties and shape of molecules by various theories of chemical bonding.
	(K3) .
CO4	Understand the bonding in metals and various chemical forces, interactions and redox
	reaction (K2).
CO5	Apply the basic knowledge of inorganic chemistry for real applications (K3).
CO6	Elaborate the recent advancements in inorganic chemistry. (K6).

Text Book (s)

• Lee, J.D. Concise Inorganic Chemistry ELBS, 1991.

• Douglas, B.E. and McDaniel, D.H. *Concepts & Models of Inorganic Chemistry* Oxford,1970 Reference Book (s)

- Lee, J.D. ConciseInorganicChemistryELBS, 1991.
- Douglas, B.E. and McDaniel, D.H. Concepts & Models of Inorganic Chemistry Oxford, 1970
- Atkins, P.W. & Paula, J. *Physical Chemistry*, 10thEd., Oxford University Press, 2014.
- Day, M.C. and Selbin, J. Theoretical Inorganic Chemistry, ACSPublications, 1962.
- Rodger, G.E. Inorganicand Solid State Chemistry, Cengage Learning India Edition, 2002.

Unit-1: Atomic Structure

10hrs

Bohr's theory, its limitations and atomic spectrum of hydrogen atom. Wave mechanics: de Broglie equation, Heisenberg's Uncertainty Principle and its significance, Schrödinger's wave equation, significance of ψ and ψ^2 . Quantum numbers and their significance. Normalized and orthogonal wave functions. Sign of wave functions. Radial and angular wave

functions for hydrogen atom. Radial and angular distribution curves. Shapes of s, p, d and f				
orbitals. Pauli's Exclusion Principle, Hund's rule of maximum multiplicity,				
Aufbau'sprinciple and its limitations.				
Unit-2: Periodicity of Elements 12hrs				
Detailed discussion of the following properties of the elements, with reference to s and p-				
block.				
(a) Effective nuclear charge, shielding or screening effect, Slater rules, variation of				
effective nuclear charge in periodic table.				
(b) Atomic radii (van der				
Waals) (c) Ionic and crystal				
radii.				
(d) Covalent radii (octahedral and				
tetrahedral)				
(e) Ionization enthalpy, Successive ionization enthalpies and factors affecting				
ionization energy. Applications of ionization enthalpy.				
(f) Electronegativity, Pauling's/ Mulliken's/ Allred Rachow's/ and Mulliken-Jaffé's				
electronegativity scales. Variation of electronegativity with bond order, partial charge,				
hybridization, group electronegativity.				
Unit-3: Chemical Bonding- (Ionic and Covalent bond) 14hrs				
(i) Lonic hand: Canaral characteristics types of ions size affects radius ratio rule and				
its limitations. Packing of ions in crystals. Rorn-Londé aquation with derivation and				
importance of Kanustinghii approacies for lattice and the lattice of the lattice				
and its opplications. Solvation openan				
cycle and its applications, Solvation energy.				

(ii) Covalent bond: Lewis structure, Valence Bond theory (Heitler-London approach). Energetics of hybridization, equivalent and non-equivalent hybrid orbitals. Bent's rule, Resonance and resonance energy, Molecular orbital theory. Molecular orbital diagrams of diatomic and simple polyatomic molecules N2, O2, C2, B2, F2, CO, NO, and their ions; HCl (idea of s-p mixing and orbital interaction to be given). Formal charge, Valence shell electron pair repulsion theory (VSEPR), shapes of simple molecules and ions containing lone pairs and bond pairs of electrons, multiple bonding (σ and π bond approach) and bond lengths. Covalent character in ionic compounds, polarizing power and polarizability. Fajan's rules and consequences of polarization. Ionic character in covalent compounds: Bond moment and dipole moment. Percentage ionic character from dipole moment and electronegativity difference.

Unit-4: Chemical Bonding- (Metallic bond and Chemical Forces)

(iii) *Metallic Bond*: Pool model of metallic bonding, Qualitative idea of valence bond and band theories. Semiconductors and insulators, defects in solids.

(iv) *Weak Chemical Forces:* van der Waals forces, ion-dipole forces, dipole-dipole interactions, induced dipole interactions, Instantaneous dipole-induced dipole interactions. Repulsive forces, Hydrogen bonding (theories of hydrogen bonding, valence bond treatment) Effects of chemical force, melting and boiling points,

Unit-5: Redox Reaction

6hrs

Redox equations, Standard Electrode Potential and its application to inorganic

reactions. Principles involved in volumetric analysis to be carried out in class.

Unit-6: Recent advancements of various inorganic chemistry concepts 4hrs

Recent Advancements in metal catalyzed redox chemistry, New elements discovered in Periodic table and their properties, Recent advancement in Chemical bonding.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	INORGANIC CHEMISTRYI LAB				
Course Code	BSCC1051				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject				
Corequisite	Students should have fundamental knowledg Concentration of solution.	e of	f Ti	itrati	on,
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives:

Understand and perform different types of volumetric titration.

Course Outcomes

CO1	1. Understand the basics of titrimetric analysis and calibration of appratus (K2).
CO2	Prepare solutions of different Molarity/ Normality of titrants (K4).
CO3	3. Demonstrate and determine the strength of the given acid by acid-base titration (K3).
CO4	4. Gain hands on experience in the different aspects of oxidation-reduction titrimetry (K4).
CO5	5. Apply the basic knowledge of experiments in inorganic analysis (K3).

Text Book (s)

Vogel's Textbook of Quantitative Chemical Analysis, Jeffery, G.H., Bassett, J., Mendham, J., Denney, R.C., 5th Edn., Longman Scientific & Technical, England, (John Wiley and Sons Inc, 605 Third Avenue, New York NY 10158).

Reference Book (s)

 $Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6^{th} Ed., Pearson, 2009.$

Vogel's *Qualitative Inorganic Analysis*, Revised by G. Svehla. Pearson Education, 2002. Marr & Rockett *Practical Inorganic Chemistry*. John Wiley & Sons 1972.

Unit-1 Titrimetric Analysis

(i) Calibration and use of apparatus

(ii)Preparation of solutions of different Molarity/Normality of titrants

Unit-2 Acid-BaseTitrations

(i) Estimation of carbonate and hydroxide present together in mixture.

(ii) Estimation of carbonate and bicarbonate present together in a mixture.

(iii) Estimation of free alkali present in different soaps/detergents

Unit-3 Oxidation-Reduction Titrimetry

- (i) Estimation of Fe(II) and oxalic acid using standardized KMnO4 solution.
- (ii) Estimation of oxalic acid and sodium oxalate in a given mixture.

(iii) Estimation of Fe(II) with K₂Cr₂O₇ using internal indicator

(diphenylamine,N-phenyl anthranilic acid).

Continuous Assessment Pattern

Practical IA	Practical ETE	Total Marks
50	50	100

Name of The Course	Foundation Course in Mathematics				
Course Code	BMAT1041				
Prerequisite	Students should qualify 10+2 or equivalent exami stream with Chemistry as major subject	nati	on in	Scie	ence
Corequisite	Students should have fundamental knowledge mathematics, physics and computer applications.	of	subje	cts	like
Antirequisite					
		L	Т	Р	С
		5	1	0	6

Course Objectives:

The objective of this course is to introduce the students to fundamental mathematical techniques and basic computer skills that will help them in solving chemistry problems. It aims to make the students understand the concept of uncertainty and error in experimental data. Learn the use of different software for data tabulation, calculation, graph plotting, data analysis and document preparation.

Course Outcomes:

CO1	Understand different functions and progressions and solve the problems based on it. (K3)
CO2	Explain the different types of matrices and solve the differential equations. (K3)
CO3	Understand the basics of differential calculus. (K2)
CO4	Evaluate the problems based on integral calulus. (K3)
CO5	Understand the basics of probability. (K2)

CO6 Analyse application of BCG Matrix to market growth.(K6)

Text Book (s)/Reference Book (s)

1. Calculus and Analytic Geometry	: G. B. Thomas, R. L. Finney, Pearson Education, Asia.
2. Statistical Methods	:S.P. Gupta, Sultan Chand and Sons
3. Engineering Mathematics	: B.S. Grewal, Khanna Publishers.

Unit-1

10hrs

Algebra: Fundamentals, mathematical functions, logarithms, the exponential function, polynomial expressions, Factorization and division of Polynomials, Partial fractions, Binomial Expansion, Arithmetic Progression, Geometric Progression, Infinite Geometric Progression.

 Unit-2
 10hrs

 Matrices & Determinants: Types of matrices, basic operations of matrices, determinant of a matrix and it's properties, matrix inverse, elementary row and column operations, rank of a matrix, consistency of a linear system of equations, solution of a linear system by Gauss Elimination method.

 Unit-3
 10hrs

Differential Calculus: **Differentiation of a function of a single variable, product rule, quotient rule, chain rule of differentiation, Taylor's series, Applications of derivatives: Rate of change, increasing/decreasing functions, tangents and normals, maxima and minima.**

Unit-4

10hrs

4hrs

Integral Calculus: **Integral of elementary functions, standard results, Integration by substitutions, by parts and partial fraction methods, Definite integral, Even and odd functions, Properties of definite integral and application in finding the area.**

10hrs

Probability: Basicconcepts of probability, Random variable and its probability

distribution, Binomial, Poisson and Normal distributions

Unit-6

Unit-5

BCG matrix and its application to market sharing growth.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Programming in C and Python	
Course Code	BCSE1021	
Prerequisite	Students should qualify 10+2 or equivalent examination in Scie	ence
	stream	
Co requisite	Students should have fundamental knowledge of subjects	like
	mathematics, physics and computer applications.	
	L T P	С
		4

Course Objectives:

The aim of the paper is to make the students of chemistry familiar with the working of computer, programming language, QBASIC and use of software as a tool to understand chemistry, and solve chemistry based problems.

Course Outcomes:

CO1	Understand and explain the basics of computer & its components, logic development and data
	input and output.
CO2	Explain the control systems and function.
CO3	Explain the arrays, structure, union and pointer.
CO4	Explain control flow structure and function in python.
CO5	Apply the Classes and objects in python.
CO6	Analyze the real world data using python libraries

Text Book (s)/Reference Book (s)

- 1. P Kanetkar Yashvant, Let us C, BPB Publications, New Delhi, Seventh Edition.
- 2. E. Balagurusami, Programming in ANSI C, Tata McGraw Hill, Fourth Edition.
- 3. Schaum Outline Series, Programming in C.
- 4. Mark Lutz ,"Learning Python", O Reily, 4th Edition, 2009, ISBN: 978-0-596-15806-4
- 5. Mark Lutz ,"Programming Python ", O Reily, 4th Edition, 2010, ISBN 9780596158118.
- 6. Tim Hall and J-P Stacey, "Python 3 for Absolute Beginners", 2009, SBN:9781430216322

Unit-1

10hrs

Introduction to computers:

Units of computers, Block Diagram, Generation of Computers, Characteristics of Computers, Different types of Memory, Input and Output Devices.

Logic Development and Program Development Tools:

Data Representation, Flowcharts, Problem Analysis, Pseudo Code and Algorithms, Program Debugging, Compilation and Execution.

Fundamentals:

Character Set, Identifiers and Key Words, Data Types, Constants, Variables, Expressions, Statements **Operations and Expressions:**

Arithmetic Operators, Unary Operators, Relational Operators, Logical Operators, Assignment and Conditional Operators, Library functions.

Data Input and Output:

Single Character Input, Single Character Output, Entering Input Data, More About Scan Functions, Writing Output Data, More About Print Functions, Gets and Puts Functions, Interactive Programming.

Unit-2 10hrs Control Structures: Introduction, Decision Making with If – Statement, If Else and Nested If, While And Do-While, For Loop, Jump Statements: Break, Continue, Goto, Switch Statement. Functions: Introduction To Functions, Function Declaration, Function Categories, Standard Functions, Parameters And Parameter Passing, Pass – By Value/Reference, Recursion, Global and Local Variables, Storage Classes. Unit-3 10hrs Arrays: Introduction to Arrays, Array Declaration, Single and Multidimensional, Array, Memory Representation, Matrices, String Structure Members, Structure Initialization, Arrays of Structure, Nested Structures, Unions. Pointers: Introduction To Pointers, Address Operator And Pointers, Declaring and Initializing Pointers, Assignment through Pointers, Pointers and Arrays. Unit-4 10hrs CORE PYTHON : BASICS Introduction to Python, Python Interpreter and its working, Syntax and Semantics, Data Types, Assignments and Expressions, Control Flow Statements, Sequences and Dictionaries, Functions and lambda expressions Unit-5 10hrs CORE PYTHON : ADVANCED FEATURES Iterations and Comprehensions, Handling text files, Modules, Classes and OOP Unit-6 Data Analysis (Python toolboxes/libraries) NumP, SciPy , Pandas, ChemPy	
Unit-2 10hrs Control Structures: Introduction, Decision Making with If – Statement, If Else and Nested If, While And Do-While, For Loop. Jump Statements: Break, Continue, Goto, Switch Statement. Functions: Introduction To Functions, Function Declaration, Function Categories, Standard Functions, Parameter Passing, Pass – By Value/Reference, Recursion, Global and Local Variables, Storage Classes. Unit-3 10hrs Arrays: Introduction to Arrays, Array Declaration, Single and Multidimensional, Array, Memory Representation, Matrices, Strings, String Handling Functions. Structure and Union: Declaration of Structure, Accessing Structure Members, Structure Initialization, Arrays of Structure, Nested Structures, Unions. Pointers: Introduction To Pointers, Address Operator And Pointers, Declaring and Initializing Pointers, Assignment through Pointers, Pointers and Arrays. Unit-4 10hrs CORE PYTHON : BASICS Introduction to Python, Python Interpreter and its working, Syntax and Semantics, Data Types, Assignments and Expressions, Control Flow Statements, Sequences and Dictionaries, Functions and lambda expressions Unit-5 10hrs CORE PYTHON : ADVANCED FEATURES Iterations and Comprehensions, Handling text files, Modules, Classes and OOP Unit-6 Data Analysis (Python toolboxes/libraries) NumP, SciPy , Pandas, ChemPy Interfees (Python toolboxes/libraries)	
Control Structures: Introduction, Decision Making with If – Statement, If Else and Nested If, While And Do-While, For Loop. Jump Statements: Break, Continue, Goto, Switch Statement. Functions: Introduction To Functions, Function Declaration, Function Categories, Standard Functions, Parameters And Parameter Passing, Pass – By Value/Reference, Recursion, Global and Local Variables, Storage Classes. Unit-3 10hrs Arrays: 10hrs Introduction to Arrays, Array Declaration, Single and Multidimensional, Array, Memory Representation, Matrices, Strings, String Handling Functions. Structure and Union: Declaration of Structure, Accessing Structure Members, Structure Initialization, Arrays of Structure, Nested Structures, Unions. Pointers: Introduction To Pointers, Address Operator And Pointers, Declaring and Initializing Pointers, Assignment through Pointers, Pointers and Arrays. Unit-4 10hrs CORE PYTHON : BASICS Introduction to Python, Python Interpreter and its working, Syntax and Semantics, Data Types, Assignments and Expressions, Control Flow Statements, Sequences and Dictionaries, Functions and lambda expressions Unit-5 10hrs CORE PYTHON : ADVANCED FEATURES Iterations and Comprehensions, Handling text files, Modules, Classes and OOP Unit-6 Data Analysis (Python toolboxes/libraries) NumP, SciPy , Pandas, ChemPy Iterations ChemPy	Unit-2 10hrs
Unit-3 10hrs Arrays: Introduction to Arrays, Array Declaration, Single and Multidimensional, Array, Memory Representation, Matrices, Strings, String Handling Functions. Structure and Union: Declaration of Structure, Accessing Structure Members, Structure Initialization, Arrays of Structure, Nested Structures, Unions. Pointers: Introduction To Pointers, Address Operator And Pointers, Declaring and Initializing Pointers, Assignment through Pointers, Pointers and Arrays. Unit-4 10hrs CORE PYTHON : BASICS Introduction to Python, Python Interpreter and its working, Syntax and Semantics, Data Types, Assignments and Expressions, Control Flow Statements, Sequences and Dictionaries, Functions and lambda expressions 10hrs Unit-5 10hrs Unit-6 Data Analysis (Python toolboxes/libraries) NumP, SciPy , Pandas, ChemPy 100hrses	Control Structures: Introduction, Decision Making with If – Statement, If Else and Nested If, While And Do-While, F Loop. Jump Statements: Break, Continue, Goto, Switch Statement. Functions: Introduction To Functions, Function Declaration, Function Categories, Standard Function Parameters And Parameter Passing, Pass – By Value/Reference, Recursion, Global and Loc Variables, Storage Classes.
Arrays: Introduction to Arrays, Array Declaration, Single and Multidimensional, Array, Memory Representation, Matrices, Strings, String Handling Functions. Structure and Union: Declaration of Structure, Accessing Structure Members, Structure Initialization, Arrays of Structure, Nested Structures, Unions. Pointers: Introduction To Pointers, Address Operator And Pointers, Declaring and Initializing Pointers, Assignment through Pointers, Pointers and Arrays. Unit-4 10hrs CORE PYTHON : BASICS Introduction to Python, Python Interpreter and its working, Syntax and Semantics, Data Types, Assignments and Expressions, Control Flow Statements, Sequences and Dictionaries, Functions and lambda expressions Unit-5 10hrs CORE PYTHON : ADVANCED FEATURES Iterations and Comprehensions, Handling text files, Modules, Classes and OOP Unit-6 Data Analysis (Python toolboxes/libraries) NumP, SciPy , Pandas, ChemPy	Unit-3 10hrs
Nested Structures, Unions. Pointers: Introduction To Pointers, Address Operator And Pointers, Declaring and Initializing Pointers, Assignment through Pointers, Pointers and Arrays. Unit-4 10hrs CORE PYTHON : BASICS Introduction to Python, Python Interpreter and its working, Syntax and Semantics, Data Types, Assignments and Expressions, Control Flow Statements, Sequences and Dictionaries, Functions and lambda expressions Unit-5 10hrs CORE PYTHON : ADVANCED FEATURES Iterations and Comprehensions, Handling text files, Modules, Classes and OOP Unit-6 Data Analysis (Python toolboxes/libraries) NumP, SciPy , Pandas, ChemPy	Arrays: Introduction to Arrays, Array Declaration, Single and Multidimensional, Array, Memo Representation, Matrices, Strings, String Handling Functions. Structure and Union: Declaration of Structure, Accessing Structure Members, Structure Initialization, Arrays of Structure
Unit-410hrsCORE PYTHON : BASICSIntroduction to Python, Python Interpreter and its working, Syntax and Semantics, DataTypes, Assignments and Expressions, Control Flow Statements, Sequences andDictionaries, Functions and lambda expressions10hrsUnit-510hrsIterations and Comprehensions, Handling text files, Modules, Classes and OOPUnit-6Data Analysis (Python toolboxes/libraries) NumP, SciPy , Pandas, ChemPy	Pointers: Introduction To Pointers, Address Operator And Pointers, Declaring and Initializing Pointers, Assignment through Pointers, Pointers and Arrays.
CORE PYTHON : BASICSIntroduction to Python, Python Interpreter and its working, Syntax and Semantics, DataTypes, Assignments and Expressions, Control Flow Statements, Sequences andDictionaries, Functions and lambda expressionsUnit-510hrsCORE PYTHON : ADVANCED FEATURESIterations and Comprehensions, Handling text files, Modules, Classes and OOPUnit-6 Data Analysis (Python toolboxes/libraries)NumP, SciPy , Pandas, ChemPy	Unit-4 10hrs
Dictionaries, Functions and lambda expressions Unit-5 10hrs CORE PYTHON : ADVANCED FEATURES Iterations and Comprehensions, Handling text files, Modules, Classes and OOP Unit-6 Data Analysis (Python toolboxes/libraries) NumP, SciPy , Pandas, ChemPy	CORE PYTHON : BASICS Introduction to Python, Python Interpreter and its working, Syntax and Semantics, Data Types, Assignments and Expressions, Control Flow Statements, Sequences and
Unit-510hrsCORE PYTHON : ADVANCED FEATURESIterations and Comprehensions, Handling text files, Modules, Classes and OOPUnit-6 Data Analysis (Python toolboxes/libraries)NumP, SciPy , Pandas, ChemPy	Dictionaries, Functions and lambda expressions
CORE PYTHON : ADVANCED FEATURES Iterations and Comprehensions, Handling text files, Modules, Classes and OOP Unit-6 Data Analysis (Python toolboxes/libraries) NumP, SciPy , Pandas, ChemPy	Unit-5 10hrs
Unit-6 Data Analysis (Python toolboxes/libraries) NumP, SciPy, Pandas, ChemPy	CORE PYTHON : ADVANCED FEATURES Iterations and Comprehensions, Handling text files, Modules, Classes and OOP
	Unit-6 Data Analysis (Python toolboxes/libraries) NumP, SciPy, Pandas, ChemPy

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Programming in C and Python Lab
Course Code	BCSE1031
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream
	with a minimum of 50% marks secured in Chemistry

Co requisite	Students shou application.	ld have	fundamental	knowledge	of	Co	mpute	er and	it's
					L	Т	Р	С	
					0	0	4	2	

Course Objectives:

The aim of the paper is to make the students of chemistry familiar with the working of computer programming language, QBASIC and use of software as a tool to understand chemistry, and solve chemistry based problems.

Course Outcomes

CO1	Understand the different codes to execute the program.
CO2	Write the program for numbers and mathematical calculations.
CO3	Write the print command to the given program.
CO4	Write the program for control structure in python.
CO5	Understand the concept of classes and objects in python.

- 1. Write a program in C to find greatest of three numbers.
- 2. Write a program in C to find gross salary of a person
- 3. Write a program in C to find grade of a student given his marks.
- 4. Write a program in C to find divisor or factorial of a given number.
- 5. Write a program in C to print first ten natural numbers.
- 6. Write a program in C to print first ten even and odd numbers.
- 7. Write a program in python to print n terms of Fibonacci series.
- 8. Write a program in python to find all prime numbers within a given range.
- 9. Write a program in python to demonstrate working of classes and objects

Continuous Assessment Pattern

Practical IA	Practical ETE	Total Marks
50	50	100

Name of The Course	Hands on Basic Techniques and Measurements				
Course Code	BBS09P1101				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream				
	with Chemistry as major subject				
Corequisite	Students should have fundamental knowledge of physi	ics, c	chem	istry	and
	biology.				
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives:

The main purpose of this laboratory is to provide the students an appreciation for basic techniques in applied sciences. It is also aimed to provide the students a degree of competence in the laboratory skills required for

accurate and precise analysis. Therefore it is expected that the students will demonstrate proficiency in synthesizing some material in laboratory.

Course Outcomes

CO1	Explain and operate the microscope for measurements.(K2)
CO2	Prepare Soap and Resins and understand the mechanism of preparation. (K5)
CO3	Preparation of biodiesel from Vegetable oil/ Waste cooking oil and characterize it. (K5)
CO4	Apply the skill to solder and connect the electronic components. (K3)
CO5	Understand the functioning of CRO and develop the ability to use the micrometers. (K2)
Toxt Boo	k (s)/Pafaranca Rock (s)

Text Book (s)/ Reference Book (s)

- 1. Georg Stehli, The Microscope And How to Use It, English edition, 1970.
- 2. M.Sayer and A. Mansingh, PHI Learning. Measurement, Instrumentation and
- **Experiment Design in Physics & Engineering, 2005.**

3. Stocchi, E.(1990), Industrial Chemistry, Vol -I, Ellis Horwood Ltd. UK.

1. Different types of microscopes and its applications.

- 2. Preparation of Urea-formaldehyde Resin
- 3. Preparation of Soap
- 4. Preparation of Biodiesel from Vegetable oil/Waste cooking oil.
- 5. Characterization of biodiesel (TLC, Acid value and viscosity)
- 6. Soldering of electrical circuits
- 7. Measurement with Vernier calipers, Screw gauge and spherometer
- 8. Operation of oscilloscope
- 9. Familiarization with linear, logarithmic and polar graphs for plotting of experimental data
- 10. Assembling of elementary electric circuits using breadboard.

Continuous Assessment Pattern

Practical IA	Practical ETE	Total Marks
50	50	100

Name of The Course	PHYSICALCHEMISTRY I
Course Code	BSCC1002
Prerequisite	Students should qualify 10+2 or equivalent examination in Science
_	stream with Chemistry as major subject
Corequisite	Students should have fundamental knowledge of subjects like
_	mathematics, physics and computer applications.
Antirequisite	
	L T P C

Course Objectives:

1. Understand states of matter and interchange of states, intermolecular interactions.

2. Understand state of equilibrium, concept of pH, buffers, acids and bases indicators.

Course Outcomes

CO1	Describe the various models and behavior of ideal as well as real gases. (K2)
CO2	Describe the effect of various factors on the physical properties of a liquid. (K2)
CO3	Determine the various crystal structure and their properties. (K4)

CO4	Describe the properties of acids and bases. (K2)
CO5	Determine the pH scale, buffer action and applications of buffer solution. (K4)
CO6	Elaborate the recent advancement in different states of matter and analyse their
	utility. (K6)

Text Book (s)

1. Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry10th Ed., Oxford University Press (2014).

Reference Book (s)

- 1. Castellan, G. W. Physical Chemistry4th Ed. Narosa (2004).
- 2. Engel, T. & Reid, P. Physical Chemistry3rd Ed. Pearson (2013

Unit-1 Gaseous state

12 hrs

Kinetic molecular model of a gas: postulates and derivation of the kinetic gas equation; collision frequency; collision diameter; mean free path and viscosity of gases, including their temperature and pressure dependence, Maxwell distribution and its use in evaluating molecular velocities (average, root mean square and most probable) and average kinetic energy, law of equipartition of energy, degrees of freedom and molecular basis of heat capacities.Behaviour of real gases: Deviations from ideal gas behavior, compressibility factor, Z, and its variation with pressure for different gases; Causes of deviation from ideal behavior; Van der Waals equation of state, its derivation and application in explaining real gas behavior; Calculation of Boyle temperature. Isotherms of real gases and their comparison with van der Waals isotherms

Unit-2 Liquid state

6 hrs

Qualitative treatment of the structure of the liquid state; Radial distribution function; physical properties of liquids; vapor pressure, surface tension and coefficient of viscosity, and their determination; Effect of addition of various solutes on surface tension and viscosity; Explanation of cleansing action of detergents; Temperature variation of viscosity of liquids and comparison with that of gases.

Unit-3 Solid state

14 hrs

Nature of the solid state, law of constancy of interfacial angles, law of rational indices, Miller indices, elementary ideas of symmetry, symmetry elements and symmetry operations, qualitative idea of point and space groups, seven crystal systems and fourteen Bravais lattices; X-ray diffraction, Bragg's law, a simple account of rotating crystal method and powder pattern method. Analysis of powder diffraction patterns of NaCl, CsCl and KCl. Defects in crystals. Glasses and liquid crystals.

Unit-4 Ionic Equilibria-I

6 hrs

Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water; Ionization of weak acids and bases, pH scale, common ion effect; dissociation constants of mono-, di-and triprotic acids (exact treatment).

Unit-5 Ionic Equilibria-II	12 hrs
Salt hydrolysis-calculation of hydrolysis constant, degree of hy	drolysis and pH for different
salts. Buffer solutions; derivation of Henderson equation and its	applications; buffer capacity,
buffer range, buffer action and applications of buffers in analytic	cal chemistry and biochemical
processes in the human body. Solubility and solubility produ	ict of sparingly soluble salts;
applications of solubility product principle; Qualitative treat	ment of acid – base titration
curves (calculation of pH at various stages).Theory of acid-	-base indicators; selection of
indicators and their limitations.	
Unit-6 Future Trends in States of Matter	4hrs

Recent advancement in different states of matter, Liquid crystal, Application of Liquid crystal

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	PHYSICALCHEMISTRY I Lab				
Course Code	BSCC1052				
Prerequisite	Students should qualify 10+2 or equivalent examin stream with Chemistry as major subject	nati	on in	Scie	nce
Corequisite	Students should have fundamental knowledge mathematics, physics and computer applications.	of	subje	ects l	ike
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives:

- 1. Determine the surface tension and viscosity of different solvent and solutions
- 2. Determine pH of buffer soutions and perform pH metric titrations.

Course Outcomes

CO1	Measure the surface tension of solutions by different techniques. (K4)
CO2	Operate Ostwald's viscometer to measure viscosity of different solutions.(K3)
CO3	Prepare buffer solutions of different pH and study the effects on pH by addition of
	acid/base. (K4)
CO4	Perform pH metric titration of acid against base. (K3)
CO5	Determine dissociation constant of a acid. (K2)

Text Book (s)

• Khosla, B. D.; Garg, V. C. & Gulati, A., *Senior Practical Physical Chemistry*, R.Chand& Co.: New Delhi (2011).

Reference Book (s)

Athawale, V. D. & Mathur, P. Experimental Physical Chemistry New Age

1. Surface tension measurements.

a. Determine the surface tension by (i) drop number (ii) drop weight method.

b. Study the variation of surface tension of detergent solutions with concentration.

2. Viscosity measurement using Ostwald's viscometer.

a. Determination of viscosity of aqueous solutions of (i) polymer (ii) ethanol and

(iii) sugar at room temperature.

b. Study the variation of viscosity of sucrose solution with the concentration of solute.

3. pH metry

a. Study the effect on pH of addition of HCl/NaOH to solutions of acetic acid,

sodium acetate and their mixtures.

b. Preparation of buffer solutions of different pH

i. Sodium acetate-acetic acid

ii. Ammonium chloride-ammonium hydroxide

c. pH metric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base.

d. Determination of dissociation constant of a weak acid.

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

Name of The Course	Nanoscience and Nanotechnology	
Course Code	BSCG1001	
Prerequisite	Students should qualify 10+2 or equivalent examination in Science	
	stream with Chemistry as major subject	
Corequisite	Students should have fundamental knowledge of subjects like	
	mathematics, physics and computer applications.	
Antirequisite		
	L T P C	

Course Objectives:

Students will understand the basics of Nanoscience and Nanotechnology and present a comprehensive introduction to importance of Nanoscience and Nanotechnology.

Course Outcomes

CO1	Describe the basic science behind the properties of materials at the nanometer scale. (K2)
CO2	Illustrate the concept of physical and chemical method, application and fabrication of nanostructures. (K3)
CO3	Generalize and introduce the methods of preparation, methods of purification and applications of carbon nano materials. (K3)
CO4	Apply the concepts of nano energy conversion materials.(K3)
CO5	Generalize the importance of nano-catalysis. (K2)
CO6	Formulate the rudimentary knowledge of photovoltaic devices and propose synthesis of
	quantum junction solar cells. (K6)

Text Book (s)

- 1. Introduction to Nanotechnology C P Poole, Frank J. Owens, John Wiley & Sons, 2011, ISBN 978-81-265-1099-3.
- 2. Introduction to Nanoscience and Nanotechnology, KK Chattopadhyay, A N Banerjee, Phi Learning Pvt Ltd., New Delhi, 2012, ISBN-978-81-203-3608-7.
- 3. Nanotechnology Science Innovation & Opportunity, Lynn E Foster, Pearson publication, 2008, ISBN-9788131711187.
- The Chemistry of Nanomaterials C. N. R. Rao, A. Mu["]ller, A. K. Cheetham, Wiley-VCH Verlag GmbH & Co. KGaA, 2004 ISBN 3-527-30507-6

Reference Book (s)

- 1. The Evolution of Dip-pen nanolithography, D.Ginger ,H,Zang and C.A. Mirkin, Angw. Chem.. Int. Ed., 2004,43, 30-45.
- Carbon Materials and Nanotechnology, Anke Krueger, Wiley –VCH Verlag GmbH & Co., 2010, ISBN-10: 3527318038.
- 3. Nanotechnology, J.F. Mongillo Greenwood Press London, 2008, ISBN-13: 978-0-313-33880-9.
- 4. Microfabricationa and naomanufacuing, M.J Jackson, CRC Press Taylor & Francis Group 2006
- 5. Jiang Tang et al., Quantum Junction Solar Cells, Nano Lett. 2012, 12, 4889–4894

Unit-1 Introduction to Nanoscience and Nanote	echnology 10 hrs
Introduction to Nanoscience and Nanotechno	ology, materials vs nanomaterials, Nanoscale
effects on properties, Surface energies, Melti	ing point, Optical (SPR), Magnetic, and Electrical
properties, Tools to explore nanomaterials, H	Fundamental of Nanospintronics, Nanomedicine,
Nanostructured materials, Energy conversio	on processes.
Unit-2Nanomaterials preparation	10 hrs
Classification of Nanomaterials, Different ap and processing, Physical and chemical metho fabrication of nanostructures, Lithography,	pproaches in synthesis, Nanomaterials synthesis ods of synthesis, Synthesis of nanowires and Dip-pen nanolithography.
Unit-3 Carbon Materials	10 hrs

General introduction to carbon materials, Fullerenes, preparation, p	properties and application of		
fullerenes Carbon Nanotubes, Functionalization of nanotubes, Graphene- Preparation, properties and			
applications.			
Unit-4 Nanomaterials in Energy Conversion devices	10 hrs		
Principles of photovoltaics and photo electrochemical cell, Optical	properties of SC		
nanomaterials, Photovoltaics cell, Silicon- Extraction, Single crysta	nanomaterials, Photovoltaics cell, Silicon- Extraction, Single crystal growth, TiO2 based cells,		
Dye sensitization, Photoelectrochemical cells.			
Dye sensitization, Photoelectrochemical cells. Unit-5 Nanocatalysis and ethics in nanotechnology	10 hrs		
Dye sensitization, Photoelectrochemical cells. Unit-5 Nanocatalysis and ethics in nanotechnology	10 hrs		
Dye sensitization, Photoelectrochemical cells. Unit-5 Nanocatalysis and ethics in nanotechnology Introduction to nanocatalysis, , Bulk vs nanoscale surfaces, Major	10 hrs properties, Applications of		
Dye sensitization, Photoelectrochemical cells.Unit-5 Nanocatalysis and ethics in nanotechnologyIntroduction to nanocatalysis, , Bulk vs nanoscale surfaces, Major nanocatalysts, Societal concern of nanotechnology.	10 hrs properties, Applications of		
Dye sensitization, Photoelectrochemical cells. Unit-5 Nanocatalysis and ethics in nanotechnology Introduction to nanocatalysis, , Bulk vs nanoscale surfaces, Major nanocatalysts, Societal concern of nanotechnology.	10 hrs properties, Applications of		
Dye sensitization, Photoelectrochemical cells. Unit-5 Nanocatalysis and ethics in nanotechnology Introduction to nanocatalysis, , Bulk vs nanoscale surfaces, Major nanocatalysts, Societal concern of nanotechnology. Unit- 6 Quantum Junction Solar Cells	10 hrs properties, Applications of 4 hrs		

Continuous Assessment Pattern

Internal Assessment (IA)	nal Assessment (IA) Mid Term Test (MTE)		Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Nanoscience and Nanotechnology lab				
Course Code	BSCG1051				
Prerequisite	Students should qualify 10+2 or equivalent examination in				
	Science stream with Chemistry as major subject				
Corequisite	Chemistry as major or one of the subjects along with Physics,				
Mathematics and Biology/any branch of biosciences as minor		nor			
	subjects at 12 th level.				
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives:

Synthesis and characterization of different Nanoparticles.

Course Outcomes

CO1	Describe basics of nanoscience and nanotechnology. (K2)
CO2	Synthesis of nanoparticles by different materials. (K5)
CO3	Describe the general characteristics of nanosize materials. (K2)
CO4	Demonstrate the nanomaterials characterization by UV. (K3)
CO5	Correlate the nano-materials properties & identify appropriate applications as well as
	ethical aspects. (K4)

Text Book (s)

- 1. Vogel, A. I. Vogel's Qualitative Inorganic Analysis 7th Ed., Prentice Hall, 1996.
- 2. Carbon Materials and Nanotechnology, Anke Krueger, Wiley –VCH Verlag GmbH & Co., 2010.
- 3. Nanotechnology, J.F. Mongillo Greenwood Press London, 2008.
- 4. Introduction to Nanotechnology C P Poole, Frank J. Owens, John Wiley & Sons, 2011.
- 5. Microfabricationa and naomanufacuing, M.J Jackson, CRC Press

- 1. Carbon Materials and Nanotechnology, Anke Krueger, Wiley –VCH Verlag GmbH & Co., 2010, ISBN-10: 3527318038.
- 2. Nanotechnology, J.F. Mongillo Greenwood Press London, 2008, ISBN-13: 978-0-313-33880-9.

List of Experiments

- 1. Preparation of Ag nano particle and characterization.
- 2. Preparation and characterization of CaO nanoparticles.
- 3. Preparation and characterization of ZnO nanoparticles.
- 4. Synthesis of ZnS nanoparticles and Characterization of synthesized nanoparticles by different techniques.
- 5. Preparation of Cunanoparticles and Characterization by UV-Vis spectrophometer.
- 6. Synthesis of CdS nanoparticle UV-Vis and IR characterization.
- 7. Synthesis of MnO nanoparticles under optimized conditions using different Manganese salts (Manganese acetate and Manganese nitrate) and Characterization by UV-Vis spectrophometer and other characterization techniques.
- 8. Optimization and study of the size variation of Manganese oxide nanoparticles using time variation and temperature variation.
- 9. Synthesis of Nickel Oxide nanoparticles from Nickel Nitrate and optimization of conditions. Characterization by UV-Vis spectrophometer.
- 10. Synthesis of Copper nanoparticle from Copper Sulphate in presence of Ascorbic acid and optimization of conditions. UV-Visible and IR characterization.

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test	Total Marks
	(ETE)	
50	50	100

Name of The Course	General Physics				
Course Code	BSCP1043				
Prerequisite	Students should qualify 10+2 or equivalent examination	Students should qualify 10+2 or equivalent examination in			
Science stream with physics as a major subject					
Corequisite	School level knowledge in Physics				
Antirequisite	-				
		L	Т	Р	С
		4	0	0	4

Course Objectives:

General Physics is designed to inculcate the basic knowledge of quantum physics in modern technology. Student will study the laser technology and its production. They will come to know about their application in various fields of life. Students will be familiar with Optics in Interference and diffraction of light and resolving power. They will learn about dielectric materials.

Course Outcomes:

After the completion of this course, the students will be able to :

CO1	Explain the concept of Material particle and De-Broglie hypothesis.
CO2	Interpret interference, diffraction and Laser with applications.
CO3	Describe the free electron theory and Fermi level.
CO4	Employ the idea of dielectric with applications.

CO5	Demonstrate the origin of magnetism and Hall effect .
CO6	Predict the new concept of achieving the superconductivity at high temperature for its
	feasible applications.

Text Book (s):

- 1. Arthur Beiser, S Rai Choudhury, Shobhit Mahajan, (2009), Concepts of Modern Physics, 6th Edition, Tata-McGraw Hill. ISBN- 9780070151550.
- 2. Neeraj Mehta, (2011), Applied Physics For Engineers, New Arrivals PHI, ISBN-9788120342422.
- 3. Engineering Physics, B K Pandey, S Chaturvedi, Cengage Learning, ISBN: 137788131517611

Reference Book (s):

- 1. Robert Kolenkow, David Kleppner (2007), An Introduction to Mechanics, 1st Edition, Tata-McGraw Hill.
- 2. B.B. Laud, Lasers and Non-Linear Optics (2011), 3rd Edition, New Ages International.
- 3. William Silfvast (2002), Laser Fundamentals, Cambridge University Press.
- 4. David. J. Griffiths (2009), Introduction to Electrodynamics, 3rd Edition, PHI Learning.
- 5. Arthur Beiser (2003), Concepts of Modern Physics, 6th Edition, Tata-McGraw Hill.
- 6. Kittel (2001), Solid State Physics, 7th Edition, John Wiley & Sons.
- 7. Neil W Ashcroft and N David Mermin, (2003), Solid State Physics, Cengage Learning, ISBN-9788131500521.
- 8. Pillai S O, Solid State Physics, (2010), sixth edition, New Age International (P) Ltd. ISBN-9788122427264
- 9. A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, M. I. Eremets. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 2019; 569 (7757): 528 DOI: 10.1038/s41586-019-1201-8

Unit-1 Quantum Mechanics

Wave-Particle duality, de-Broglie waves, Davisson & Germer Experiment (Experimental verification of de-Broglie waves), Heisenberg Uncertainty Principle and its Applications, Schrodinger's wave equations, Particle in a Box, Compton Effect.

Unit-2 Optics and LASER

Interference: Interference of Light, Biprism experiment, displacement of fringes, interference sin thin films, wedge shaped film, Newton's rings. Diffraction: Single and double slit, Diffraction grating, Grating spectra, Rayleigh's criterion and resolving power of grating. Einstein's coefficients, Population Inversion, Three level and four level laser, Laser characteristics, He-Ne laser and applications.

Unit-3 Free electron theory

8 hours Lorentz classical free electron theory and its limitations, Drude theory of conduction, Thermal conductivity, Weidemann-Franz law, Quantum theory of free electron, Fermi level, Density of states, Fermi-Dirac distribution, Thermionic emission, Richardson equation.

Unit-4 Dielectric materials

8 hours

12 hours

12 hours

Dielectrics introduction, Polarization and dielectric constant, Polarization mechanism: Ionic, Electronic, orientational and space charge polarization, Bound charges and their physical interpretation, Electric displacement vector, Equation of electric field inside dielectrics, Clausius-Mossotti relation, Dielectric losses, Dielectric breakdown and types, Applications of dielectric materials. Unit-5 Magnetism 5 hours

Origin of magnetization, Orbital and spin magnetic moment, Classification and properties of magnetic materials, Hall effect, Langevin's theory of diamagnetism, Hysteresis curve, soft and hard magnetic materials 4 hrs

Unit-6 Application of General Physics

Recent advancement in General Physics: The superconductor at the highest temperature, latest approach and description of new superconductor

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Tota	Total Marks			
		(ETE)					
30	20	50	100				
Name of The Course	Physics Lab						
Course Code	BSCP1044						
Prerequisite	Students should qualify 10+2 or equivalent examination in Science						
stream with physics as major subject							
Corequisite	Students should have	fundamental know	owledge o	of s	ubje	ects	like
_	mathematics, physics a	and computer appl	ications.				
Antirequisite							
				L	Т	Р	С
			(0	0	4	2

Course Outcomes:

CO1	Operate and handle the instruments effectively and safely in the physics laboratory –K2
CO2	Determine the Planck constant and Stefan's constant-K3
CO3	Calculate the wavelength of Laser and monochromatic light. K3
CO4	Calculate Hall coefficient and Hysteresis curve for a given material-K3
CO5	Determine the characteristics of solar cell and AC frequency -K3

Text Book (s)/Reference Book (s)

1. B.Sc. Practical Physics by C.L Arora , S. Chand Limited, 2001.

2. B.Sc. Practical Physics by Harnam Singh, S. Chand Limited, 2000.

2.

- 1. Spectrometer angle of prism and minimum deviation of solid prism.
- 2. Spectrometer Grating, Wavelength of different lines of mercury spectrum.
- 3. Newton's rings- Wave length of the mono-chromatic light.
- 4. Determination of Stefan's Constant
- 5. Determination of Planck's constant
- 6. Wavelength determination of He-Ne laser
- 7. B-H curve for magnetic material
- 8. Determination of Hall coefficient
- 9. Frequency of AC mains using sonometer
- 10. Characteristics of solar cell.

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test	Total Marks		
	(ETE)			

50	50	100					
Name of The Course	ANALYTICAL METHODS IN CHEMISTRY						
Course Code	BBS05T5101						
Prerequisite	Students should qua	lify 10+2 or equival	ent exami	natio	on in	Scie	ice
	stream with a minimum of 50% marks secured in Chemistry						
Co-requisite	Students should have fundamental knowledge of Analytical						
	Chemistry						
Anti-requisite							
				L	Т	Р	С
				3	0	0	3

Course Objectives:

1. Concept of sampling, Accuracy, Precision, Statistical test data-F, Q, and t test.

2. The course exposes students to the laws of spectroscopy and selection rules governing the possible transitions in the different regions of the electromagnetic spectra. Thermal and electroanalytical methods of analysis are also dealt with. Students are exposed to important separation methods likesolvent extraction and chromatography. The practicals expose students to latest instrumentation and they learn to detect analytes in a mixture.

Course Outcomes

CO1	Develop the knowledge of statistical analysis and to perform experiment with				
	accuracy and precision. (K2)				
CO2	Understand basic principle of instrument like Flame Photometer, UV-VISIBLE and				
	IR spectroscopy. (K2)				
CO3	Ill Understand the basic principles of Thermogravimetric analysis. (K2)				
CO4	IllUnderstand the principles and how to perform pH metric, potentiometric and conductometric titrations. (K2)				
CO5	Il Illustrate different extraction and chromatographic techniques for analysis of reaction mixtures.(K3)				
CO6	A Analyze the use of advance instruments for characterization of compounds. (K6)				

Reference Books

□ Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.

□ Willard, H.H. et al.: Instrumental Methods of Analysis, 7th Ed. Wardsworth Publishing Company,

Belmont, California, USA, 1988.

□ Christian, G.D. Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.

□ Harris, D.C.: Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016.

□ Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age International Publisher, 2009. □

Skoog, D.A. Holler F.J. & Nieman, T.A. Principles of Instrumental Analysis, Cengage Learning India Ed.

Unit I:Qualitative and quantitative aspects of analysis	5 hrs		
Sampling, evaluation of analytical data, errors, accuracy and precision, method	ls of their		
expression, normal law of distribution if indeterminate errors, statistical test of data; F, Q and			
t test, rejection of data, and confidence intervals.			
Unit II:Optical methods of analysis 10 hrs			

Origin of spectra, interaction of radiation with matter, fundamental laws of spectroscopy and
selection rules, validity of Beer-Lambert's law. UV-Visible Spectrometry: Basic principles of
instrumentation (choice of source, monochromator and detector) for single and double beam
instrument; Basic principles of quantitative analysis: estimation of metal ions from aqueous
solution, geometrical isomers, keto-enol tautomers.

Infrared Spectrometry: Basic principles of instrumentation (choice of source, monochromator & detector) for single and double beam instrument; sampling techniques.

Structural illustration through interpretation of data.

Unit-3: T	Thermal	methods	of	analysis:	
-----------	---------	---------	----	-----------	--

5 hrs

15 hrs

Theory of thermogravimetry (TG), basic principle of instrumentation. Techniques for quantitative estimation of Ca and Mg from their mixture

Unit-4: Electroanalytical methods 5 hrs

Classification of electroanalytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points.

Unit-5: Separation techniques

Solvent extraction: Classification, principle and efficiency of the technique. Mechanism of extraction: extraction by solvation and chelation.Technique of extraction: batch, continuous and counter current extractions.Qualitative and quantitative aspects of solvent extraction: extraction of metal ions from aqueous solution, extraction of organic species from the aqueous and nonaqueous media. Chromatography: Classification, principle and efficiency of the technique. Mechanism of separation: adsorption, partition & ion exchange. Development of chromatograms: frontal, elution and displacement methods.

Qualitative and quantitative aspects of chromatographic methods of analysis: IC, GLC, GPC, TLC and HPLC. Stereoisomeric separation and analysis: Measurement of optical rotation, calculation of Enantiomeric excess (ee)/ diastereomeric excess (de) ratios. reagents.

Unit-6 Recent Advancements in Analytical Chemistry	4 hrs
Advance Techniques in UV and IR, LC-MS and it's application, 2-D NMR and	uses

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks	
		(ETE)		
30	20	50	100	

Name of The Course	Analytical Techniques and Instrumentation
Course Code	BSCS1062

Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject			nce	
Corequisite	Basic analytical techniques				
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives:

The main purpose of this laboratory is to provide the students an appreciation for basic instrumental technique. It is also aimed to provide the students a degree of competence in the laboratory skills required for accurate and precise analysis. Therefore it is expected that the students will demonstrate proficiency in the theory underlying analytical techniques.

Course Outcomes

CO1	Determine quantitatively the strength of different samples using redox, complexometric and iodometric titrations. (K4)
CO2	Employ the water and food product analysis. (K3)
CO3	Analyze different acid base mixtures by conductivity measurements. (K4)
CO4	Estimation of iron in different food products by spectrophotometric analysis. (K4)
CO5	Illustrate different chromatographic technique for analysis and separation of mixtures. (K3)

Text Book (s)

1. Vogel, A. I. Vogel's Qualitative Inorganic Analysis 7th Ed., Prentice Hall, 1996.

2. Robinson, J.W. Undergraduate Instrumental Analysis 5th Ed., Marcel Dekker, Inc., New York (1995).

- 3. Dean, J. A. Analytical Chemistry Handbook, McGraw Hill, 2004.
- 4. Christian, G.D. Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.

Reference Books

- 1. Willard, H.H., Merritt, L.L., Dean, J. &Settoe, F.A. Instrumental Methods of Analysis, 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California, USA, 1988. 2
- 2. Skoog, D.A., Holler, F.J. & Crouch, S. Principles of Instrumental Analysis, Cengage Learning India Edition, 2007.
- 3. Cooper, T.G. The Tools of Biochemistry, John Wiley & Sons, N.Y. USA. 16 (1977).

1. <u>Redox Titration:</u> To determine the strength of Ferrous ions in Mohr's Salt solution by titrating it against a known KMnO4 solution

2. <u>Redox Titration</u>: To determine the strength of Ferrous ions in Mohr's Salt solution by using the external indicator method

3. <u>Complexometric Titration</u>:Estimation of Calcium and Magnesium ions in Calcium carbonate sample by complexometric titration

4. <u>Complexometric Titration</u>:Estimation of Ni^{2+} ions in a given solution by the formation of Ni-DMG complex

5. <u>Analysis of Water Sample:</u> Estimation of total hardness in a given hard water sample.

6. <u>Analysis of Water Sample:</u> Determination of Dissolved Oxygen (DO) in a given water sample

7. Perform the following Conductometric titrations:

- i. Strong acid vs. strong base
- ii. Weak acid vs. strong base
- iii. Strong acid vs. weak base

8. Analysis of Food Products: Identification of adulterants in food items such as in Milk and Honey

9. <u>Analysis of Food Products</u>: Determining Vitamin C concentration in food products.

10. <u>Chromatography:</u> Paper chromatographic technique on separation of different mixtures.

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

Name of The Course	ORGANIC CHEMISTRY I				
Course Code	BSCC2001				
Prerequisite	Students should qualify 10+2 or equivalent examin	natio	on in	Scie	nce
	stream with Chemistry as major subject				
Corequisite	Basic knowledge of Organic Chemistry				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

The course develop a sound knowledge on Organic Chemistry.In this course to establish the applications of these concepts, the functional groups- alkanes, alkenes, alkynes and aromatic hydrocarbons- are introduced and the chemistry of these compounds will be explained with the help of various mechanism, reactions, energy diagrams and rules. The constitution of the course strongly aids in the paramount learning of the concepts and their applications.

Course Outcomes

CO1	Explain the basics of organic compounds and various reaction involved in organic
	chemistry (K2)
CO2	Develop skills to Illustrate various stereochemical processes, projections, optical
	isomerism and nomenclature. (K3)
CO3	Identify the chemistry and reactions of aliphatic hydrocarbons. (K3)
CO4	Apply the basic understanding in conformational analysis of alkanes and cyclohexane.
	(K3)
CO5	Simplify basic principles and different chemical reactions of aromatic compounds. (K4)
CO6	Elaborate the knowledge of recent advancement in the field of organic chemistry. (K6)

Reference Books:

1. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt.

Ltd. (Pearson Education).

- 2. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 3. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural *Products*), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education.
- 4. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds, Wiley: London, 1994.
- 5. Kalsi, P. S. Stereochemistry Conformation and Mechanism, New Age International, 2005.
- 6. McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning IndiaEdition, 2013.

Unit-1: Basics of Organic Chemistry	10 hrs	
Organic Compounds: Classification, and Nomenclature,	Hybridization, Shapes of molecules,	
Influence of hybridization on bond properties. El	lectronic Displacements: Inductive,	
electromeric, resonance and mesomeric effects, hyperco	onjugation and their applications;	
Dipole moment; Organic acids and bases; their relative	e strength. Homolytic and Heterolytic	
fission with suitable examples. Curly arrow rules,	formal charges; Electrophiles and	
Nucleophiles; Nucleophlicity and basicity; Types, shape and their relative stability of		
Carbocations, Carbanions, Free radicals and Carbeness	s. Introduction to types of organic	
reactions and their mechanism: Addition, Elimination an	d Substitution reactions.	
Unit-2:Stereochemistry	10 hrs	
Fischer Projection, Newmann and Sawhorse Projection formulae and their interconversions;		
Geometrical isomerism: cis-trans and, syn-anti isomerism E/Z notations with C.I.P rules.		

Optical Isomerism: Optical Activity, Specific Rotation, Chira	lity/Asymmetry, Enantiomers,
Molecules with two or more chiral-centres, Distereoisome	ers, meso structures, Racemic
mixture and resolution. Relative and absolute configuration: L	/L and R/S designations.
Unit-3: Chemistry of Aliphatic Hydrocarbons-I	10 hrs
A. Carbon-Carbon sigma bonds	
Chemistry of alkanes: Formation of alkanes, Wurtz Reaction	n, Wurtz-Fittig Reactions, Free
radical substitutions: Halogenation -relative reactivity and sele	ectivity.
B. Carbon-Carbon pi bonds:	
Formation of alkenes and alkynes by elimination reactions, Me	echanism of E1, E2, E1cb
reactions. Saytzeff and Hofmann eliminations.	
Reactions of alkenes: Electrophilic additions their mech	nanisms (Markownikoff/ Anti
Markownikoff addition), mechanism of oxymercuration-d	lemercuration, hydroboration-
oxidation, ozonolysis, reduction (catalytic and chemical)	, syn and anti-hydroxylation
(oxidation). 1,2-and 1,4-addition reactions in conjugated di	enes and, Diels-Alder reaction;
Allylic and benzylic bromination and mechanism, e.g. pro	pene, 1-butene, toluene, ethyl
benzene.	
Reactions of alkynes: Acidity, Electrophilic and Nucleophilic	e additions. Hydration to form
<i>Reactions of alkynes:</i> Acidity, Electrophilic and Nucleophilic carbonyl compounds, Alkylation of terminal alkynes.	e additions. Hydration to form
Reactions of alkynes: Acidity, Electrophilic and Nucleophilic carbonyl compounds, Alkylation of terminal alkynes. Unit-4: Chemistry of Aliphatic Hydrocarbons-I	e additions. Hydration to form 8 hrs
Reactions of alkynes: Acidity, Electrophilic and Nucleophilic carbonyl compounds, Alkylation of terminal alkynes.Unit-4: Chemistry of Aliphatic Hydrocarbons-I Cycloalkanes and Conformational Analysis	e additions. Hydration to form 8 hrs
Reactions of alkynes: Acidity, Electrophilic and Nucleophilic carbonyl compounds, Alkylation of terminal alkynes.Unit-4: Chemistry of Aliphatic Hydrocarbons-I Cycloalkanes and Conformational AnalysisTypes of cycloalkanes and their relative stability, Baeyer	e additions. Hydration to form 8 hrs strain theory, Conformation
Reactions of alkynes: Acidity, Electrophilic and Nucleophilic carbonyl compounds, Alkylation of terminal alkynes. Unit-4: Chemistry of Aliphatic Hydrocarbons-I Cycloalkanes and Conformational Analysis Types of cycloalkanes and their relative stability, Baeyer analysis of alkanes: Relative stability: Energy diagrams of	e additions. Hydration to form 8 hrs • strain theory, Conformation cyclohexane: Chair, Boat and
Reactions of alkynes: Acidity, Electrophilic and Nucleophilic carbonyl compounds, Alkylation of terminal alkynes. Unit-4: Chemistry of Aliphatic Hydrocarbons-I Cycloalkanes and Conformational Analysis Types of cycloalkanes and their relative stability, Baeyer analysis of alkanes: Relative stability: Energy diagrams of Twist boat forms; Relative stability with energy diagrams.	e additions. Hydration to form 8 hrs • strain theory, Conformation cyclohexane: Chair, Boat and
Reactions of alkynes: Acidity, Electrophilic and Nucleophilic carbonyl compounds, Alkylation of terminal alkynes. Unit-4: Chemistry of Aliphatic Hydrocarbons-I Cycloalkanes and Conformational Analysis Types of cycloalkanes and their relative stability, Baeyer analysis of alkanes: Relative stability: Energy diagrams of Twist boat forms; Relative stability with energy diagrams. Unit-5:Aromatic Hydrocarbon	e additions. Hydration to form 8 hrs strain theory, Conformation cyclohexane: Chair, Boat and 8 hrs
Reactions of alkynes: Acidity, Electrophilic and Nucleophilic carbonyl compounds, Alkylation of terminal alkynes.Unit-4: Chemistry of Aliphatic Hydrocarbons-ICycloalkanes and Conformational AnalysisTypes of cycloalkanes and their relative stability, Baeyer analysis of alkanes: Relative stability: Energy diagrams of Twist boat forms; Relative stability with energy diagrams.Unit-5:Aromatic HydrocarbonAromaticity: Hückel's rule, aromatic character of arenes, cycli	e additions. Hydration to form 8 hrs strain theory, Conformation cyclohexane: Chair, Boat and 8 hrs c carbocations/carbanions and
Reactions of alkynes: Acidity, Electrophilic and Nucleophilic carbonyl compounds, Alkylation of terminal alkynes.Unit-4: Chemistry of Aliphatic Hydrocarbons-ICycloalkanes and Conformational AnalysisTypes of cycloalkanes and their relative stability, Baeyer analysis of alkanes: Relative stability: Energy diagrams of Twist boat forms; Relative stability with energy diagrams.Unit-5:Aromatic HydrocarbonAromaticity: Hückel's rule, aromatic character of arenes, cyclic heterocyclic compounds with suitable examples. Electron	e additions. Hydration to form 8 hrs strain theory, Conformation cyclohexane: Chair, Boat and 8 hrs c carbocations/carbanions and philic aromatic substitution:
Reactions of alkynes: Acidity, Electrophilic and Nucleophilic carbonyl compounds, Alkylation of terminal alkynes.Unit-4: Chemistry of Aliphatic Hydrocarbons-I Cycloalkanes and Conformational AnalysisTypes of cycloalkanes and their relative stability, Baeyer analysis of alkanes: Relative stability: Energy diagrams of Twist boat forms; Relative stability with energy diagrams.Unit-5:Aromatic Hydrocarbon Aromaticity: Hückel's rule, aromatic character of arenes, cyclic heterocyclic compounds with suitable examples. Electroc halogenation, nitration, sulphonation and Friedel-Craft's and	e additions. Hydration to form 8 hrs strain theory, Conformation cyclohexane: Chair, Boat and 8 hrs c carbocations/carbanions and philic aromatic substitution: alkylation/acylation with their
Reactions of alkynes: Acidity, Electrophilic and Nucleophilic carbonyl compounds, Alkylation of terminal alkynes.Unit-4: Chemistry of Aliphatic Hydrocarbons-I Cycloalkanes and Conformational AnalysisTypes of cycloalkanes and their relative stability, Baeyer analysis of alkanes: Relative stability: Energy diagrams of Twist boat forms; Relative stability with energy diagrams.Unit-5:Aromatic HydrocarbonAromaticity: Hückel's rule, aromatic character of arenes, cycli heterocyclic compounds with suitable examples. Electroc halogenation, nitration, sulphonation and Friedel-Craft's mechanism. Directing effects of the groups.	e additions. Hydration to form <u>8 hrs</u> strain theory, Conformation cyclohexane: Chair, Boat and <u>8 hrs</u> c carbocations/carbanions and ophilic aromatic substitution: alkylation/acylation with their
Reactions of alkynes: Acidity, Electrophilic and Nucleophilic carbonyl compounds, Alkylation of terminal alkynes.Unit-4: Chemistry of Aliphatic Hydrocarbons-ICycloalkanes and Conformational AnalysisTypes of cycloalkanes and their relative stability, Baeyer analysis of alkanes: Relative stability: Energy diagrams of Twist boat forms; Relative stability with energy diagrams.Unit-5:Aromatic HydrocarbonAromaticity: Hückel's rule, aromatic character of arenes, cycli heterocyclic compounds with suitable examples. Electroc halogenation, nitration, sulphonation and Friedel-Craft's mechanism. Directing effects of the groups.Unit-6: Recent Advancement in Organic Chemistry	e additions. Hydration to form 8 hrs strain theory, Conformation cyclohexane: Chair, Boat and 8 hrs c carbocations/carbanions and ophilic aromatic substitution: alkylation/acylation with their 4 hrs
Reactions of alkynes: Acidity, Electrophilic and Nucleophilic carbonyl compounds, Alkylation of terminal alkynes.Unit-4: Chemistry of Aliphatic Hydrocarbons-ICycloalkanes and Conformational AnalysisTypes of cycloalkanes and their relative stability, Baeyer analysis of alkanes: Relative stability: Energy diagrams of Twist boat forms; Relative stability with energy diagrams.Unit-5:Aromatic HydrocarbonAromaticity: Hückel's rule, aromatic character of arenes, cyclic heterocyclic compounds with suitable examples. Electron halogenation, nitration, sulphonation and Friedel-Craft's mechanism. Directing effects of the groups.Unit-6: Recent Advancement in Organic ChemistrySustainable and Green Chemical reactions with applications	e additions. Hydration to form 8 hrs • strain theory, Conformation cyclohexane: Chair, Boat and 8 hrs c carbocations/carbanions and ophilic aromatic substitution: alkylation/acylation with their 4 hrs

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total I	Mark	S	
		(ETE)				
30	20	50	100			
Name of The Course	ORGANIC CHEMISTRY I LAB					
Course Code	BSCC2051					
Prerequisite	Students should qualif	y 10+2 or equival	ent examinat	ion i	n Scie	nce
	stream with Chemistr	y as major subjec	:t			
Corequisite	Students should have	ve fundamental	knowledge	of	Orga	nic
	chemistry					
Antirequisite						
			L	Т	Р	С
			0	0	4	2

Continuous Assessment Pattern

Course Objectives:

Perform crystallization and determine boiling point and melting point of organic compound.

Course Outcomes

CO1	Understand the basics of organic analysis and calibration of apparatus (K2).
CO2	Purification of organic compounds by crystallization method (K2).
CO3	Determination of boiling point and melting point of organic compounds (K2).

CO4	Separate the mixture of organic compounds by different chromatographic techniques	
	(K3).	
CO5	Measure the readings accurately and handle apparatus safely. K2	

Text Book (s)

Vogel's Textbook of Quantitative Chemical Analysis, Jeffery, G.H., Bassett, J., Mendham, J., Denney, R.C., 5th Edn., Longman Scientific & Technical, England, (John Wiley and Sons Inc, 605 Third Avenue, New York NY 10158).

Reference Book (s)

□ Mann,F.G.&Saunders,B.C.*PracticalOrganicChemistry*, PearsonEducation (2009).

□Furniss,B.S.;Hannaford,A.J.;Smith,P.W.G.;Tatchell,A.R.PracticalOrganic

Chemistry,5thEd.,Pearson(2012)

Unit-1

1. Checking the calibration of the thermometer

2. Purification of organic compounds by crystallization using the following solvents:

- a. Water
- b. Alcohol
- c. Alcohol-Water

Unit-2

3. Determination of the melting points of above compounds and unknown organic compounds(meltingpointapparatus)

4. Effectofimpuritiesonthemeltingpoint-mixedmeltingpointof twounknownorganic compounds

5. Determination of boiling point of liquid compounds. (boiling point lower than and more

than100°Cbydistillationandcapillarymethod)

Unit-3

a. Separationofamixtureoftwoaminoacidsbyascendingandhorizontalpaper chromatography

- b. Separationofamixtureoftwosugarsbyascendingpaperchromatography
- c. Separation of a mixture of o- and p-nitrophenol or o- and p-aminophenol by thin layer chromatography (TLC).

Continuous Assessment Pattern

Practical IA	Practical ETE	Total Marks
50	50	100

Name of The Course	PHYSICALCHEMISTRY II				
Course Code	BSCC2002				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science				
	stream with Chemistry as major subject				
Corequisite	Students should have fundamental knowled	ge	of	Physi	ical
	Chemistry				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

1. The aim of this course is to make students understand the concepts of energy, heat, work, enthalpy, entropy, free energies and the relation between them.

2. To apply these processes, extend the thermodynamic properties to the system of variable compositions, equilibrium and colligative properties.

Course Outcomes

CO1	Demonstrate the concepts of thermodynamics. (K3)
CO2	Determine the enthalpy, its application and the factors affecting the enthalpy of the reaction. (K4)
CO3	Describe Partial molar quantities and thermodynamic functions. (K2)
CO4	Describe the different criteria of thermodynamic equilibrium and derive equilibrium constants. (K2)
CO5	Determine the factors affecting various colligative properties of the solution. (K4)
CO6	Elaborate the knowledge of recent advancement in the field of physical chemistry. (K6)

Text Books

1. Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry 10th Ed., Oxford University Press (2014).

Reference Books

- 1. Castellan, G. W. *Physical Chemistry*4th Ed. Narosa (2004).
- 2. Engel, T. & Reid, P. Physical Chemistry3rd Ed. Pearson (2013).
- 3. Levine, I.N. *Physical Chemistry*6th Ed., Tata Mc Graw Hill (2010).

Unit-1 Chemical Thermodynamics

18 hrs

Intensive and extensive variables; state and path functions; isolated, closed and open systems; zeroth law of thermodynamics.

First law:Concept of heat, q, work, w, internal energy, U, and statement of first law; enthalpy, H, relation between heat capacities, calculations of q, w, U and H for reversible, irreversible and free expansion of gases (ideal and van der Waals) under isothermal and adiabatic conditions.

Second Law:Concept of entropy; thermodynamic scale of temperature, statement of the second law of thermodynamics; molecular and statistical interpretation of entropy; Calculation of entropy change for reversible and irreversible processes, Entropy changes for Ideal gas.

Third Law:Statement of third law, concept of residual entropy, calculation of absolute entropy of molecules. Free Energy Functions:Gibbs and Helmholtz energy; variation of S, G, A with T, V, P; Free energy change and spontaneity. Relation between Joule-Thomson coefficient and other thermodynamic parameters; inversion temperature; Gibbs-Helmholtz equation; Maxwell relations; thermodynamic equation of state. . Isotherms of real gases and their comparison with van der Waals isotherms

Unit-2Thermochemistry	8 hrs	

Hess's Law, Heats of reactions: standard states; enthalpy of formation of molecules and ions and enthalpy of combustion and its applications; calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data, effect of temperature (Kirchhoff's Law and equations) and pressure on enthalpy of reactions. Adiabatic flame temperature, explosion temperature.

Unit-3 Systems of Variable Composition8 hrsPartial molar quantities, dependence of thermodynamic parameters on composition; Gibbs- Duhemequation, chemical potential of ideal mixtures, change in thermodynamic functions in mixing of ideal gases.Unit-4 Chemical Equilibrium8 hrs

Criteria of thermodynamic equilibrium, degree of advancement of reaction, chemical equilibria in ideal gases, concept of fugacity. Thermodynamic derivation of relation between Gibbs free energy of reaction and reaction quotient. Coupling of exoergic and endoergic reactions. Equilibrium constants and their quantitative dependence on temperature, pressure and concentration. Free energy of mixing and spontaneity; thermodynamic derivation of relations between the various equilibrium constants *Kp*, *Kc* and *Kx*. Le Chatelier principle (quantitative treatment); equilibrium between ideal gases and a pure condensed phase.

Unit-5 Solutions and Colligative Properties

Dilute solutions; lowering of vapour pressure, Raoult's and Henry's Laws and their applications. Excess thermodynamic functions.

8

hrs

Thermodynamic derivation using chemical potential to derive relations between the four colligative properties [(i) relative lowering of vapour pressure, (ii) elevation of boiling point, (iii) Depression of freezing point, (iv) osmotic pressure] and amount of solute. Applications in calculating molar masses of normal, dissociated and associated solutes in solution.

Unit 6 Recent advancement in Physical chemistr	y 4 hrs
Solar Cells, Water treatment, Photochemistry	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	PHYSICAL CHEMISTRY II LAB				
Course Code	BSCC2052				
Prerequisite	Students should qualify 10+2 or equivalent examinestream with Chemistry as major subject	natio	on iı	1 Scie	nce
a	Stream with Chemistry as major subject		0	DI 1	
Corequisite	Students should have fundamental knowledge	ge	of	Physi	cal
	Chemistry				
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives:

Students will able to operate calorimeter to determine heat capacity and enthalpy of ionization. Course Outcomes

CO1	Determine the heat capacity using calorimetric technique. (K4)
CO2	Calculate the enthalpy of ionization of ethanoic acid. (K4)
CO3	Determine the enthalpy of hydration of copper sulphate. (K4)
CO4	Determine the basicity/proticity of polyprotic acid by thermochemical method. (K4)
CO5	Describe the solubility of benzoic acid and calculate the enthalpy value. (K2)

Text Books

1. Khosla, B. D.; Garg, V. C. & Gulati, A., *Senior Practical Physical Chemistry*, R.Chand & Co.: New Delhi (2011).

Reference Books

- 1. Athawale, V. D. & Mathur, P. Experimental Physical Chemistry New Age.
- 1. Determination of heat capacity of a calorimeter for different volumes using change of enthalpy data of a known system (method of back calculation of heat capacity of calorimeter from known enthalpy of solution or enthalpy of neutralization).
- 2. Determination of heat capacity of the calorimeter and enthalpy of neutralization of hydrochloric acid with sodium hydroxide.
- 3. Calculation of the enthalpy of ionization of ethanoic acid.
- 4. Determination of heat capacity of the calorimeter and integral enthalpy (endothermic and exothermic) solution of salts.
- 5. Determination of basicity/proticity of a polyprotic acid by the thermochemical method in terms of the changes of temperatures observed in the graph of temperature versus time for different additions of a base. Also calculate the enthalpy of neutralization of the first step.
- 6. Determination of enthalpy of hydration of copper sulphate.

7. Study of the solubility of benzoic acid in water and determination of ΔH .

Continuous Assessment Pattern

Practical IA	Practical ETE	Total Marks
50	50	100

Name of The Course	INORGANIC CHEMISTRY II				
Course Code	BSCC2003				
Prerequisite	Students should qualify 10+2 or equivalent exaministream with Chemistry as major subject	natio	on in	Scie	nce
Corequisite	Basic knowledge of Inorganic Chemistry				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

To make students aware about the basic knowledge of Inorganic Chemistry.

Course Outcomes

CO1	Illustrate the basic principles and processes of metallurgy. K2	
CO2	Catergorize various classes of acids and bases adopting the basic concepts. K4	
CO3	Interpret the properties and applications of s- and p- block elements. K2	
CO4	Illustrate the structure, preparation and application of p-block elements.K2	
CO5	Simplify the molecular shapes and properties of noble gas compounds.K4	
CO6	Elaborate the recent development in the application of s and p block elements. K6	

Reference Books:

Lee, J.D. Concise Inorganic Chemistry, ELBS, 1991.

Douglas, B.E; Mc Daniel, D.H. & Alexander, J.J. Concepts & Models of

Inorganic Chemistry 3rd Ed., John Wiley Sons, N.Y. 1994.

□ Greenwood, N.N. & Earnshaw. Chemistry of the Elements, ButterworthHeinemann. 1997.

□ Cotton, F.A. & Wilkinson, G. Advanced Inorganic Chemistry, Wiley, VCH, 1999.

□ Rodger, G.E. Inorganic and Solid State Chemistry, Cengage Learning India Edition, 2002.

□ Miessler, G. L. & Donald, A. Tarr. Inorganic Chemistry 4th Ed., Pearson, 2010. Atkin, P. Shriver & Atkins' Inorganic Chemistry 5th Ed. Oxford University Press

Unit-1: General Principles of Metallurgy	8 hrs
Chief modes of occurrence of metals based on standard electrode p	otentials. Ellingham
diagrams for reduction of metal oxides using carbon and carbon m	onoxide as reducing agent.
Electrolytic Reduction, Hydrometallurgy, wet cyanide process for s	silver & gold. Methods of
purification of metals: Electrolytic, van Arkel-de Boer process and	Mond's process, Zone
refining.	
Unit-2: Acids and Bases	8 hrs

Brönsted-Lowry concept of acid-base reactions, solvated proton	, relative strength of acids,			
types of acid-base reactions, Lewis acid-base concept, Classification	on of Lewis acids, Hard and			
Soft Acids and Bases (HSAB).				
Unit-3: Chemistry of s and p block Elements	12 hrs			
Inert pair effect, Relative stability of different oxidation states, diagonal relationship and anomalous behaviour of first member of each group. Allotropy and catenation. Complex formation tendency of s and p block elements. Hydrides and their classification ionic, covalent and interstitial.				
Unit-4: Compounds p block Elements	12 hrs			
Study of the following compounds with emphasis on structure, bonding, preparation,				
properties and uses. Borates, borohydrides (diborane) carboranes	and graphitic compounds,			
silanes, Oxides and oxoacids of nitrogen, Phosphorus and chlorine	. Peroxo acids of sulphur,			
interhalogen compounds, and basic properties of halogens				
Unit-5: Noble Gases	10 hrs			
Occurrence and uses, rationalization of inertness of noble gases, Clathrates; preparation and properties of XeF ₂ , XeF ₄ and XeF ₆ ; Nature of bonding in noble gas compounds (Valence bond treatment and MO treatment for XeF2). Molecular shapes of noble gas compounds (VSEPR theory).				
Unit-6: Application of s and p block elements and Noble gases	4 hrs			
Recent advancement and development in field of compounds of s a Noble gases.	nd p block elements and			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	INORGANIC CHEMISTRY II LAB				
Course Code	BSCC2053				
Prerequisite	Students should qualify 10+2 or equivalent exaministream with Chemistry as major subject	natio	on in	Scie	nce
Corequisite	Students should have fundamental knowle Chemistry	edge	Iı	iorga	nic
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives:

To introduce different experiments to test basic understanding of Inorganic Chemistry.

Course Outcomes

CO1	Estimate the strength of Copper using sodium thiosulphate solution.
CO2	Calculate the strength of Dissolved Oxygen in a given water sample.
CO3	Estimate the strength of available Chlorine in bleaching powder.

CO4 **Estimate the amount of metals in a given sample complexometrically.**

CO5 **Synthesize various types of double salts.**

Reference Book (s)

Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.

(A) Iodometric Titrations

(i) Estimation of Cu(II) using sodium thiosulphate solution.

(ii) Estimation of dissolved oxygen in given sample of water.

(iii) Estimation of available chlorine in bleaching powder.

(B) Complexometric Titrations

(i) Estimation of calcium in a given sample.

(ii) Estimation of magnesium in a given sample.

(iii) Estimation of zinc using EDTA solution.

(C) Inorganic preparations

(i) Mohr Salt

(ii) Preparation of Aluminium potassium sulphate $KAl(SO_4)_2.12H_2O$ (Potash alum) or Chrome alum.

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test	Total Marks
	(ETE)	
50	50	100

Name of The Course	ORGANIC CHEMISTRY II				
Course Code	BSCC2004				
Prerequisite	Students should qualify 10+2 or equivalent exami Science stream with Chemistry as major subject	natio	on ir	1	
Corequisite	Basic Concepts of Organic Chemistry				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: The objective is to study various mechanisms related to nucleophilic and electrophilic substitutions, structure, reactivity and preparation methods.

Course Outcomes

CO1	Identify and differentiate the mechanism of nucleophilic substitution reactions and eliminations reactions in alkyl halides and aryl halides along with the stereochemistry. (K3)
CO2	Explain the preparation and compare the properties and relative reactivity of 1° , 2° , 3° alcohols, phenols and ethers.(K2)
CO3	Discuss Structure, reactivity and preparation; of carbonyl compounds and differentiate the Nucleophilic additions, and Nucleophilic addition-elimination reactions along with related named reactions.(K6)
-----	--
CO4	Analyze the preparation methods and properties of carboxylic acid derivatives. (K4)
CO5	Discuss the preparation methods and reactions of sulphur containing compounds. (K6)
CO6	Identify the role of different reaction mechanisms in recent development.(K3)

Text Book (s)

· Morrison, R. T. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt.

Ltd. (Pearson Education).

· Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd.

(Pearson Education).

Reference Book (s)

· Graham Solomons, T.W. Organic Chemistry, John Wiley & Sons, Inc.

• McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013.

Unit-1 Chemistry of Halogenated Hydrocarbons:

14hrs

Alkyl halides: Methods of preparation, nucleophilic substitution reactions $-S_N 1$, $S_N 2$ and $S_N i$ mechanisms with stereochemical aspects and effect of solvent etc.; nucleophilic substitution vs. elimination.*Aryl halides*: Preparation, including preparation from diazonium salts. nucleophilic aromatic substitution; SNAr, Benzyne mechanism.Relative reactivity of alkyl and aryl halides towards nucleophilic substitution reactions.Organometallic compounds of Mg and Li – Use in synthesis of organic compounds.

Unit-2 Alcohols, Phenols, Ethers and Epoxides:	12 hrs
--	--------

Alcohols: preparation, properties and relative reactivity of 1°, 2°, 3° alcohols, Bouvaelt-Blanc Reduction; Preparation and properties of glycols: Oxidation by periodic acid and lead tetraacetate, Pinacol-Pinacolone rearrangement;*Phenols*: Preparation and properties; Acidity and factors effecting it, Ring substitution reactions, Reimer–Tiemann and Kolbe's–Schmidt Reactions, Fries and Claisen rearrangements with mechanism; *Ethers and Epoxides*: Preparation and reactions with acid.

Unit-3 Carbonyl Compounds

12 hrs

Structure, reactivity and preparation; Nucleophilic additions, Nucleophilic addition-elimination reactions with ammonia derivatives with mechanism; Mechanisms of Aldol and Benzoin condensation, Knoevenagel condensation, Claisen-Schmidt, Perkin, Cannizzaro and Wittig reaction, Beckmann and Benzil-Benzilic acid rearrangements, haloform reaction and Baeyer Villiger oxidation, α -substitution reactions, oxidations and reductions (Clemmensen, Wolff-Kishner, LiAlH₄, NaBH₄, Michael addition. Active methylene compounds: Keto-enol tautomerism. Preparation and synthetic applications of diethyl malonate and ethyl acetoacetate.

Unit-4 Carboxylic Acids and their Derivatives

8 hrs

4 hrs

Preparation, physical properties and reactions of monocarboxylic acids: Typical reactions of maleic and fumaric acids;Preparation and reactions of acid chlorides, anhydrides, esters and amides; Comparative study of nucleophilic sustitution at acyl group -Mechanism of acidic and alkaline hydrolysis of esters, Claisen condensation, Dieckmann and Reformatsky reactions, Hofmannbromamide degradation and Curtius rearrangement.

 Unit-5 Sulphur containing compounds
 4hrs

 Preparation and reactions of thiols, thioethers and sulphonic acids.

Unit-6 Recent applications of organic reaction mechanism

Identify the role of different reaction mechanisms in recent development

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	ORGANIC CHEMISTRY-II Lab	
Course Code	BSCC2054	-
PrerequisiteStudents should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject		
Corequisite	Basic analytical techniques	Cours
Antirequisite		-
	L T P C	
	0 0 4 2	-

Objectives: The objective is to analyse the presence of extra elements and functional groups in organic compounds.

Course Outcomes

CO1	Analyze qualitatively the presence of extra elements (K4).
CO2	Perform the tests of functional groups in unknown organic compounds (K4).
CO3	Identify the functional groups in unknown organic compounds (K4).
CO4	Handle the apparatus and perform the tests accurately.

Text Book (s)

· Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education(2009)

• Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical OrganicChemistry, 5th Ed., Pearson (2012)

Reference Book (s)

• Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry:Preparation and Quantitative Analysis, University Press (2000).

· Ahluwalia, V.K. & Dhingra, S. Comprehensive Practical Organic Chemistry: Qualitative Analysis, University Press (2000).

- 1. Detection of extra elements.
- 2. Functional group test for nitro, amine and amide groups.

3. Qualitative analysis of unknown organic compounds containing simple functional

groups (alcohols, carboxylic acids, phenols and carbonyl compounds)

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

Name of The Course	Industrial Chemistry				
Course Code	BBS05T5102				
Prerequisite	Students should qualify 10+2 or equivalent exaministream with Chemistry as a major subject.	natio	on in	Scie	nce
Co-requisite	Students should have fundamental knowledg compounds and uses	e of	f Ir	orga	nic
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

The course introduces learners to the diverse roles of inorganic materials in the industry. It gives an insight into how these raw materials are converted into products used in day to day life. Students learn about silicates, fertilizers, surface coatings, batteries, engineering materials for mechanical construction as well as the emerging area of nano-sized materials. The course helps develop the interest of students in the frontier areas of inorganic and material chemistry.

Course Outcomes

CO1	Explain the composition and applications of the different kinds of glass.(K2)
CO2	State the composition of cement and discuss the mechanism of setting of cement(K3)
CO3	Explain the suitability of fertilizers for different kinds of crops and soil. (K2)
CO4	E Explain the process of formulation of paints and the basic principle behind the protection offered by the surface coatings. (K2)
CO5	List and analyze the properties of engineering materials for mechanical construction
	used in day to day life. (K3)
CO6	Elaborate the recent advancements in Industrial Chemistry and analyze their
	fruitfulness for sustainable environment. (K6)

Reference Books

West, A. R., Solid State Chemistry and Its Application, Wiley

□ Smart, L. E., Moore, E. A., Solid State Chemistry An Introduction CRC Press Taylor & Francis. □ Rao, C. N. R., Gopalakrishnan, J. New Direction of Solid State Chemistry, Cambridge University Press.

□ □ Felder, R. M. and Rousseau, R.W., Elementary Principles of Chemical Processes, Wiley Publishers,

New Delhi, 2005.

□ □ Atkins, Peter, and Tina Overton. Shriver and Atkins' inorganic chemistry. Oxford University Press, USA, 2010.

□ □ Kingery, W. D., Bowen H. K. and Uhlmann, D. R. Introduction to Ceramics, Wiley Publishers, New Delhi, 1976.

□ □ Kent, J. A. (ed) Riegel's Handbook of Industrial Chemistry, 9 th Ed., CBS Publishers, New Delhi, 1997

□ □ Jain, P. C. and Jain, M. Engineering Chemistry, Dhanpat Rai & Sons, Delhi 2015

□ □ Gopalan, R., Venkappayya, D. and Nagarajan, S. Engineering Chemistry, Vikas Publications, New Delhi, 2004.

□ □ Sharma, B. K. Engineering Chemistry, Goel Publishing House, Meerut, 2015

Unit 1: Silicate Industries	5 hrs			
Glass: Glassy state and its properties, classification (silicate and non-silicat	e glasses).			
Manufacture and processing of glass. Composition and properties of glass wool a	nd optical			
fibre.				
Unit 2: Ceramics and Cement5 hrs				
Ceramics: Brief introduction to types of ceramics. glazing of ceramics.				
Cement: Manufacture of Portland cement and the setting process, Different types of	of cements:			
quick settingcements, eco-friendly cement (slag cement), pozzolana cement.				
Unit 3: Fertilizers	5 hrs			
Different types of fertilizers (N, P and K). Importance of fertilizers, chemistry involved in the				
manufacture of the fertilizers, Biofertilizers and it's application				
Unit-4: Surface Coatings: 1	5 hrs			
Brief introduction to and classification of surface coatings, paints and pigments: formulation,				
composition and related properties, pigment volume concentration (PVC)and critical pigment				
volume concentration (CPVC), fillers, thinners, enamels and emulsifying agen	volume concentration (CPVC), fillers, thinners, enamels and emulsifying agents. Special			
paints: heat retardant, fire retardant, eco-friendly paints, plastic paints, water and oil paints.				
Preliminary methods for surface preparation, metallic coating (electrolytic and elect	roless with			
reference to chrome plating and nickel plating), metal spraying and anodizing, Lubr	ricants and			
bioadditives.				
Unit-5: Engineering materials for mechanical construction10 hrs				
Classification, Composition, characteristics and applications of various types of irons, steels,				
thermoplastics, thermosets and composite materials and dendrimers.				
Unit-6: Future Trends of Industrial Chemistry	4 hrs			
Biofuel and Bioenergy, Biodiesel and it's application, Advantages of Biolubricant,	Biomass to			
Bioenergy.				

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Course Code	BBS05T2101				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science				
Corequisite	Students should have fundamental knowledg Chemistry	ge	of	Physi	cal
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

- 1. Understand concepts of phase, co-existence of phases, phase diagram, CST and distribution law.
- 2. Understand surface phenomenon, adsorption isotherms, BET Equation.

3. Apply and analyze the principles of Electrochemistry.

Course Outcomes

CO1	Understand the principles of phase equilibrium diagram for one and two component system with its applications. (K2)
CO2	Determine the theoretical and experimental methods of chemical kinetics. (K3)
CO3	Generalize different theories of adsorption and Illustrate different principles and mechanism of catalytic reactions. (K3)
CO4	Describe basic concepts of conductance and applications of conductance measurement (K2)
CO5	Solve the problems based on laws related to electrochemistry, solubility product and hydrolysis constant of salts and Calculate EMF of Cell (K3)
CO6	

Text Book (s)

- Peter Atkins & Julio De Paula, Physical Chemistry 10th Ed., Oxford University Press(2014)
- Castellan, G. W. Physical Chemistry, 4th Ed., Narosa (2004).
- McQuarrie, D. A. & Simon, J. D., Molecular Thermodynamics, Viva Books Pvt. Ltd.:New Delhi (2004).
- Engel, T. & Reid, P. Physical Chemistry 3rd Ed., Prentice-Hall (2012).
- • Mortimer, R. G. Physical Chemistry 3rd Ed., Elsevier: NOIDA, UP (2009).
- Barrow, G. M., Physical Chemistry 5th Ed., Tata McGraw Hill: New Delhi (2006).

Unit-1 Phase Equilibria	12 hrs			
Concept of phases, components and degrees of freedom, derivation of Gibbs Phase Rule for				
nonreactive and reactive systems; Clausius-Cla	peyron equation and its applications to solid			
liquid, liquid-vapour and solid-vapour equilibria	a, phase diagram for one component systems,			
with applications.				
Phase diagrams for systems of solid-liquid of	equilibria, Binary solutions: Gibbs-Duhem-			
Margules equation, its derivation and applicatio	ns to fractional distillation of binary miscible			
liquids (ideal and nonideal), azeotropes.				

Unit-2 Chemical Kinetics

12 hrs

Order and molecularity of a reaction, rate laws in terms of the advancement of a reaction, differential and integrated form of rate expressions up to second order reactions, experimental methods of the determination of rate laws, kinetics of complex reactions (integrated rate expressions up to first order only): (i) Opposing reactions (ii) parallel reactions and (iii) consecutive reactions and steady-state approximation in reaction mechanisms (iv) chain reactions.

Temperature dependence of reaction rates; Arrhenius equation; activation energy. Collision theory of reaction rates.

Unit-3 Surface chemistry and Catalysis

08 hrs

Physical adsorption, chemisorption, adsorption isotherms, Types of catalyst, specificity and selectivity, mechanisms of catalyzed reactions at solid surfaces; effect of particle size and efficiency of nanoparticles as catalysts. Enzyme catalysis, Michaelis-Menten mechanism, acid-base catalysis.

Unit-4 Conductance

14hrs

Arrhenius theory of electrolytic dissociation. Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Molar conductivity at infinite dilution. Kohlrausch law of independent migration of ions. Debye-Hückel-Onsager equation.

Ionic velocities, mobilities and their determinations, transference numbers and their relation to ionic mobilities, determination of transference numbers using Hittorf and Moving Boundary methods. Applications of conductance measurement: (i) degree of dissociation of weak electrolytes, (ii) ionic product of water (iii) solubility and solubility product of sparingly soluble salts, (iv) Conductometric titrations, and (v) Hydrolysis constants of salts.

Unit-5 Electrochemistry

16 hrs

Quantitative aspects of Faraday's laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials. Chemical cells, reversible and irreversible cells with examples. Electromotive force of a cell and its measurement, Nernst equation; Standard electrode (reduction) potential and its application to different kinds of half-cells. Application of EMF measurements in determining (i) free energy, enthalpy and entropy of a cell reaction, (ii) equilibrium constants, and (iii) pH values, using hydrogen, quinone-hydroquinone, glass electrodes. Concentration cells with and without transference, liquid junction potential; determination of activity coefficients and transference numbers.

Unit-6 Recent Advancement in Electrochemistry

04 hrs

Application of nanotubes and nanoparticles in electrochemistry towards biosensing, Electrochemistry towards Scanning Electron Microscopy

Continuous Assessment Pattern							
Internal Assessment (IA) Mid Term Test (MTE) End Term Test Total Mar							
		(ETE)					
30 20 50 100							

Name of The Course	PHYSICAL CHEMISTRY -III LAB				
Course Code	BBS05P2101				
Prerequisite	Students should qualify 10+2 or equivalent examinstream with a minimum of 50% marks secured in	natio Ch	on ir emis	n Scie stry	nce
Corequisite	Students should have fundamental knowled Chemistry.	ge	of	Physi	cal
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives:

- 1. Measure critical temperature, distribution co-efficient and study the kinetics of reactions.
- 2. Study of Potentiometric titrations of a combination of different types of solutions.

Course Outcomes

CO1	Determine the composition and critical solution temperature for phenol-water system.(K4)
CO2	Estimate the distribution of acetic/benzoic acid between water and cyclohexane. (K3)
CO3	Determine the kinetics of different chemical reaction and Asses Freundlich and Langmuir isotherms for adsorption. (K4)
CO4	Measure equivalent conductance, degree of dissociation and dissociation constant of a weak acid conductometrically. (K3)
CO5	Perform various types of Potentiometric titrations. (K4)

Text Book (s)

□ Khosla, B. D.; Garg, V. C. & Gulati, A. Senior Practical Physical Chemistry, R.

Chand & Co.: New Delhi (2011).

🗆 Garland, C. W.; Nibler, J. W. & Shoemaker, D. P. Experiments in Physical Chemistry

8th Ed.; McGraw-Hill: New York (2003).

□ Halpern, A. M. & McBane, G. C. Experimental Physical Chemistry 3rd Ed.; W.H.

Freeman & Co.: New York (2003).

I. Determination of critical solution temperature and composition of the phenol-water system and to study the effect of impurities on it.

II. Distribution of acetic/ benzoic acid between water and cyclohexane.

III. Study the kinetics of the following reactions.

a. Acid hydrolysis of methyl acetate with hydrochloric acid.

b. Saponification of ethyl acetate.

IV. Adsorption: Verify the Freundlich and Langmuir isotherms for adsorption of acetic acid on activated charcoal.

V. Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid.

VI. Perform the following Potentiometric titrations:

- i. Strong acid vs. strong base
- ii. Weak acid vs. strong base
- iii. Dibasic acid vs. strong base
- iv. Potassium dichromate vs. Mohr's salt

Continuous Assessment Pattern

Practical IA	Practical ETE	Total Marks
50	50	100

Name of The Course	INORGANIC CHEMISTRY-III				
Course Code	BSCC2006				
Prerequisite	ite Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject				nce
Corequisite	Students should have fundamental knowledg Chemistry	e of	fIr	orga	nic
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

The course introduces the students to coordination compounds which find manifold applications in diverseareas like qualitative and quantitative analysis, metallurgy, as catalysts in industrial processes as medicines, paints and pigments as well as in life. The student is also familiarized with the d and f block elements and gets an idea about horizontal similarity in a period in addition to vertical similarity in a group.

Course Outcomes

CO1	Illustrate about basic concepts of various theories in Coordination chemistry (K2)
CO2	Analyze different properties of complex compounds on the basis theories of
	coordination chemistry. (K4)
CO3	Generalize the various properties and chemistry of some important transition metal
	compounds. (K3)
CO4	Describe the properties of Lanthanoids and Actinoids. (K2)
CO5	Determine the different reaction rates, kinetics and reaction mechanisms. (K4)
CO6	Elaborate the recent advancements in Coordination chemistry. (K6)

Text Book (s)

Huheey, J.E., Inorganic Chemistry, Prentice Hall, 1993.

Reference Book (s)

□ Purcell, K.F & Kotz, J.C. Inorganic Chemistry W.B. Saunders Co, 1977.

□ Lippard, S.J. & Berg, J.M. Principles of Bioinorganic Chemistry Panima Publishing Company 1994.

Cotton, F.A. & Wilkinson, G, Advanced Inorganic Chemistry Wiley-VCH, 1999
 Basolo, F, and Pearson, R.C. Mechanisms of Inorganic Chemistry, John Wiley & Sons, NY, 1967.

□ Greenwood, N.N. & Earnshaw A. Chemistry of the Elements, ButterworthHeinemann, 1997.

Unit-1 Coordination Chemistry I	6 hrs
Werner's theory, IUPAC nomenclature of coordination compou	nds, isomerism in coordination
compounds. Stereochemistry of complexes with 4 and 6 coordin	nation numbers. Valence bond
theory (inner and outer orbital complexes), electroneutrality pr	inciple and back bonding.
Unit-2 Coordination Chemistry II	10 hrs
Crystal field theory, measurement of Δo . Calculation of CFS	SE in weak and strong fields
concept of pairing energies, factors affecting the magnitude of	f Δo. Evidences of CFT. Jahn-
Teller theorem, octahedral, square planar geometry. Qualitative	aspect of Ligand field and MO
Theory.	
Unit-3 Transition Elements	14 hrs
General group trends with special reference to electronic config	guration, colour, variable
valency, magnetic and catalytic properties, ability to form comp	olexes. Stability of various
oxidation states. Difference between the first, second and third t	transition series.
Chemistry of Cr Mn, Fe and Co in various oxidation states (exc	luding their metallurgy).
Peroxo compounds of Cr, K ₂ Cr ₂ O ₇ , KMnO ₄ , K ₄ [Fe(CN) ₆], K ₃ [F	e(CN)6], Na2[Fe(CN)5NO],
Na ₃ [Co(NO ₂) ₆], [Co(NH ₃) ₆]Cl ₃ .	
Unit-4 Lanthanoids and Actinoids	8 hrs
Electronic configuration, oxidation states, colour, spectral and n	nagnetic properties,
lanthanoide contraction, separation of lanthanoides (ion-exchar	nge method only).
Unit-5 Reaction Kinetics and Mechanism	12hrs
Introduction to inorganic reaction mechanisms, Substitution	n reactions in square planar
complexes, Trans effect, theories of trans effect, Thermodynami	c (Chelate, HSAB) and Kinetic
stability (Labile and Inert), Kinetics of octahedral substitut	tion, Ligand field effects and
reaction rates.	
Unit-6 Recent Advancements in Coordination Chemistry	4 hrs
N-donor ligands in coordination chemistry, Heteroaron	natic alcohol as Ligands
coordination clusters and coordination polymers	

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	To	tal M	larks		
		(ETE)					
30	20	50	100)			
Name of The Course	INORGANIC CHEMIS	TRY III LAB					
Course Code	BSCC2056						
Prerequisite	Students should qualify 10+2 or equivalent examination in Science						
	stream with Chemistry as major subject						
Corequisite	Students should hav	e fundamental	knowledg	ge of	f Ir	iorga	nic
	Chemistry						
Antirequisite							
				L	Т	Р	С
				0	0	4	2

Continuous Assessment Pattern

Course Objectives:

Students will able to perform gravimetric analysis and synthesize complex compounds.

Course Outcomes

CO1	Analyze the concept of gravimetric analysis. (K3)
CO2	Estimate the amount of different ions gravimetrically. (K5)
CO3	Synthesize different inorganic coordination complexes. (K6)
CO4	Analyze the principles involved in chromatographic separations. (K3)
CO5	Employ paper chromatographic technique for separation of metal ions. (K3)

Text Book (s)

Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.

1.	Estimation of nicke	(II)) using Dimet	thylglyoxi	me (DMG).
1.	Lotinution of merce	· (• • •	, asing Dime	ui y 151 y 0/11	

- 2. Estimation of copper as CuSCN
- 3. Estimation of iron as Fe_2O_3 by precipitating iron as $Fe(OH)_3$.
- 4. Preparations of Tetraamminecopper(II) sulphate, [Cu(NH₃)₄]SO₄.H₂O
- 5. Preparations of Cis and trans K[Cr(C₂O₄)₂.(H₂O)₂] Potassium dioxalatodiaquachromate (III)
- 6. Preparations of Potassium tris(oxalato)ferrate(III)
- 7. Chromatographic separations by paper chromatographic separation of Ni (II) and Co (II)
- 8. Paper chromatographic separation of Cu (II) and Cd (II)

Internal Assessment (IA)	External Exam	Total Marks
	(ETE)	
50	50	100

Name of The Course	ORGANIC CHEMISTRY III

Course Code	BSCC2007				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject				
Corequisite	Students should have fundamental knowledge of Organic Chemistry				
Antirequisite					
	•	L	Т	Р	С
		4	0	0	4

Course Objectives: The objective is to study the preparation methods and chemical & medicinal properties of nitrogen containing compounds, polynuclear hydrocarbons, heterocyclic compounds, alkaloids & terpenes.

Course Outcomes

CO1	Illustrate preparation methods and chemical properties of nitrogen containing compounds. (K3)		
CO2	Determine structure and preparation methods of polynuclear hydrocarbons. (K2)		
CO3	Generalize classification, synthesis methods and reaction. mechanisms of heterocyclic compounds. (K3)		
CO4	Determine structure, preparation methods, properties and medicinal importance of alkaloids.(K3)		
CO5	Deduce the structures of various terpenes along with their synthetic methods. (K3)		
CO6	Compile the recent therapeutic uses of Alkaloids and Terpenes. (K6)		

Text Book (s)

· Morrison, R. T. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India)Pvt. Ltd. (Pearson Education).

 \cdot Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd.(Pearson

Education).

· Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products),

Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

· Acheson, R.M. Introduction to the Chemistry of Heterocyclic compounds, JohnWelly & Sons (1976).

Reference Book (s)

Graham Solomons, T.W. Organic Chemistry, John Wiley & Sons, Inc.

- · McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage LearningIndia Edition, 2013.
- · Kalsi, P. S. Textbook of Organic Chemistry 1st Ed., New Age International (P)Ltd. Pub.
- · Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; Organic Chemistry, Oxford University Press.
- · Singh, J.; Ali, S.M. & Singh, J. Natural Product Chemistry, Prajati Parakashan(2010).

Unit-1 Nitrogen Containing Functional Groups

Preparation and important reactions of nitro and compounds, nitriles and isonitriles Amines: Effect of substituent and solvent on basicity; Preparation and properties: Gabriel phthalimide synthesis, carbylamine reaction, Mannich reaction, Hoffmann's exhaustive methylation, Hofmann-elimination reaction; Distinction between 1° , 2° and 3° amines with Hinsberg reagent and nitrous acid. Diazonium Salts: Preparation and their synthetic applications.

Unit-2 Polynuclear Hydrocarbons

Reactions of naphthalene, phenanthrene and anthracene Structure, Preparation and structure elucidation.

Unit-3 Heterocyclic Compounds

Classification and nomenclature, Structure, aromaticity in 5-numbered and 6-membered rings containing one heteroatom; Synthesis, reactions and mechanism of substitution reactions of: Furan, Pyrrole (Paal-Knorr synthesis, Knorr pyrrole synthesis, Hantzsch synthesis), Thiophene, Pyridine (Hantzsch synthesis), Pyrimidine, Structure elucidation of indole, Fischer indole synthesis and Madelung synthesis), Structure elucidation of quinoline and isoquinoline, Skraup synthesis, Friedlander's synthesis, Knorr quinoline synthesis, DoebnerMiller synthesis. Derivatives of furan: Furfural

Unit-4 Alkaloids

Natural occurrence, General structural features, Isolation and their physiological action, Hoffmann's exhaustive methylation, Emde's modification, Structure elucidation and synthesis of Nicotine. Medicinal importance of Nicotine, Quinine, Morphine, Cocaine, and Reserpine.

Unit-5 Terpenes

Occurrence, classification, isoprene rule; Elucidation of stucture and synthesis of Citral, Neral and α -terpineol.

Unit-6 Recent advancement in Natural Product Chemistry

Advance Therapeutic use of Alkaloids and Terpenes, Advance use of Heterocyclic compounds

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

48

5 hrs

6 hrs

17 hrs

6 hrs

4 hrs

16 hrs

Name of The Course	ORGANIC CHEMISTRY III Lab				
Course Code	BSCC2057				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject				
Corequisite	Basic knowledge of Organic Chemistry				
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives: The objective is to synthesize different organic compounds.

Course Outcomes

CO1	Prepare acetyl derivatives of amines both by conventional and green method.(K3)
CO2	Prepare acetyl derivatives of phenols both by conventional and green method.(K3)
CO3	Synthesize benzoyl derivatives of anilines and phenols.(K5)
CO4	Synthesize nitro derivative of salicylic acid both by conventional and green method.(K5)
CO5	Produce hydrolyzed derivative of ester or amide and semicarbazide derivatives of carbonyl compounds.(K3)

Text Book (s)/ Reference Books

□ Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)

□ Furniss, B.S., Hannaford, A.J., Smith, P.W.G. & Tatchell, A.R. Practical Organic

Chemistry, 5th Ed. Pearson (2012)

□ Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry:

Preparation and Quantitative Analysis, University Press (2000).

□ Ahluwalia, V.K. & Dhingra, S. Comprehensive Practical Organic Chemistry: Qualitative

Analysis, University Press (2000).

Organic preparations:

i. Acetylation of one of the following compounds: amines (aniline, o-, m-, p-toluidines

and o-, m-, p-anisidine) and phenols (β -naphthol, vanillin, salicylic

acid) by any one method:

a. Using conventional method.

b. Using green approach

ii. Benzolyation of one of the following amines (aniline, o-, m-, p- toluidines and o-,

m-, p-anisidine) and one of the following phenols (β-naphthol, resorcinol, pcresol)

by Schotten-Baumann reaction.

iii. Nitration of any one of the following:

a. Acetanilide/nitrobenzene by conventional method

b. Salicylic acid by green approach (using ceric ammonium nitrate).

iv. Hydrolysis of amides and esters.

v. Semicarbazone of any one of the following compounds: acetone, ethyl methyl

ketone, cyclohexanone, benzaldehyde.

The above derivatives should be prepared using 0.5-1g of the organic compound. The solid

samples must be collected and may be used for recrystallization, melting point and TLC.

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

Name of The Course	Green Chemistry				
Course Code	BSCC 2101				
Prerequisite	Students should have the basic knowledge of various green chemistry principles and various other alternate methods that can be opted in place of the conventional methods.				
Co-requisite	This course involves the basic understanding about various green chemistry principles, alternate routes, designing of green reactions and the future trends.				
Anti-requisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

Course Outcomes

CO1	Identify the scope of environmental studies and its need in present day society. (K3)
	Illustrate the 12 basic principles of Green Chemistry. (K2)
CO2	
CO3	Explain the upcoming new trends in green chemistry synthesis and some real world
	experiences. (K2)

CO4	Identify the use of Microwaves and Ultrasonic waves in Green Chemistry. (K3)
CO5	Analyze the role of sustainable development in Green Chemistry. (K4)
CO6	Compile the various latest green technologies based on green chemistry principles.
	(K6)

Text Book (s)

- Ahluwalia, V.K. & Kidwai, M.R. New Trends in Green Chemistry, Anamalaya Publishers (2005).
- □ Anastas, P.T. & Warner, J.K.: *Green Chemistry Theory and Practical*, Oxford University Press (1998).
- □ Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker (2001).
- □ Cann, M.C. & Connely, M.E. *Real-World cases in Green Chemistry*, American Chemical Society, Washington (2000).

Reference Book (s)

- □ Ryan, M.A. & Tinnesand, M. *Introduction to Green Chemistry*, American Chemical Society, Washington (2002).
- □ Lancaster, M. *Green Chemistry: An Introductory Text* RSC Publishing, 2nd Edition, 2010.

Unit 1	Introduction to Green Chemistry	6 hrs		
What i	s Green Chemistry? Need for Green Chemistry. Goa	ls of Green Chemistry.		
Limita	tions/ Obstacles in the pursuit of the goals of Green	Chemistry.		
Unit 2	Principles of Green Chemistry and Designing a Chem	ical synthesis 15 hrs		
Twelve	e principles of Green Chemistry with their explanation	ons and examples and special		
empha	sis on the following:			
	Designing a Green Synthesis using these principles;	Prevention of Waste/ byproducts;		
	maximum incorporation of the materials used in the	ne process into the final products,		
	Atom Economy, calculation of atom economy	of the rearrangement, addition,		
	substitution and elimination reactions.			
	□ Green solvents- supercritical fluids, water as a solvent for organic reactions, ionic			
	liquids, fluorous biphasic solvent.			
	Energy requirements for reactions – alternative sources	irces of energy: use of microwaves		
	and ultrasonic energy.			
	Use of catalytic reagents, comparison of heterogeneous	ous and homogeneous catalysis.		
	Prevention of chemical accidents designing greene	r processes, inherent safer design,		
	principle of ISD, subdivision of ISD, minimiza	tion, simplification, substitution,		
	moderation and limitation.			
	Strengthening/ development of analytical techniq	ues to prevent and minimize the		

generation of hazardous substances in chemical processes.					
Unit-3 Green Synthesis of	Some compounds		5 hrs		
Green Synthesis of the fo	llowing compounds: adi	pic acid, catechol, diso	dium iminodiacetate		
(alternative to Strecker sy	nthesis).				
Unit-4: Green Reactions and	d some real world cases	1	0 hrs		
1. Microwave assisted rea	actions in water: Hofman	nn Elimination, methy	l benzoate to benzoic		
acid, oxidation of toluene	and alcohols; Diels-Alder	r reaction and Decarbo	exylation reaction.		
2. Ultrasound assiste	ed reactions: Sonochem	ical Simmons-Smith	Reaction (Ultrasonic		
alternative to Iodine)					
3. Surfactants for carbon dioxide – replacing smog producing and ozone depleting solvents					
with CO2 for precision cleaning and dry cleaning of garments.					
Unit-5Sustainable development and future trends8 hrs					
Oxidation reagents and catalysts; Biomimetic, multifunctional reagents, Green chemistry in					
sustainable development and Zero Waste Technology, innovative products.					
Unit-6 Latest advancements in Green chemistry and technology6hrs					
Negative effect of heavy metals on humans and environment, Future status of green					
chemistry, Green and sustainable future of science and technology, Green economy.					
Continuous Assessment Patte	ern				
Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks		

Course Code	Course Name	L	Т	Р	С
BBS09T2411	RESEARCH METHODOLOGY AND STATISTICS	2	0	0	2

50

100

20

Course Objective: The objective of the course is to impart research based knowledge to the students. They would be taught the various ways of data collection, research methodologies adopted in different settings, and statistical methods.

Course Outcome:

30

CO1	Students will get separately familiar with terms research and methodology, respectively.
CO2	Identifying different type of research sampling and research design.
CO2	Students will understand raw data, primary data, secondary data and their different
	methods of collection.
CO4	Students will appraise the application of sampling through statistics.

CO5	Students will get familiar with different descriptors of statistics to analyse data both
	quantitatively and qualitatively.
CO6	Students will develop the statistical analysis indulges in modern research for drug
	designing.

Text & References:

- Broota, K. D., Experimental designs in psychological research, Wiley eastern, New York, 1992.
- Guilford, Statistics in Psychology and Education, McGraw Hill, New York, 1986.
- J T Walker, Statistics in Criminology and Criminal Justice analysis and Interpretation
- Leo, A., & Hoekman, D. H. (1995). *Exploring QSAR*. American Chemical Society.
- Chanin Nantasenamat, Chartchalerm Isarankura-Na-Ayudhya, Thanakorn Naenna, Virapong Prachayasittikul, A Practical Overview of Quantitative Structure- Activity Relationship. EXCLI Journal 2009;8:74-88.
- Wiktor Pronobis, Alexandre Tkatchenko, and Klaus-Robert Muller, J. Chem. Theory Comput. 2018, 14, 2991–3003

6 hrs **Definition**. Unit-1: Introduction to Research Methodology concept and research in science; Introduction to Research Methodology, Research methodology in science. Unit-2: Research in Scientific and Social Settings 5hrs Research Design: Research Sampling, rationale for using a particular sampling procedure, **Probability.** Unit-3: Tools of Data Collection 5hrs Data and its types, Methods for Collecting Data, Observation method, Questionnaire, Other **Methods** Unit- 4: Introduction to Statics 4hrs Introduction to statistics (Biostatistics); Sample and Population, parametric and non parametric statistics. 5hrs Unit- 5: Descriptive Statistics Measures of central tendency; Measures of dispersion and deviation; graphical representation of the data.Correlation and Regression Unit 6: Recent research advances 3 hrs Descriptors, Quantitative structure-activity relationship (QSAR), Quantitative structureproperty relationship(QSPR), Drug designing.

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Organic Chemistry IV
Course Code	BSCC3001

Prerequisite	Students should qualify 10+2 or equivalent examinatio stream with Chemistry as major subject	n in	Scie	nce
Corequisite	Students should have fundamental knowledge of Organic	Che	mistr	·у
Antirequisite				
	L	Т	Р	С
	4	0	0	4

Course Objectives:

The focus area of this course is on the chemistry of biomolecules i.e. amino acids, peptides, proteins, enzymes, carbohydrates and lipids. Through the study of energetics in biological systems, it aims to build the concept of metabolism for biological systems more lucid.

Course Outcomes

CO1	Describe the components structure and reaction of nucleic acid. (K2)
CO2	Illustrate the classification, synthesis, structure and properties of amino acids. (K3)
CO3	Determine the mechanism of enzyme action and role different factors. (K3)
CO4	Categorize the Carbohydrates and their biological importance (K2)
CO5	Illustrate the metabolism, formation and mechanism of ATP to understand the concept of energy in biosystems. (K3)
CO6	Compile the advance therapeutic uses of different biomolecules. (K6)

Reference Books:

- 1. Berg, J.M., Tymoczko, J.L. & Stryer, L. (2006) Biochemistry. 6th Ed. W.H. Freeman and Co.
- 2. Nelson, D.L., Cox, M.M. &Lehninger, A.L. (2009) *Principles of Biochemistry. IVEdition.* W.H. Freeman and Co.
- 3. Murray, R.K., Granner, D.K., Mayes, P.A. &Rodwell, V.W. (2009) *Harper'sIllustrated Biochemistry*. XXVIII edition. Lange Medical Books/ McGraw-Hill.
- 4. Manual of Biochemistry Workshop, 2012, Department of Chemistry, University of Delhi.
- 5. Arthur, I. V. Quantitative Organic Analysis, Pearson.

Unit 1 Nucleic Acids	8 hrs		
Components of nucleic acids, Nucleosides and nucleotides; Structure, synthesis	and reactions of:		
Adenine, Guanine, Cytosine, Uracil and Thymine; Structure of polynucleotides	5.		
Unit 2 Amino Acids, Peptides and Proteins	12 hrs		
Amino acids, Peptides and their classification. α -Amino Acids - Synthesis, ionic properties and reactions.			
Zwitterions, pka values, isoelectric point and electrophoresis; Study of peptid	es: determination of their		
nrimary structures and group analysis methods of pentide synthesis Synth	asis of poptidos using N-		
primary structures-end group analysis, methods of peptide synthesis. Synthesis	lesis of peptides using 11-		
nrotecting C-protecting and C-activating groups -Solid-phase synthesis			
protecting, o protecting and o activating groups bond phase synthesis.			
Unit 3 Enzymes	8 hrs		
	0 1115		

Introduction, classification and characteristics of enzymes. Salient features of active site of enzymes.Mechanism of enzyme action (taking trypsin as example), factors affecting enzyme action, coenzymes and cofactors and their role in biological reactions, specificity of enzyme action (including stereospecificity), enzyme inhibitors and their importance, phenomenon of inhibition (competitive, uncompetitive and non-competitive inhibition including allosteric inhibition).

Unit 4 Carbohydrates

10hrs

Occurrence, classification and their biological importance.Monosaccharides: Constitution and absolute configuration of glucose and fructose, epimers and anomers, mutarotation, determination of ring size of glucose and fructose, Haworth projections and conformational structures; Interconversions of aldoses and ketoses; Killiani- Fischer synthesis and Ruff degradation;Disaccharides – Structure elucidation of maltose, lactose and sucrose.Polysaccharides – Elementary treatment of starch, cellulose and glycogen.

Unit 5 Lipids & Concept of Energy in Biosystems 10hrs

Introduction to oils and fats; common fatty acids present in oils and fats, Hydrogenntion of fats and oils, Saponification value, acid value, iodine number. Reversion and rancidity. Cells obtain energy by the oxidation of foodstuff (organic molecules). Introduction to metabolism (catabolism, anabolism). ATP: The universal currency of cellular energy, ATP hydrolysis and free energy change. Agents for transfer of electrons in biological redox systems: NAD⁺, FAD.Conversion of food to energy: Outline of catabolic pathways of carbohydrate- glycolysis, fermentation, Krebs cycle. Overview of catabolic pathways of fat and protein. Interrelationship in the metabolic pathways of protein, fat and carbohydrate. Caloric value of food, standard caloric content of food types.

Unit 6 Bio-medical Applications of Biomolecules

(4 lectures)

Recent advances in Biomolecules as therapeutic Agents

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Experiment 1. Estimation of glycine by Sorenson's formalin method.
Experiment 2. Study of the titration curve of glycine.
Experiment 3. Study of the action of salivary amylase on starch at optimum conditions.
Experiment 4. Effect of temperature on the action of salivary amylase.
Experiment 5. Saponification value of an oil or a fat.
Experiment 6. Determination of Iodine number of an oil/ fat
Exp.7. Extraction of caffeine from tea leaves.

Exp.8. Preparation of sodium polyacrylate.

Exp.9. Preparation of methyl orange.

Course

Objectives:

Students will able to estimate amino acids and determine saponification value and Iodine number of an oil or a fat

Course Outcomes

CO1	Estimation and titration of gycine. (K4)
CO2	Analyze the action and effect of temperature of amylase. (K3)
CO3	Determine the saponification value and Iodine number of an oil or a fat. (K4)
CO4	Extract and characterize organic compounds from plant products (K5)
CO5	Prepare and Characterize different dyes. (K5)

Text Book (s)/ Reference Book (s)

• Manual of Biochemistry Workshop, 2012, Department of Chemistry, University of Delhi.

Name of The Course	ORGANIC CHEMISTRY -IV LAB				
Course Code	BBS05P3101				
Prerequisite	Students should qualify 10+2 or equivalent examin stream with Chemistry as major subject	natio	on in	n Scier	nce
Corequisite	Students should have fundamental knowled Chemistry	ge	of	Orga	nic
Antirequisite					
		L	Т	Р	С
		0	0	4	2

• Arthur, I. V. Quantitative Organic Analysis, Pearson

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test	Total Marks
	(ETE)	
50	50	100

Name of The Course	Physical Chemistry IV		
Course Code	BSCC3002		
Prerequisite	Students should qualify 10+2 or equivalent examination in stream with Chemistry as major subject	Scier	nce
Corequisite	Students should have fundamental knowledge of I Chemistry	Physi	cal
Antirequisite			
	L T	Р	С
	4 0	0	4

Course Objectives:

1. The objective of this course is to identify the limitations of classical mechanics and the need of quantum chemistry.

2. To familiarize the students with postulates of quantum chemistry and apply them to derive equations for various models and hydrogen atoms.

Course Outcomes

CO1	D Describe fundamentals concepts of quantum mechanics and its applications. (K2)
CO2	Determine the properties and shape of molecules by various theories of chemical
	bonding. (K3)
	bonding.
CO3	Distinguish the electromagnetic radiation with molecules and various types of spectra.
	(K4)
CO4	Apply the method of various spectroscopic techniques for characterization and analysis.
	(K3)
CO5	E Explain photochemical reactions with example. (K2)
CO6	D Compile recent advancements in different field of physical chemistry(K6)

Text Book (s)/Reference Book (s)

- 1. Banwell, C. N. &McCash, E. M. *Fundamentals of Molecular Spectroscopy* 4th Ed. Tata McGraw-Hill: New Delhi (2006).
- 2. Chandra, A. K. Introductory Quantum Chemistry Tata McGraw-Hill (2001).
- 3. House, J. E. Fundamentals of Quantum Chemistry 2nd Ed. Elsevier: USA (2004).
- 4. Kakkar, R. *Atomic & Molecular Spectroscopy: Concepts & Applications*, Cambridge University Press (2015).
- 5. Lowe, J. P. & Peterson, K. Quantum Chemistry, Academic Press (2005).

Unit 1 Quantum Chemistry	12 hrs

Postulates of quantum mechanics, quantum mechanical operators, Schrödinger equation and its application to free particle and "particle-in-a-box" (rigorous treatment), quantization of energy levels, zero-point energy and Heisenberg Uncertainty principle; wavefunctions, probability distribution functions, nodal properties, Extension to two and three dimensional boxes, separation of variables, degeneracy. Qualitative treatment of simple harmonic oscillator model of vibrational motion: Setting up of Schrödinger equation and discussion of solution and wavefunctions. Vibrational energy of diatomic molecules and zero-point energy. Angular momentum: Commutation rules, quantization of square of total angular momentum and zcomponent. Rigid rotator model of rotation of diatomic molecule.Schrödinger equation, transformation to spherical polar coordinates. Separation of variables. Spherical harmonics. Discussion of solution .Qualitative treatment of hydrogen atom and hydrogen-like ions: setting up of Schrödinger equation in spherical polar coordinates, radial part, quantization of energy (only final energy expression). Average and most probable distances of electron from nucleus. Setting up of Schrödinger equation for many-electron atoms (He, Li). Need for approximation methods. Statement of variation theorem and application to simple systems (particle-in-a-box, harmonic oscillator, hydrogen atom).

Unit 2 Chemical bonding:

10 hrs

Covalent bonding, valence bond and molecular orbital approaches, LCAO-MO treatment of H2⁺. Bonding and antibonding orbitals.Qualitative extension to H2. Comparison of LCAO-MO and VB treatments of H2 (only wavefunctions, detailed solution not required) and their limitations. Refinements of the two approaches (Configuration Interaction for MO, ionic terms in VB).Qualitative description of LCAO-MO treatment of homonuclear and heteronuclear diatomic molecules (HF, LiH).Localised and non-localised molecular orbitals treatment of triatomic (BeH2, H2O) molecules. Qualitative MO theory and its application to AH2 type molecules.

Unit 3 Molecular Spectroscopy I:

10 hrs

Interaction of electromagnetic radiation with molecules and various types of spectra; Born-Oppenheimer approximation.

Rotation spectroscopy: Selection rules, intensities of spectral lines, determination of bond lengths of diatomic and linear triatomic molecules, isotopic substitution.

Vibrational spectroscopy: Classical equation of vibration, computation of force constant, amplitude of diatomic molecular vibrations, anharmonicity, Morse potential, dissociation energies, fundamental frequencies, overtones, hot bands, degrees of freedom for polyatomic molecules, modes of vibration, concept of group frequencies. Vibration-rotation spectroscopy: diatomic vibrating rotator, P, Q, R branches.

Unit 4 Molecular Spectroscopy II:

10 hrs

Raman spectroscopy: Qualitative treatment of Rotational Raman effect; Effect of nuclear spin, Vibrational Raman spectra, Stokes and anti-Stokes lines; their intensity difference, rule of mutual exclusion.

Electronic spectroscopy: Franck-Condon principle, Morse potential energy curve for diatomic molecules, electronic transitions, singlet and triplet states, terms, symbols, fluorescence and phosphorescence, dissociation and predissociation, calculation of electronic transitions of polyenes using free electron model, Walsh Diagrams.

Nuclear Magnetic Resonance (NMR) spectroscopy: Principles of NMR spectroscopy, Larmor precession, chemical shift and low resolution spectra, different scales, spin-spin coupling and high resolution spectra, interpretation of PMR spectra of organic molecules.

Electron Spin Resonance (ESR) spectroscopy: Its principle, hyperfine structure, ESR of simple radicals.

Unit 5 Photochemistry

8 hrs

Name of The Course	PHYSICAL CHEMISTRY -IV LAB
Course Code	BSCC3052
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with a minimum of 50% marks secured in Chemistry
Corequisite	Students should have fundamental knowledge of Physical Chemistry
Antirequisite	

L	Т	Р	C
0	0	4	2

Characteristics of electromagnetic radiation, Lambert-Beer's law and its limitations, physical significance of absorption coefficients. Laws, of photochemistry, quantum yield, actinometry, examples of low and high quantum yields, photochemical equilibrium and the differential rate of photochemical reactions, photosensitised reactions, quenching. Role of photochemical reactions in biochemical processes, photostationary states, chemiluminescence.

Unit 6 Recent Advancement in Physical Chemistry				04 hrs					
Comparative	study	of	classical,	statistical	and	quantum	mechanics,	applications	of
spectroscopic	and pho	otoc	hemical teo	chniques					

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Course Objectives:

Students will able to operate UV spectrophotometer and Colorimeter.

Course Outcomes

CO1	Recognize basic laboratory rules and basic principles of lab safety. (K2)
CO2	Operate the UV/Visible spectroscopy and analyse, determine theparameter of solutions. (K4)
CO3	Estimate the 200-350 nm UV spectra of the given compounds in water. (K3)
CO4	Determine the concentrations, kinetics and dissociation constant by using Colourimetry. (K4)
CO5	Perform colorimetric analysis of compounds using UV spectrophotometer. (K4)

Text Book (s)/Reference Book (s)

- Khosla, B. D.; Garg, V. C. & Gulati, A., Senior Practical Physical Chemistry, R. Chand & Co.: New Delhi (2011).
- Garland, C. W.; Nibler, J. W. & Shoemaker, D. P. Experiments in Physical Chemistry 8th Ed.; McGraw-

Hill: New York (2003).

Halpern, A. M. &McBane, G. C. *Experimental Physical Chemistry 3rdEd.;* W.H. Freeman & Co.: New York (2003).

UV/Visible spectroscopy

Experiment 1. Study the 200-500 nm absorbance spectra of KMnO4 and K2Cr2O7 (in 0.1 M H2SO4) and determine the λ max values. Calculate the energies of the two transitions in different units (J molecule⁻¹, kJ mol⁻¹, cm⁻¹, eV).

Experiment 2. Study the pH-dependence of the UV-Vis spectrum (200-500 nm) of K2Cr2O7.

Experiment 3. Record the 200-350 nm UV spectra of the given compounds (acetone, acetaldehyde, 2-propanol, acetic acid) in water. Comment on the effect of structure on the UV spectra of organic compounds.

Colourimetry

Experiment 4. Verify Lambert-Beer's law and determine the concentration of CuSO4/KMnO4/K2Cr2O7 in a solution of unknown concentration

Experiment 5. Determine the concentrations of KMnO4 and K2Cr2O7 in a mixture.

Experiment 6. Study the kinetics of iodination of propanone in acidic medium.

Experiment 7. Determine the amount of iron present in a sample using 1,10-phenathroline.

Experiment 8. Determine the dissociation constant of an indicator (phenolphthalein).

Experiment 9.Study the kinetics of interaction of crystal violet/ phenolphthalein with sodium hydroxide.

Experiment 10. Analysis of the given vibration-rotation spectrum of HCl(g).

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test	Total Marks
	(ETE)	
50	50	100

Name of The Course	INORGANIC CHEMISTRY IV				
Course Code	BSCC3003				
Prerequisite	Students should qualify 10+2 or equivalent exami	nati	on ir	1	
	Science stream with Chemistry as major subject				
Corequisite	Students should have the basic knowledge of Inor	gani	c ch	emist	try
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

- 1. To impart the knowledge of key concepts of Organometallic compounds
- 2. To present a comprehensive introduction to inorganic chemistry.

Course Outcomes

CO1	Analyze the inorganic cations and solubility products KA
	Analyze the morganic cations, among and solubility products. 154
CO ₂	Illustrate the structures of mononuclear and binuclear carbonyls and its MO diagram.
	K3
CO3	Correlate the basic reactions and concept of metal alkyls and ferrocene. K4
CO4	Determine the beneficiary and toxic role of ions in biological and medicinal system. K4
CO5	Illustrate the catalytic properties of Organometallic in industrial processes. K3
CO6	Discuss the recent development in field of organometallic compounds. K6

Text Book (s)

- Svehla, G. Vogel's Qualitative Inorganic Analysis, 7th Edition, Prentice Hall, 1996.
- Cotton, F.A.G.; Wilkinson & Gaus, P.L. Basic Inorganic Chemistry 3rd Ed.; Wiley India,
- Huheey, J. E.; Keiter, E.A. & Keiter, R.L. *Inorganic Chemistry, Principles of Structure and Reactivity* 4th Ed., Harper Collins 1993, Pearson, 2006.
- Sharpe, A.G. Inorganic Chemistry, 4th Indian Reprint (Pearson Education) 2005
- Douglas, B. E.; McDaniel, D.H. & Alexander, J.J. *Concepts and Models in Inorganic Chemistry3rd Ed.*, John Wiley and Sons, NY, 1994.
- Greenwood, N.N. & Earnshaw, A. *Chemistry of the Elements, Elsevier 2nd Ed*, 1997 (Ziegler Natta Catalyst and Equilibria in Grignard Solution).

Reference Book (s)

- . Lee, J.D. Concise Inorganic Chemistry 5th Ed., John Wiley and sons 2008.
- Powell, P. Principles of Organometallic Chemistry, Chapman and Hall, 1988.
- Shriver, D.D. & P. Atkins, Inorganic Chemistry 2nd Ed., Oxford University Press, 1994.
- Basolo, F. & Pearson, R. *Mechanisms of Inorganic Reactions: Study of Metal Complexes in Solution 2nd Ed.*, John Wiley & Sons Inc; NY.
- Purcell, K.F. & Kotz, J.C., Inorganic Chemistry, W.B. Saunders Co. 1977
- Miessler, G. L. & Tarr, D.A. Inorganic Chemistry 4th Ed., Pearson, 2010.
- Collman, J. P. *et al. Principles and Applications of Organotransition Metal Chemistry*. Mill Valley, CA: University Science Books, 1987.
- Crabtree, R. H. *The Organometallic Chemistry of the Transition Metals. j* New York, NY: John Wiley, 2000.
- Spessard, G. O. & Miessler, G.L. Organometallic Chemistry. Upper Saddle River, NJ: Prentice-Hall, 1996.

Unit-1 :Theoretical Principles in Qualitative Analysis (H2S Scheme)14 hrsBasic principles involved in analysis of cations and anions and solubility products, common ioneffect. Principles involved in separation of cations into groups and choice of group reagents.Interfering anions (fluoride, borate, oxalate and phosphate) and need to remove them afterGroup II. Analysis of anions and cations.

Unit-2 Organometallic Con	npounds	1() hrs		
Definition and classification	on of organometallic com	pounds on the basis of	f bond type. Concept		
of hapticity of organic ligands. Metal carbonyls: 18 electron rule, electron count of					
mononuclear, polynuclear	and substituted metal of	carbonyls of 3d series.	General methods of		
preparation (direct com	bination, reductive car	bonylation, thermal	and photochemical		
decomposition) of mono a	nd binuclear carbonyls o	f 3d series. Structures	of mononuclear and		
binuclear carbonyls of Cr	, Mn, Fe, Co and Ni usin	ng VBT. □-acceptor be	ehaviour of CO (MO		
diagram of CO to be disc	ussed), synergic effect an	nd use of IR data to ex	xplain extent of back		
bonding.					
Unit-3 Metal Alkyls and A	ryls 8 hrs				
Metal Alkyls: Important	structural features of	methyl lithium (tetr	ramer) and trialkyl		
aluminium (dimer), con	cept of multicentre k	oonding in these co	ompounds. Role of		
triethylaluminium in po	lymerisation of ethene	(Ziegler – Natta C	atalyst). Ferrocene:		
Preparation and reaction	ns (acetylation, alkylatio	on, metallation, Man	nich Condensation).		
Aromaticity. Comparison	of aromaticity and reacti	ivity with that of benze	ene.		
Unit-4 Bioinorganic Chem	istry	10 hrs			
Metal ions present in biolo	ogical systems, classificat	ion of elements accord	ing to their action in		
biological system. Geocher	nical effect on the distrib	ution of metals. Sodiun	n / K-pump, carbonic		
anhydrase and carboxype	ptidase. Excess and defici	iency of some trace me	tals.		
Toxicity of metal ions (Hg	, Pb, Cd and As), reasons	for toxicity, Use of ch	elating agents in		
medicine.Iron and its appl	ications in bio-systems, H	Iaemoglobin; Storage	and transfer of iron.		
Unit-5 Catalysis by Organo	metallic Compounds	8 hrs			
Study of the following in	dustrial processes and t	their mechanism:1. A	kene hydrogenation		
(Wilkinsons Catalyst), 2. H	Hydroformylation (Co sal	lts)3. Wacker Process,	4. Synthetic gasoline		
(Fischer Tropsch reaction))5. Synthesis gas by meta	l carbonyl complexes			
Unit -6 Application of orga	anometallic compounds		4 hrs		
Recent Advancement and	d development in the fie	ld organometallic co	mpounds and their		
uses.					
Continuous Assessment Patte	ern				
Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks		
30	20	50	100		
Name of The Course	INORGANIC CHEMIS	TRY IV Lab			
Course Code	BSCC3053				

Corequisite

Prerequisite

and cations.

Students should have the knowledge of atoms, elements, anions

Antirequisite				
	L	Т	Р	С
	0	0	4	2

Course Objectives:

- 1. To impart the knowledge of key concepts of analysis of cations and anions.
- 2. To present a comprehensive introduction to inorganic chemistry.

Course Outcomes

CO1	Analyze qualitatively the mixtures containing anions and cations. K4
CO2	Evaluate the spot tests by spectrophotometric method. K5
CO3	Synthesis of inorganic complexes and its Ligand exchange reactions. K5
CO4	Test the spectrochemical series. K4
CO5	Synthesize Ammine complex of Ni(II) and its ligands. K5

Text Book (s)

- Vogel's *Qualitative Inorganic Analysis*, Revised by G. Svehla. Pearson Education, 2002.
- Marr & Rockett Practical Inorganic Chemistry. John Wiley & Sons 1972.

Reference Book (s)

• Vogel's *Qualitative Inorganic Analysis,* Revised by G. Svehla. Pearson Education, 2002.

Unit-1:

Qualitative semi micro analysis of mixtures containing 3 anions and 3 cations. Emphasis should be given to the understanding of the chemistry of different reactions. The following radicals are suggested:

CO₃²⁻, NO₂⁻, S₂⁻, SO₃²⁻, S₂O₃²⁻, CH₃COO⁻, F⁻, Cl⁻, Br⁻, I⁻, NO₃⁻, BO₃³⁻, C₂O₄²⁻, PO₄³⁻, NH₄⁺, K⁺, Pb²⁺, Cu²⁺, Cd²⁺, Bi³⁺, Sn²⁺, Sb³⁺, Fe³⁺, Al³⁺, Cr³⁺, Zn²⁺, Mn²⁺, Co²⁺, Ni²⁺, Ba²⁺, Sr²⁺, Ca²⁺, Mg²⁺

Unit-2

Mixtures should preferably contain one interfering anion, or insoluble component (BaSO₄, SrSO₄, PbSO₄, CaF₂ or Al₂O₃) or combination of anions e.g. CO₃²⁻ and SO₃²⁻, NO²⁻ and NO³⁻, Cl⁻ and Br⁻, Cl⁻ and I⁻, Br⁻ and I⁻, NO³⁻ and Br⁻, NO³⁻ and I⁻.

Spot tests should be done whenever possible.

Unit-3

Measurement of 10 Dq by spectrophotometric method

Unit-4

Verification of spectrochemical series

Unit-5

Synthesis of ammine complexes of Ni(II) and its ligand exchange reactions (e.g. bidentate ligands like acetylacetone, DMG, glycine) by substitution method.

Internal Assessment (IA)	End Term Test	Total Marks
	(ETE)	
50	50	100

Name of The Course	ORGANIC CHEMISTRY V				
Course Code	BSCC3004				
Prerequisite	Students should qualify 10+2 or equivalent examines stream with Chemistry as major subject	natio	on ir	n Scier	nce
Corequisite	Students should have fundamental knowled Chemistry	ge	of	Orga	nic
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

The core course of Organic Chemistry V deals with some classes of organic compounds finding applications in everyday life namely; polymers, dyes, lipids and pharmaceutical compounds. The chemistry of these compounds in general will be explained through naturally occurring and synthetic compounds. The course also introduces the learner to various tools and techniques for identifying and characterizing the organic compounds through their interactions with electromagnetic radiation viz. IR, NMR and UV- Visible spectroscopy

Course Outcomes

CO1	1. Explain the concepts of UV,IR and NMR spectra of simple organic molecules. (K2)
CO2	Analyze and apply UV,IR and NMR spectroscopy for identification of organic
	compounds. (K4)
CO3	3. Generalize the Classification, structure and therapeutic uses of pharmaceutical
	compounds. (K2)
CO4	4. Compare synthetic and natural dyes with their structure elucidation. (K4)
CO5	5. Demonstrate different types of polymer and characterize them. (K2)
CO6	Elaborate Modern Spectroscopic techniques & its applications .(K6)

Text Book (s)/Reference Book (s)

- Kalsi, P. S. Textbook of Organic Chemistry 1st Ed., New Age International (P) Ltd. Pub.
- Morrison, R. T. & Boyd, R. N. *Organic Chemistry*, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- Billmeyer, F. W. Textbook of Polymer Science, John Wiley & Sons, Inc.
- Gowariker, V. R.; Viswanathan, N. V. & Sreedhar, J. *Polymer Science*, New Age International (P) Ltd. Pub.
- Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- Graham Solomons, T.W. Organic Chemistry, John Wiley & Sons, Inc.
- McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013.
- Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; Organic Chemistry, Oxford University Press.
- Singh, J.; Ali, S.M. & Singh, J. *Natural Product Chemistry*, Prajati Prakashan (2010). Kemp, W. *Organic Spectroscopy*, Palgrave.
- Pavia, D. L. et al. Introduction to Spectroscopy 5th Ed. Cengage Learning India Ed.2015

Unit-1 Organic Spectroscopy I

	-
12	hours

General principles Introduction to absorption and emission spectroscopy.

UV Spectroscopy: Types of electronic transitions, $\lambda \max$, Chromophores and Auxochromes, Bathochromic and Hypsochromic shifts, Intensity of absorption; Application of Woodward Rules for calculation of $\lambda \max$ for the following systems: α,β unsaturated aldehydes, ketones, carboxylic acids and esters; Conjugated dienes: alicyclic, homoannular and heteroannular; Extended conjugated systems (aldehydes, ketones and dienes); distinction between cis and trans isomers.

IR Spectroscopy: Fundamental and non-fundamental molecular vibrations; IR absorption positions of O, N and S containing functional groups; Effect of H-bonding, conjugation, resonance and ring size on IR absorptions; Fingerprint region and its significance; application in functional group analysis.

Unit-2 Organic Spectroscopy II

8 hours

NMR Spectroscopy: Basic principles of Proton Magnetic Resonance, chemical shift and factors influencing it; Spin – Spin coupling and coupling constant; Anisotropic effects in alkene, alkyne, aldehydes and aromatics, Interpretation of NMR spectra of simple compounds. Applications of IR, UV and NMR for identification of simple organic molecules

Unit-3 Pharmaceutical Compounds: Structure and Importance 10 hrs

Classification, structure and therapeutic uses of antipyretics: Paracetamol (with synthesis), Analgesics: Ibuprofen (with synthesis), Antimalarials: Chloroquine (with synthesis). An elementary treatment of Antibiotics and chloramphenicol, Medicinal values of curcumin (haldi), azadirachtin (neem), vitamin C and antacid (ranitidine).

Unit-4 Dyes

8 hrs

Classification, Colour and constitution; Mordant and Vat Dyes; Chemistry of dyeing; Synthesis and applications of: Azo dyes – Methyl Orange and Congo Red (mechanism of Diazo Coupling); Triphenyl Methane Dyes -Malachite Green, Rosaniline and Crystal Violet; Phthalein Dyes – Phenolphthalein and Fluorescein; Natural dyes –structure elucidation and synthesis of Alizarin and Indigotin; Edible Dyes with examples.

Unit-5 Polymers

12 hrs

Introduction and classification including di-block, tri-block and amphiphilic polymers; Number average molecular weight, Weight average molecular weight, Degree of polymerization, Polydispersity Index. Polymerisation reactions -Addition and condensation -Mechanism of cationic, anionic and free radical addition polymerization; Metallocene-based Ziegler-Natta polymerisation of alkenes; Preparation and applications of plastics – thermosetting (phenol-formaldehyde, Polyurethanes) and thermosoftening (PVC, polythene);

Fabrics - natural and synthetic (acrylic, polyamido, polyester); Rubbers - natu	ral and
synthetic: Buna-S, Chloroprene and Neoprene; Vulcanization; Polymer ad	lditives;
Introduction to liquid crystal polymers; Biodegradable and conducting polyme	rs with
examples.	
Unit-6 Modern Spectroscopic techniques	8hrs

Raman Spectroscopy: Standard Raman Spectroscopy vs Resonance-enhanced Raman Spectroscopy, Mass Spectrometry-: Introduction of theory, ionization methods, molecule fragmentation & applications, Photoelectron spectroscopy: x-ray and Auger photoelectron spectroscopy & applications

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Battery Technology			
Course Code	BBS05T5103			
Prerequisite	Students should qualify 10+2 or equivalent examina	tion in	Scie	ence
	stream with Chemistry as major subject			
Corequisite	Basic knowledge of Thermodynamics, Chemical	Kinet	ics	and
	Electrochemistry.			
Antirequisite				
	L	. T	Р	С
	3	0	0	3

Course Objectives:

To impart knowledge of advanced electrochemistry and relevant analytical techniques **Course Outcomes**

CO1	E Explain the basic physical concepts of thermodynamics and kinetics involved in
	electrochemical reactions (K2)
CO2	Ill Illustrate the characterization methods of batteries and interpret concepts describing
	battery performance (K2)
CO3	Interpret the recent developments battery systems. (K3)
CO4	Analyze the requirements of battery systems for automotive applications and
	understand the modelling of battery systems (K4)
CO5	Explain solar energy conversion in terms of nanotechnology (K2)
CO6	Compile the recent advanced technologies adopted by Bettery Industry (K6)

Reference Book (s)

- 1. T.Minami, M.Tatsumisago, M.Wakihara, C. Iwakura, S. Kohijiya, Solid state ionics for batteries, Springer Publication, 2009
- 2. Sandeep Dhameja, Electric Vehicle Battery Systems, Newnes publication, 2001
- 3. Bard, Allen J., and Larry R. Faulkner. Electrochemical Methods: Fundamentals and Applications. 2nd ed., Wiley-VCH, Verlag, GmbH, 2000

- 4. Masataka Wakihara and Osamu Yamamoto, Lithium ion Batteries Fundamental and Performance, Wiley– VCH, Verlag GmbH, 1999
- 5. Robert A.Huggins, Advanced Batteries Materials science aspects, Springer, 2009
- 6. Nanoscience and Nanotechnology: Fundamentals of Frontiers by M.S. Ramachandra Rao, Shubra Singh
- 7. Introduction to Nanotechnology By Charles P. Poole, Jr., Frank J. Owens.

Unit-1 Introduction to Electrochemical energy storage	8 hrs			
Introduction to battery technologies, Electromotive force- Reversible	le cells- Relation between			
electrical energy and energy content of a cell-Free energy changes a	nd electromotive force in			
cell- Current challenges in Energy storage Technologies.				
Unit-2 Major Battery Chemistry Development and testing	10 hrs			
Battery performance evaluation- Primary battery - Service time- Vo	oltage data- Service life –			
ohmic load curve- Effect of operating temperature on service li	ife. Secondary batteries-			
Discharge curves, Terminal voltages- Plateau voltage –Lead acid Bat	teries – Construction and			
application.				
Unit-3 Recent Technologies	10 hrs			
Recent development of electrode materials in lithium ion batteries- Re	ecent development of solid			
electrolytes and their application to solid state batteries-Polymer sol	id electrolytes for lithium			
ion conduction- Thin Film solid state Batteries: Fundamentals, Cons	triction and application –			
Super Capacitors: Fundamental, Construction and application.				
Unit-4 Batteries for Automotives – Future prospects	8 hrs			
Degrees of vehicle electrification - Battery size vs. application -USA	BC and DOE targets for			
vehicular energy storage systems - Analysis and Simulation of batteries - Equivalent circuit				
and life modeling – Environmental concerns in battery production –	recycling of batteries			
Unit-5 Improvements in solar energy conversion and storage	10 hrs			
Better energy-efficient lighting; stronger and lighter materials the	hat will improve energy			
transportation efficiency; Energy Storage: Fuel Cells, Carbon Nano	tubes for energy storage,			
Hydrogen Storage in Carbon Nanotubes, Use of nanoscale catalysts to	save energy and increase			
the productivity in industry, Rechargeable batteries based on Nanomaterials, Nanoscale				
optical, liquid crystal and magnetic devices				
Unit-6 Future Trends of Battery Technology	4 hrs			
Recent Advance technology adopted in Battery Industry				

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	NOVEL INORGANIC SOLIDS				
Course Code	BSCC 3102				
Prerequisite	Students should qualify 10+2 or equivalent examin	atio	n in	Scie	nce
	stream with a minimum of 50% marks secured in	Che	mis	stry	
Co-requisite	Students should have fundamental knowledge	e of	' Iı	norga	nic
	chemistry				
Anti-requisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

Solid-state chemistry also referred as material chemistry currently has emerged with great focus on novelinorganic solids. It has found enormous applications in both industrial and research arenas and have helped toshape modern day recyclable adsorbents and catalysts. Novel inorganic-organic hybrid nanocomposites havereceived a lot of attention because of their abundance and cost-effective nature they can be utilized ascatalysts, as a nano reactor to host reactants for synthesis and for the controlled release of biomolecules.Materials such as semiconductors, metals, composites, nanomaterials, carbon or high-tech ceramics make lifeeasier in this era and are great sources of industrial growth and technological changes. Therefore, its exposure to the undergraduates with science backgrounds can groom them for future researches.

Course Outcomes

CO1	Understand the mechanism of solid-state synthesis and explain about the different
	characterization techniques and their principle
CO2	Understand the concept of nanomaterials, their synthesis and properties.
CO3	Ill Appreciate the existence of bioinorganic nanomaterials.
CO4	E Explain the importance of composites, conducting polymers and their applications
CO5	Understand the usage of solid materials in various instruments, batteries, etc. which
	help them to appreciate the real life importance of these materials
CO6	Compile recent advancements in Novel Inorganic Solids.

Reference Books

□ Shriver & Atkins. Inorganic Chemistry, Peter Alkins, Tina Overton, Jonathan Rourke, Mark Weller and Fraser Armstrong, 5th Edition, Oxford University Press (2011-2012)

□ Adam, D.M. Inorganic Solids: An introduction to concepts in solid-state structural chemistry. John Wiley & Sons, 1974.

□ Poole, C.P. & Owens, F.J. Introduction to Nanotechnology John Wiley & Sons, 2003.

□ Rodger, G.E. Inorganic and Solid State Chemistry, Cengage Learning India Edition, 2002.

Unit I: Synthesis and modification of inorganic solids and their Importance 16 hrs

Conventional heat and beat methods, Co-precipitation method, Sol-gel methods, Hydrothermal method, Ion-exchange and Intercalation methods. Solid electrolytes – Cationic, anionic, mixed Inorganic pigments – coloured solids, white and black pigments. Molecular material and fullerides, molecular materials & chemistry – one-dimensional metals, molecular magnets, inorganic liquid crystals.

Unit II: Nanomaterials

8 hrs

Overview of nanostructures and nanomaterials: classification.

Preparation of gold and silver metallic nanoparticles, self-assembled nanostructures-control of nanoarchitecture-one dimensional control. Carbon nanotubes and inorganic nanowires. Bioinorganic nanomaterials, DNA and nanomaterials, natural and antisical nanomaterials, bionano composites..

Unit-3: Introduction to engineering materials for mechanical construction: 8 hrs

Composition, mechanical and fabricating characteristics and applications of various types of cast irons, plain carbon and alloy steels, copper, aluminum and their alloys like duralumin, brasses and bronzes cutting tool materials, super alloys thermoplastics, thermosets and composite materials.

Unit-4:Composite materials

8 hrs

Introduction, limitations of conventional engineering materials, role of matrix in composites, classification, matrix materials, reinforcements, metal-matrix composites, polymer-matrix composites, fibre-reinforced composites, environmental effects on composites, applications of composites.

Unit-5: Speciality polymers

10 hrs

4 hrs

Conducting polymers - Introduction, conduction mechanism, polyacetylene, polyparaphenylene and polypyrrole, applications of conducting polymers, Ion-exchange resins and their applications. Ceramic & Refractory: Introduction, classification, properties, raw materials, manufacturing and applications.

Unit-6: Recent Advancements in Novel Inorganic Solids

Recent trends and Application of Novel Inorganic Solids

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	POLYMER CHEMISTRY				
Course Code	BSCC 3103				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science				
	stream with a minimum of 50% marks secured in Chemistry				
Co-requisite	Students should have fundamental knowledge of Polymers				
Anti-requisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

The primary objective of this paper is to help the student to know about the synthesis, properties and applications of polymers.

Course Outcomes

CO1	Understand about different mechanisms of polymerization and also polymerization
	techniques.
CO2	Evaluate kinetic chain length of polymers based on their mechanism and differentiate
	between polymers and copolymers
CO3	Ill Differentiate between glass transition temperature (Tg) and crystalline melting point (Tm)
CO4	K Develop knowledge about solid and solution properties of polymers
CO5	Learn properties and applications of various useful polymers in our daily life.
CO6	Compile recent advancement and technology adopted in the field of Polymer
	Chemistry.

Reference Books

🗆 R.B. Seymour & C.E. Carraher: Polymer Chemistry: An Introduction, Marcel Dekker, Inc. New York,

1981.□ G. Odian: Principles of Polymerization, 4th Ed. Wiley, 2004.

□ F.W. Billmeyer: Textbook of Polymer Science, 2nd Ed. Wiley Interscience, 1971.

□ P. Ghosh: Polymer Science & Technology, Tata McGraw-Hill Education, 1991.

□ R.W. Lenz: Organic Chemistry of Synthetic High Polymers. Interscience Publishers, New York, 1967.

Unit I:Introduction and history of polymeric materials	4 hrs				
Different schemes of classification of polymers, Polymer nomenclature, Molecular	forces and				
chemical bonding in polymers, Texture of Polymers.					
Unit II:Functionality and its importance					
Criteria for synthetic polymer formation, classification of polymerization	processes,				
Relationships between functionality, extent of reaction and degree of polymerization.					
Unit-3:Kinetics of Polymerization: 6 hrs					

Mechanism and kinetics of step growth, radical chain growth, ionic chain (both cationic and anionic) and coordination polymerizations, Mechanism and kinetics of copolymerization, polymerization techniques.

Unit-4:Crystallization and crystallinity: 24 hrs

Determination of crystalline melting point and degree of crystallinity, Morphology of crystalline polymers, Factors affecting crystalline melting point. Determination of molecular weight of polymers (Mn, Mw, etc) by end group analysis, viscometry, light scattering and osmotic pressure methods. Molecular weight distribution and its significance. Polydispersity index. Glass transition temperature (Tg) and determination of Tg, Factors affecting glass transition temperature (Tg).

Polymer Solution – Criteria for polymer solubility, Solubility parameter, Thermodynamics of polymer solutions, entropy, enthalpy, and free energy change of mixing of polymers solutions, Flory- Huggins theory, Lower and Upper critical solution temperatures.

Unit-5: Properties of Polymers (Physical, thermal, Flow & Mechanical Properties) 10 hrs

Brief introduction to preparation, structure, properties and application of the following polymers: polyolefins, polystyrene and styrene copolymers, poly(vinyl chloride) and related polymers, poly(vinyl acetate) and related polymers, acrylic polymers, fluoro polymers,polyamides and related polymers. Phenol formaldehyde resins (Bakelite, Novalac), polyurethanes, silicone polymers, polydienes, Polycarbonates, Conducting Polymers, [polyacetylene, polyaniline, poly(p-phenylene sulphide polypyrrole, polythiophene)].

Unit-6: Recent Trends in Polymer Chemistry

4 hrs

Recent advancement in Polymers and their application

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	MOLECULAR MODELLING & DRUG DESIGN				
Course Code	BSCC 3104				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with a minimum of 50% marks secured in Chemistry				
Co-requisite	Students should have fundamental knowledge of Drugs				
Anti-requisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:
The primary objective of this paper is to help the student to know about molecular modeling, simulation and designing of drugs.

Course Outcomes

CO1	Understandthe concepts of molecular modeling.
CO2	Differentiate between bond stretching and bending vibrations.
CO3	Ill Develop the knowledge of computer simulation.
CO4	K Understand Molecular Dynamics & Monte Carlo Simulation
CO5	Learn how to predict structure and design of drugs.
CO6	Analyze recent trends going on in the field of Molecular modeling and drug design.

Reference Books

- □ A.R. Leach, Molecular Modelling Principles and Application, Longman, 2001.
- □ J.M. Haile, Molecular Dynamics Simulation Elementary Methods, John Wiley and Sons, 1997.

□ Satya Prakash Gupta, QSAR and Molecular Modeling, Springer - Anamaya Publishers, 2008.

Unit I: Introduction to Molecular Modelling:	8 hrs							
Introduction. Useful Concepts in Molecular Modelling: Coordinate Systems. Potential Energy								
Surfaces. Molecular Graphics. Surfaces								
Unit II: Force Fields:	10 hrs							
Fields. Bond Stretching. Angle Bending. Introduction to nonbonded interactions. Electrostatic								
interactions. van der Waals Interactions. Hydrogen bonding in Molecular Mechanics.								
Unit-3: Energy Minimization and Computer Simulation	10 hrs							
Minimization and related methods for exploring the energy s	surface. Non-derivative method,							
First and second order minimization methods. Simple therm	odynamic properties and Phase							
Space. Boundaries. Analyzing the results of a simulation and e	estimating Errors.							
Unit-4:Molecular Dynamics & Monte Carlo Simulation	10hrs							
Molecular Dynamics Simulation Methods. Molecular Dy	vnamics using simple models.							
Molecular Dynamics with continuous potentials. Molecular Dy	ynamics at constant temperature							
and pressure. Metropolis method. Monte Carlo simulation of J	polymers.							
Unit-5: Structure Prediction and Drug Design	12 hrs							
Structure prediction - Introduction to comparative M	lodeling. Sequence alignment.							
Constructing and evaluating a comparative model. Pre-	dicting protein structures by							
'Threading', Molecular docking. Structure based de novo ligand design,								
Drug Discovery – Chemoinformatics – QSAR.								
Unit-6: Recent Trends in Molecular Modeling and Drug Designing	g 4 hrs							
Advance technology adapted for modelling and Drug Design								

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Computational Chemistry				
Course Code	BSCC 2102				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science				
	stream with a minimum of 50% marks secured in Chemistry				
Co-requisite	Students should have fundamental knowledge of Computer and				
	Mathematics				
Anti-requisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

The objective of this course is to introduce the students to fundamental mathematical techniques and basic computer skills that will help them in solving chemistry problems.

Course Outcomes

CO1	Explain most commonly used commands and library functions used in Computer				
	BASIC programming. (K2)				
CO2	Develop algorithm to solve problems and write corresponding programs in				
	BASIC. (K3)				
CO3	Design BASIC programs for performing calculations involved in labory experiments				
	and research work. (K4)				
CO4	Practice various spreadsheet software to perform calculations and plot graphs. (K3)				
CO5	Eloborate recent advancements in Computational Chemistry. (K6)				

Text Books

- 1. V. Rajaraman, Fortran 90, Prentice Hall (India), New Delhi (1997)
- 2. C. Xavier, Fortran 77 and Numerical Methods, New Age International Pvt. Ltd. Publishers, New Delhi (1994)

Reference Books

Unit I:Basics

1. S. Lipschutz and A. Poe, Schaum's Outline Series - Theory and Problems of Programming with Fortran including structured Fortran, Mc Graw Hill Book Company, Singapore (1982)

14 hrs

2. K. V. Raman, Computers in Chemistry, Tata McGraw Hill (1993).

Constants, variables, bits, bytes, binary and AS	CII formats, arithmetic expressions, hierarchy
of operations, inbuilt functions. Elements of	the BASIC language. BASIC keywords and
commands. Logical and relative operators. Strin	ngs and graphics. Compiled versus interpreted
languages.	

Unit II: C Programming:	12 hrs					
Introduction; style of C language ,character a	nd key words, variables and constants in C,					
arithmetic , relational , logical and bitwise ope	erators in C, ternary, cast, & and * pointer					
operators, Size of operator input and output in C	: content , conditional and switch statement in					
C; break and continue statement in loop. Storag	e classes in C functions array and pointers C,					
structure and unions, types of statement , preprocessor- define and includes simple programming						
in C.						
Unit-3 Molecular Modelling	12 hrs					
Elementary ideas of molecular mechanics and prace energies and geometries of molecules; vibrational s surfaces.	ctical MO methods. Computation of stable state states and electron distribution; Potential energy					
Unit-4 Numerical methods	12 hrs					
Roots of equations: Numerical methods for roo	ots of equations: Quadratic formula, iterative					
method. Differential calculus: Numerical di	fferentiation. Integral calculus: Numerical					
integration (Trapezoidal and Simpson's rule),	probability distributions and mean values.					
Simultaneous equations: Matrix manipulati	on: addition, multiplication. Handling of					
experimental data.						
Unit-5 Recent Trends in Computational Chemistry						
Recent Advancements in Computational Chemis	stry and Application					
Continuous Assessment Pattern						

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks	
		(ETE)		
30	20	50	100	

(Established under Galgotias University Uttar Pradesh Act No. 14 of 2011)

Program: BSc (H) Physics

Scheme: 2020-2021

Vision:

To be recognized globally as a center of excellence in imparting value-based education in Basic and Applied Sciences by creating innovation in fundamental and multidisciplinary research

Mission:

- M1. To excel in imparting contemporary knowledge and skills by developing an educational ecosystem with diverse interests and talents.
- **M2.** To perform cutting edge research leading to innovation in sciences through national and international collaborations.
- **M3.** To develop solutions for the emerging challenges in Basic and Applied Science to cater the needs of society.
- M4. To attract best quality faculty to facilitate knowledge and develop confidence in our graduates to succeed in the world.

Program Educational Objectives: The graduates shall:

- PEO1: Be successful professionals in Academia, Industry, Government and Entrepreneurship.
- PEO2: Graduates shall pursue higher education/research at institute of national and international repute.
- PEO3: Effectively address the challenges of the society and undertake the projects for bridging the gap between industry and societal needs.

Program Specific Objectives The Graduates shall be able to:

- PSO1: Demonstrate the conceptual knowledge and proficiency of optics and smart materials for device applications.
- PSO2: Acquire industrial exposure and scientific knowledge through industry internship and research based learning.

Program Outcomes After the completion of the program the graduates will be able to

PO1: Apply the principles and conceptual knowledge of Physics to solve the practical problems in different areas of science and technology.

- PO2: Develop the mathematical skills and methods to solve the problems in their core areas and other interdisciplinary subjects.
- PO3: Identify, formulate and resolve the emerging challenges based on design, experiment, data interpretation and analysis of results.
- PO4: Design a system, component, or methods to meet desired needs within realistic constraints such as environmental, health, safety, manufacturability, and sustainability.

PO5: Develop the ability in using modern tools for design and analysis of scientific and societal problems.

- PO6: Work in teams on multi-disciplinary projects in research organizations and industries and present the report in a full scientific approach with professional ethics.
- PO7: Build up communication skills, both written and oral, to specialized and non-audiences.
- PO8: Develop the ability to critically evaluate theories, methods, principles, and applications of pure and applied science in multidisciplinary domain.

Curriculum

		Program: B.	Sc. (H) H	Physics,	SBAS					
		Schen	ne: 2020	0-2023						
		Prog	gram Str	ucture						
Semes	ter 1									
S1.	Course Code	Name of the Course		Assessment Pattern			tern			
No			L	Т	Р	С	IA	MTE	ETE	
1	BSCP1001	Wave and Optics	4	-	-	4	30	20	50	
2	BSCP1002	Wave and Optics Lab	-	-	4	2	50		50	
3	BMAT1041	Foundation Course in Mathematics	5	1	-	6	30	20	50	
4	BCSE1021	Programming in C and Python	4	-	-	4	30	20	50	
5	BCSE1031	Programming in C and Python Lab	-	-	4	2	50		50	
6	BBS09P1101	Hands on Basic Techniques and Measurements	-	-	4	2	50		50	
7	XXXX	AI and Machine learning				2				
8	XXXX	Liberal art				0.5				
9	XXXX	EVS				0.5				
10	XXXX	BEC1				3				
		Soft skill				0				
		Computer awareness				0				
			Total			26				
Semes	ter II		-							
Sl No	Course Code	Name of the Course					Assessment Pattern			
			L	Т	Р	C	IA	MTE	ETE	
1	BSCP1003	Mathematical Physics I	4	-	-	4	30	20	50	
2	BSCP1004	Mathematical Physics I Lab	-	-	4	2	50		50	
3	BBS09T1201	Optical Instruments and applications	3			3	30	20	50	
4	BSCG1001	Nanoscience and Nanotechnology	4	-	-	4	30	20	50	
5	BSCG1051	Nanoscience and Nanotechnology lab	-	-	4	2	50		50	
6	BSCC1043	General Chemistry	4	-	-	4	30	20	50	
7	BSCC1044	General Chemistry Lab	-	-	4	2	50		50	
8	XXXX	BEC-B2				3				
	XXXX	***Two week social internship (during summer break)								
			Total			24				

Semest	ter III								
Sl No	Course Code	Name of the Course					Assess	ment Patt	ern
			L	Т	Р	С	IA	MTE	ETE
1	BSCP2001	Mathematical Physics II	4	-	-	4	30	20	50
2	BSCP2002	Mathematical Physics II Lab	-	-	4	2	50		50
3	BSCP2003	Electricity and Magnetism	4	-	-	4	30	20	50
4	BSCP2004	Electricity and Magnetism Lab	-	-	4	2	50		50
5	BSCP2005	Elements of Modern Physics	4	-	-	4	30	20	50
6	BSCP2006	Elements of Modern Physics Lab	-	-	4	2	50		50
7	BBS09T2301	Classical Mechanics	4	-	-	4	30	20	50
8	BSCP2051	Elective-I	4	-	-	4	30	20	50
			Total	1	1	26			
Semest	ter IV	I					1	1	
Sl No	Course Code	Name of the Course					Assess	ment Patt	ern
			L	Т	Р	С	IA	MTE	ETE
1	BBS09T2401	Electromagnetic Theory	4	0	-	4	30	20	50
2	BSCP2009	Mathematical Physics III	4	-	-	4	30	20	50
3	BSCP2011	Solid State Physics	4	-	-	4	30	20	50
4	BSCP2013	Analog Systems and Applications	4	-	-	4	30	20	50
5	BBS09P2401	Solid State Electronics Lab	-	-	4	2	50		50
6	BSCP2052	Elective II	4	-	-	4	30	20	50
7	BBS09T2411	Research Methodology and Statistics	2			2	30	20	50
9	Xxxx	IPR				0.5			
10	XXXX	Foreign Language				0.5			
11	XXXX	Waste Management			2	1	50		50
			total			26			
Semest	ter V								
Sl No	Course Code	Name of the Course					Assess	ment Patt	ern
			L	Т	Р	С	IA	MTE	ETE
1	BSCP3001	Quantum Mechanics & Applications	4	-	-	4	30	20	50
2	BSCP3002	Thermal Physics lab	-	-	4	2	50		50
3	BSCP3003	Statistical Mechanics	4	-	-	4	30	20	50
4	BSCP3005	Digital Systems and Applications	4	-	-	4	30	20	50
5	BSCP3006	Digital Systems and Applications Lab	-	-	4	2	50		50

6	BSCP3009	Heat and Thermodynamics	4		-	4	30	20	50
7	BSCP3051	Elective-III	4		-	4	30	20	50
8	XXXX	Campus to corporate				2			
			Total		•	26			
Semes	Semester VI								
Sl No	Course Code	Name of the Course					Assess	ment Patt	ern
			L	Т	Р	C	IA	MTE	ETE
1	BSCP9999	Project	-	-	-	12	50		50
			total			12			
	Total Credits of the program=140								

List of Electives

Elective-1

S1	Course Code Name of the Electives	Name of the Electives						Assessment Pattern		
No		L	Т	Р	С	IA	MTE	ETE		
1	BSCP2051	Laser Physics	4	-	-	4	30	20	50	
2	BBS09T5321	Astronomy and Astrophysics	4	-	-	4	30	20	50	

Elective-2

S1	Course Code	Nome of the Elective	Name of the Elective			Assessment Pattern			
No	Course Code	Name of the Elective	L	Т	Р	С	IA	MTE	ETE
1	BSCP2052	Classical Dynamics	4	-	1	4	30	20	50
		Physics of Devices and	4	-	-	4	30	20	50
2	BBS09T5421	Communication Systems							

Elective-3

S1	Course Code	Nome of the Elective			Assessment Pattern				
No	Course Code	Name of the Elective	L	Т	Р	С	IA	MTE	ETE
1	BSCP3051	Nuclear and Particle Physics	4	-	I	4	30	20	50
2		Material Synthesis and	4	-	-	4	30	20	50
2	BBS09T5521	Characterization Technique							
3	BBS09T5522	Medical Physics	4	-	-	4	30	20	50

Name of The Course	Wave and Optics				
Course Code	BSCP1001				
Prerequisite	Students should qualify 10+2 or equivalent examinstream	natic	on in	Scie	nce
Corequisite	Students should have fundamental knowledge mathematics, physics and chemistry	of	subje	cts 1	like
Antirequisite	-				
		L	Т	Р	С
		4	-	-	4

Course Objectives:

Students will learn how several waves or parts of waves interact and understand the diffraction and interference phenomena. Students will also learn the conditions required for such phenomena to appear.

Course Outcomes

CO1	Discuss the superposition of Collinear/perpendicular harmonics having same/different
	frequencies.
CO2	Explain type of waves and their velocities for different mediums.
CO3	Understand formation and characteristics of standing waves in different system.
CO4	Interpret phenomenon of interference and explain the various optical phenomenon based on
	it.
CO5	Interpret diffraction phenomenon and its applications.
CO6	Development the diffraction tomography in field of wave and optics.

Text Books

- 1. Waves: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGraw-Hill.
- 2. Fundamentals of Optics, F.A. Jenkins and H.E. White, 1981, McGraw-Hill
- 3. The Physics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons.

Reference Books

- 1. The Physics of Waves and Oscillations, N.K. Bajaj, 1998, Tata McGraw Hill.
- 2. Fundamental of Optics, A. Kumar, H.R. Gulati and D.R. Khanna, 2011, R. Chand Publications.
- Principles of Optics, Max Born and Emil Wolf, 7th Edn., 1999, Pergamon Press.
- 3. Optics, Ajoy Ghatak, 2008, Tata McGraw Hill
- 4. Principles of Optics, Max Born and Emil Wolf, 7th Edn., 1999, Pergamon Press.

Reference: https://www.sciencedirect.com/science/article/pii/B9780121860301500072

Unit 1: Superposition of Harmonic Oscillations:

(10 h)

Superposition of collinear Harmonic oscillations: Superposition Principle. Superposition of two collinear oscillations having (1) equal frequencies and (2) different frequencies (Beats).

Superposition of two perpendicular Harmonic Oscillations: Graphical and Analytical Methods. Lissajous Figures with equal and unequal frequency and their uses.

Unit 2: Wave Motion: (12 Plane and Spherical Waves. Longitudinal and Transverse Waves. Plane Prog Waves. Wave Equation. Particle and Wave Velocities. Differential Equat Longitudinal Wave. Energy Transport. Intensity of Wave. Velocity of Waves: Velocity of Transverse Vibrations of Stretched St Longitudinal Waves in a Fluid in a Pipe. Newton's Formula for Velocity of Correction.	h) gressive (Travelling) tion. Pressure of a trings. Velocity of Sound. Laplace's
Unit 3 Superposition of Two Harmonic Waves: (10 Standing (Stationary) Waves in a String: Fixed and Free Ends. Normal Modes of Plucked and Struck Strings. Longitudinal Standing Waves and Normal Mode Pipes. Superposition of N Harmonic Waves.	h) of Stretched Strings. es. Open and Closed
Unit 4 Interference: (10) h)
Electromagnetic nature of light. Huygens Principle, Division of amplitude and v double slit experiment. Fresnel's Biprism. Phase change on reflection: Interference in Thin Films: parallel film. Fringes of equal inclination (Haiding of equal thickness (Fizeau Fringes). Newton's Rings: Measurement of wavele index.	wavefront. Young's Stokes' treatment. ger Fringes); Fringes ength and refractive
Unit-5:Diffraction:	(8 h)
Fraunhofer diffraction: Single slit, Diffraction grating. Resolving power of	f grating. Fresnel
Diffraction, concept of Zone plate.	
Unit-6: Diffraction Tomography	
Recent development in wave and optics in diffraction tomography : X-ray diffra	ction measurements,
Principle and theory of Diffraction Tomography.	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Programming in C and Python				
Course Code	BCSE1021				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science				
	stream				
Co requisite	Students should have fundamental knowledge of	of	subje	cts	like
	mathematics, physics and computer applications.				
		L	Т	Р	С
		4	0	0	4

Course Objectives:

The aim of this course is to make the students of physics familiar with the working of computer, programming language, QBASIC and use of software as a tool to understand physics, and solve physics based problems.

Course Outcomes:

CO1	Understand and explain the basics of computer & its components, logic development and data
	input and output.
CO2	Explain the control systems and function.
CO3	Explain the arrays, structure, union and pointer.
CO4	Explain control flow structure and function in python.
CO5	Apply the Classes and objects in python.
CO6	Analyze the real world data using python libraries

Text Book (s)/Reference Book (s)

- 7. P Kanetkar Yashvant, Let us C, BPB Publications, New Delhi, Seventh Edition.
- 8. E. Balagurusami, Programming in ANSI C, Tata McGraw Hill, Fourth Edition.
- 9. Schaum Outline Series, Programming in C.
- 10. Mark Lutz ,"Learning Python", O Reily, 4th Edition, 2009, ISBN: 978-0-596-15806-4
- 11. Mark Lutz ,"Programming Python", O Reily, 4th Edition, 2010, ISBN 9780596158118.
- 12. Tim Hall and J-P Stacey,"Python 3 for Absolute Beginners", 2009, SBN:9781430216322

Unit-1	10hrs
Introduction to computers: Units of computers, Block Diagram, Generation of Computers, Char types of Memory, Input and Output Devices. Logic Development and Program Development Tools: Data Representation, Flowcharts, Problem Analysis, Pseudo Code and Compilation and Execution.	racteristics of Computers, Different I Algorithms, Program Debugging,
Fundamentals: Character Set, Identifiers and Key Words, Data Types, Constants, Varia	ables, Expressions, Statements
Operations and Expressions:	
Arithmetic Operators, Unary Operators, Relational Operators, Lo Conditional Operators, Library functions.	gical Operators, Assignment and
Data Input and Output:	
Single Character Input, Single Character Output, Entering Input Data, N Output Data, More About Print Functions, Gets and Puts Functions, Int	More About Scan Functions, Writing reactive Programming.
Unit-2	10hrs
Control Structures: Introduction, Decision Making with If – Statement, If Else and Nested Jump Statements: Break, Continue, Goto, Switch Statement. Functions: Introduction To Functions, Function Declaration, Function Categories, S Parameter Passing, Pass – By Value/Reference, Recursion, Global and	If, While And Do-While, For Loop. Standard Functions, Parameters And Local Variables, Storage Classes.
Unit_3	10hrs
A	10113
Arrays:	

Introduction to Arrays, Array Declaration, Single and Multidimensional, Array, Memory Representation, Matrices, Strings, String Handling Functions.

Structure and Union:

Declaration of Structure, Accessing Structure Members, Structure Initialization, Arrays of Structure, Nested Structures, Unions.

Pointers:

Introduction To Pointers, Address Operator And Pointers, Declaring and Initializing Pointers, Assignment through Pointers, Pointers and Arrays.

Unit-4 CORE PYTHON : BASICS

10hrs

Introduction to Python, Python Interpreter and its working, Syntax and Semantics, Data Types, Assignments and Expressions, Control Flow Statements, Sequences and Dictionaries, Functions and lambda expressions

Unit-5 CORE PYTHON : ADVANCED FEATURES

10hrs

Iterations and Comprehensions, Handling text files, Modules, Classes and OOP

Unit-6 Data Analysis (Python toolboxes/libraries) NumP, SciPy , Pandas, ChemPy

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	General Chemistry				
Course Code	BSCC1043				
Prerequisite	Students should qualify 10+2 or equivalent exaministream	natio	on in	Scie	ence
Corequisite	Students should have fundamental knowledge mathematics, physics and chemistry	of	subje	cts	like
Antirequisite	-				
		L	Т	Р	С
		4	-	-	4

Course Objectives: This course is provided to the students for basics knowledge of Physical, organic and stereochemistry as well as some organic compound and the reactions. Using the concepts of basics chemistry, students can analyse the problems based on some chemical reactions.

Course Outcomes

CO1	Describe the theoretical models to explain the structure of an atom and orbital.
CO2	Determine ionic and covalent properties of compounds by various theories of chemical
	bonding and draw the MO diagram of different molecules.
CO3	Describe the fundamental properties of Organic Compound.
CO4	Illustrate the geometry of organic molecules by applying the principles of stereochemistry.
CO5	Describe different reactions and their mechanisms of Aliphatic Hydrocarbons.
CO6	Elaborate the advantages of Green approach over conventional chemical approach.

Reference Books:

1. Lee, J.D. Concise Inorganic Chemistry ELBS, 1991. 2. Cotton, F.A., Wilkinson, G. & amp; Gaus, P.L. Basic Inorganic Chemistry, 3rd ed., Wiley. 3. Douglas, B.E., McDaniel, D.H. & amp; Alexander, J.J. Concepts and Models in Inorganic Chemistry, John Wiley & amp; Sons. 4. Huheey, J.E., Keiter, E.A., Keiter, R.L. & amp; Medhi, O.K. Inorganic Chemistry: Principles of Structure and Reactivity, Pearson Education India, 2006. 5. Graham Solomon, T.W., Fryhle, C.B. & amp; Dnyder, S.A. Organic Chemistry, John Wiley & amp; Sons (2014). 6. McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013.7. Sykes, P. A Guidebook to Mechanism in Organic Chemistry, Orient Longman, New Delhi (1988). 8. Eliel, E.L. Stereochemistry of Carbon Compounds, Tata McGraw Hill education, 2000. 9. Finar, I.L. Organic Chemistry (Vol. I & amp; II), E.L.B.S. 10. Morrison, R.T. & amp; Boyd, R.N. Organic Chemistry, Pearson, 2010. 11. Bahl, A. & amp; Bahl, B.S. Advanced Organic Chemistry, S. Chand, 2010.

Unit-1 Atomic Structure:

(14h)

Review of: Bohr's theory and its limitations, dual behaviour of matter and radiation, de Broglie's relation, Heisenberg Uncertainty principle. Hydrogen atom spectra. Need of a new approach to Atomic structure. What is Quantum mechanics? Time independent Schrodinger equation and meaning of various terms in it. Significance of ψ and ψ 2, Schrödinger equation for hydrogen atom. Radial and angular parts of the hydogenic wavefunctions (atomic orbital) and their variations for 1s, 2s, 2p, 3s, 3p and 3d orbitals (Only graphical representation). Radial and angular nodes and their significance. Radial distribution functions and the concept of the most probable distance with special reference to 1s and 2s atomic orbitals. Significance of quantum

numbers, orbital angular momentum and quantum numbers ml and ms. Shapes of s, p and d

atomic orbitals, nodal planes. Discovery of spin, spin quantum number (s) and magnetic spin

quantum number (ms).

Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Stability

of half-filled and completely filled orbitals, concept of exchange energy. Relative energies of

atomic orbitals, Anomalous electronic configurations.

Unit- 2 Chemical Bonding and Molecular Structure

(16 h)

Ionic Bonding: General characteristics of ionic bonding. Energy considerations in ionic bonding, lattice energy and solvation energy and their importance in the context of stability and solubility of ionic compounds. Statement of Born-Landé equation for calculation of lattice energy, Born-Haber cycle and its applications, polarizing power and polarizability. Fajan's rules, ionic character in covalent compounds, bond moment, dipole moment *Covalent bonding:* VB Approach: Shapes of some inorganic molecules and ions on the basis of VSEPR and hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal and octahedral arrangements. Concept of resonance and resonating structures in various inorganic and organic compounds.

84

MO Approach: Rules for the LCAO method, bonding and antibonding MOs and their characteristics for *s*-*s*, *s*-*p* and *p*-*p* combinations of atomic orbitals, nonbonding combination of orbitals, MO treatment of homonuclear diatomic molecules of 1st and 2nd periods (including idea of *s*-*p* mixing) and heteronuclear diatomic molecules such as CO, NO and NO+. Comparison of VB and MO approaches.

Unit-3 Fundamentals of Organic Chemistry (8 h) Physical Effects, Electronic Displacements: Inductive Effect, Electromeric Effect, Resonance and Hyperconjugation. Cleavage of Bonds: Homolysis and Heterolysis. Structure, shape and reactivity of organic molecules: Nucleophiles and electrophiles. Reactive Intermediates: Carbocations, Carbanions and free radicals.Strength of organic acids and bases: Comparative study with emphasis on factors affecting pK values. Aromaticity: Benzenoids and Hückel's rule.

Unit-4 Stereochemistry

Conformations with respect to ethane, butane and cyclohexane. Interconversion of Wedge Formula, Newmann, Sawhorse and Fischer representations. Concept of chirality (upto two carbon atoms). Configuration: Geometrical and Optical isomerism; Enantiomerism, Diastereomerism and Meso compounds). Three and erythro; D and L; *cis – trans* nomenclature; CIP Rules: R/S (for upto 2 chiral carbon atoms) and E / Z Nomenclature (for upto two C=C systems).

Unit-V Aliphatic Hydrocarbons

(12 h)

(10 h)

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Alkanes: (Upto 5 Carbons). *Preparation:* Catalytic hydrogenation, Wurtz reaction, Kolbe's synthesis, from Grignard reagent. *Reactions:* Free radical Substitution: Halogenation. Alkenes: (Upto 5 Carbons) *Preparation:* Elimination reactions: Dehydration of alkenes and dehydrohalogenation of alkyl halides (Saytzeff's rule); cis alkenes (Partial catalytic hydrogenation) and trans alkenes (Birch reduction). *Reactions:* cis-addition (alk. KMnO4) and trans-addition (bromine), Addition of HX (Markownikoff's and anti-Markownikoff's addition), Hydration, Ozonolysis, oxymecuration-demercuration, Hydroboration-oxidation. Alkynes: (Upto 5 Carbons) *Preparation:* Acetylene from CaC2 and conversion into higher alkynes; by dehalogenation of tetra halides and dehydrohalogenation of vicinal-dihalides. *Reactions:* formation of metal acetylides, addition of bromine and alkaline KMnO4, ozonolysis and oxidation with hot alk. KMnO4.

Unit-6 Recent advancements in Chemistry for Society

Green Chemistry, Principles of Green Chemistry, Advantages of Green synthesis methods over conventional methods

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Foundation Course in Mathematics				
Course Code	BMAT1041				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science				
	stream				
Corequisite	Students should have fundamental knowledge of	of s	subje	cts 1	ike
	mathematics, physics and chemistry				
Antirequisite					
		L	Т	Р	С
		5	1	0	6

Course Objectives:

The students will learn about fundamentals of algebra and its application. They will understand the matrix, calculus and probability theory useful for solving the different physical problems

Course Outcomes

1	
CO1	Understand different functions and progressions and solve the problems based on it.
CO2	Explain the different types of matrices and solve the differential equations.
CO3	Apply the basics of differential calculus to solve the related problems
CO4	Evaluate the problems based on integral calculus
CO5	Describe the basics of probability distribution
CO6	Analyse application of BCG Matrix to market growth.

Text Books

1. Calculus and Analytic Geometry : G. B. Thomas, R. L. Finney, Pearson Education, Asia.

2. Statistical Method: S.P. Gupta, Sultan Chand and Sons

Reference Books:

Engineering Mathematics: B.S. Grewal, Khanna Publishers

Unit 1: Algebra:

Fundamentals, mathematical functions, logarithms, the exponential function, polynomial expressions, Factorization and division of Polynomials, Partial fractions, Binomial Expansion, Arithmetic Progression, Geometric Progression, Infinite Geometric Progression.

Unit 2: Matrices & Determinants:

Types of matrices, basic operations of matrices, determinant of a matrix and it's properties, matrix inverse, elementary row and column operations, rank of a matrix, consistency of a linear system of equations, solution of a linear system by Gauss Elimination method.

Unit 3 Differential Calculus:

Differentiation of a function of a single variable, product rule, quotient rule, chain rule of differentiation, Taylor's series, Applications of derivatives: Rate of change, increasing/decreasing functions, tangents and normals, maxima and minima.

(10 h)

(10 h)

(10 h)

Unit 4 Integral Calculus:

Integral of elementary functions, standard results, Integration by substitutions, by parts and partial fraction methods, Definite integral, Even and odd functions, Properties of definite integral and application in finding the area.

Unit-5:Probability:

Basic concepts of probability, Random variable and its probability distribution, Binomial, Poisson and Normal distributions.

Unit-6	Application of	Foundation Course in Mathematics	(4h)
	BCG matrix and i	ts application to market sharing growth.	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Mathematical Physics-I				
Course Code	BSCP1003				
Prerequisite	Students should qualify 10+2 or equivalent examination	ation	in Sci	ence st	ream
Corequisite	Students should have fundamental knowledge of su	bject	s like 1	mathen	natics,
	physics and chemistry				
Antirequisite					
	•	L	Т	Р	С
		4	0	0	4

Course Objectives: The students will learn about first and second order differential equations and its application. They will understand and apply the concept of vector differentiation and integration to solve the problems. Students will learn about different coordinate systems and probability theory useful for solving the physical problems

Course Outcomes

CO1	Apply the concept of basic mathematical technique in physics
CO2	Interpret the mathematical technique in physical model
CO3	Analyze the concept of rotations and coordinate systems.
CO4	Analyze the vector diff. and integrations and able to solve the problems based on it.
CO5	Apply the probability distribution function in different models
CO6	Formulate the model using Monte Carlo methods in the specific application.

Text Books

1. Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, F.E. Harris, 2013, 7thEdn., Elsevier.

2. An introduction to ordinary differential equations, E.A.Coddington, 2009, PHI learning **Reference Books**

1. Mathematical Physics, Goswami, 1st edition, Cengage Learning

(10 h)

(10 h)

- 2. Engineering Mathematics, S.PalandS.C.Bhunia, 2015, OxfordUniversityPress
- 3. Advanced Engineering Mathematics, Erwin Kreyszig, 2008, WileyIndia.
- 4. EssentialMathematicalMethods,K.F.Riley&M.P.Hobson,2011,CambridgeUniv.Press

Palmowski, Z. andRolski, T. (2002). A technique for exponential change of measure for Markov processes. *Bernoulli* 8 (6), 767–785

Talay, D. andTubaro, L. (1990). Expansion of the global error for numerical schemes solving stochastic differential equations. *Stoch. Anal. Appl.* 8 (4), 483–509

Unit-I Calculus:	(14 h)
Intuitive ideas of continuous, differentiable, etc. functions and p	plotting of curves. Approximation:
Taylor and binomial series (statements only).	
First Order and Second Order Differential equations: First	Order Differential Equations and
Integrating Factor. Homogeneous Equations with constant coeff	icients. Statement of existence and
Uniqueness Theorem for Initial Value Problems. Particular Integr	al.
Calculus of functions of more than one variable: Partial derivative	ves, exact and inexact differentials.
Integrating factor, with simple illustration. Constrained Maximi	zation using Lagrange Multipliers.
Unit-II Vector Differentiation:	(8 h)
Scalar product and its invariance under rotations. Vector produ	ict, Scalar triple product and their
interpretation in terms of area and volume respectively. Scalar and	d Vector fields.
Directional derivatives and normal derivative. Gradient of a	scalar field and its geometrical
interpretation. Divergence and curl of a vector field. Del and Lap	placian operators. Vector identities.
Unit-III Vector Integration:	(12h)
Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notic	on of infinitesimal line, surface and
Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notic volume elements. Line, surface and volume integrals of Vector fi	on of infinitesimal line, surface and ields. Flux of a vector field. Gauss'
Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notic volume elements. Line, surface and volume integrals of Vector fi divergence theorem, Green's and Stokes Theorems and their appli	on of infinitesimal line, surface and ields. Flux of a vector field. Gauss' cations (no rigorous proofs).
Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notic volume elements. Line, surface and volume integrals of Vector f divergence theorem, Green's and Stokes Theorems and their appli	on of infinitesimal line, surface and ields. Flux of a vector field. Gauss' cations (no rigorous proofs).
Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notice volume elements. Line, surface and volume integrals of Vector for divergence theorem, Green's and Stokes Theorems and their appli	on of infinitesimal line, surface and ields. Flux of a vector field. Gauss' cations (no rigorous proofs).
Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notice volume elements. Line, surface and volume integrals of Vector for divergence theorem, Green's and Stokes Theorems and their applice Unit-IV Orthogonal Curvilinear Coordinates:	on of infinitesimal line, surface and ields. Flux of a vector field. Gauss' cations (no rigorous proofs).
Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notice volume elements. Line, surface and volume integrals of Vector for divergence theorem, Green's and Stokes Theorems and their applice Unit-IV Orthogonal Curvilinear Coordinates: Orthogonal Curvilinear Coordinates. Derivation of Gradient, D	on of infinitesimal line, surface and ields. Flux of a vector field. Gauss' cations (no rigorous proofs). (8 h) Divergence, Curl and Laplacian in
Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notice volume elements. Line, surface and volume integrals of Vector for divergence theorem, Green's and Stokes Theorems and their applied Unit-IV Orthogonal Curvilinear Coordinates: Orthogonal Curvilinear Coordinates. Derivation of Gradient, D Cartesian, Spherical and Cylindrical Coordinate Systems.	on of infinitesimal line, surface and ields. Flux of a vector field. Gauss' cations (no rigorous proofs). (8 h) Divergence, Curl and Laplacian in
Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notice volume elements. Line, surface and volume integrals of Vector for divergence theorem, Green's and Stokes Theorems and their applic Unit-IV Orthogonal Curvilinear Coordinates: Orthogonal Curvilinear Coordinates. Derivation of Gradient, D Cartesian, Spherical and Cylindrical Coordinate Systems.	on of infinitesimal line, surface and ields. Flux of a vector field. Gauss' cations (no rigorous proofs). (8 h) Divergence, Curl and Laplacian in
Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notice volume elements. Line, surface and volume integrals of Vector for divergence theorem, Green's and Stokes Theorems and their applie Unit-IV Orthogonal Curvilinear Coordinates: Orthogonal Curvilinear Coordinates. Derivation of Gradient, D Cartesian, Spherical and Cylindrical Coordinate Systems.	on of infinitesimal line, surface and ields. Flux of a vector field. Gauss' cations (no rigorous proofs). (8 h) Divergence, Curl and Laplacian in (8Lectures)
Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notice volume elements. Line, surface and volume integrals of Vector for divergence theorem, Green's and Stokes Theorems and their applie Unit-IV Orthogonal Curvilinear Coordinates: Orthogonal Curvilinear Coordinates. Derivation of Gradient, D Cartesian, Spherical and Cylindrical Coordinate Systems. Unit-V Introduction to probability: Independent random variables: Probability distribution functions	on of infinitesimal line, surface and ields. Flux of a vector field. Gauss' cations (no rigorous proofs). (8 h) Divergence, Curl and Laplacian in (8Lectures) ; binomial, Gaussian, and Poisson,
Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notice volume elements. Line, surface and volume integrals of Vector findivergence theorem, Green's and Stokes Theorems and their applied Unit-IV Orthogonal Curvilinear Coordinates: Orthogonal Curvilinear Coordinates. Derivation of Gradient, D Cartesian, Spherical and Cylindrical Coordinate Systems. Unit-V Introduction to probability: Independent random variables: Probability distribution functions with examples. Mean and variance.	on of infinitesimal line, surface and ields. Flux of a vector field. Gauss' cations (no rigorous proofs). (8 h) Divergence, Curl and Laplacian in (8Lectures) ; binomial, Gaussian, and Poisson,
Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notice volume elements. Line, surface and volume integrals of Vector for divergence theorem, Green's and Stokes Theorems and their applie Unit-IV Orthogonal Curvilinear Coordinates: Orthogonal Curvilinear Coordinates. Derivation of Gradient, D Cartesian, Spherical and Cylindrical Coordinate Systems. Unit-V Introduction to probability: Independent random variables: Probability distribution functions with examples. Mean and variance.	on of infinitesimal line, surface and ields. Flux of a vector field. Gauss' cations (no rigorous proofs). (8 h) Divergence, Curl and Laplacian in (8Lectures) ; binomial, Gaussian, and Poisson,
Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notice volume elements. Line, surface and volume integrals of Vector for divergence theorem, Green's and Stokes Theorems and their applie Unit-IV Orthogonal Curvilinear Coordinates: Orthogonal Curvilinear Coordinates. Derivation of Gradient, D Cartesian, Spherical and Cylindrical Coordinate Systems. Unit-V Introduction to probability: Independent random variables: Probability distribution functions with examples. Mean and variance. Unit VI: Application Mathematical Physics I	on of infinitesimal line, surface and ields. Flux of a vector field. Gauss' cations (no rigorous proofs). (8 h) Divergence, Curl and Laplacian in (8Lectures) ; binomial, Gaussian, and Poisson, (4Lectures)
Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notice volume elements. Line, surface and volume integrals of Vector findivergence theorem, Green's and Stokes Theorems and their applie Unit-IV Orthogonal Curvilinear Coordinates: Orthogonal Curvilinear Coordinates. Derivation of Gradient, D Cartesian, Spherical and Cylindrical Coordinate Systems. Unit-V Introduction to probability: Independent random variables: Probability distribution functions with examples. Mean and variance. Unit VI: Application Mathematical Physics I Recent advancement in Applied Probability: Thinning and multile	on of infinitesimal line, surface and ields. Flux of a vector field. Gauss' cations (no rigorous proofs). (8 h) Divergence, Curl and Laplacian in (8Lectures) ; binomial, Gaussian, and Poisson, (4Lectures) evel Monte Carlo methods for
Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notice volume elements. Line, surface and volume integrals of Vector f divergence theorem, Green's and Stokes Theorems and their applie Unit-IV Orthogonal Curvilinear Coordinates: Orthogonal Curvilinear Coordinates. Derivation of Gradient, D Cartesian, Spherical and Cylindrical Coordinate Systems. Unit-V Introduction to probability: Independent random variables: Probability distribution functions with examples. Mean and variance. Unit VI: Application Mathematical Physics I Recent advancement in Applied Probability: Thinning and multile piecewise deterministic (Markov) processes with an application to	on of infinitesimal line, surface and ields. Flux of a vector field. Gauss' cations (no rigorous proofs). (8 h) Divergence, Curl and Laplacian in (8Lectures) ; binomial, Gaussian, and Poisson, (4Lectures) evel Monte Carlo methods for o a stochastic Morris–Lecar model

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Optical Instruments and applications				
Course Code	BBS09T1201				
Prerequisite	Students should qualify 10+2 or equivalent exaministream	natio	on in	Scie	nce
Corequisite	Students should have fundamental knowledge mathematics, physics and chemistry	of s	subje	cts 1	ike
Antirequisite	-				
		L	Т	Р	С
		3	-	-	3

Course Objectives:

The objective of this course is to provide the knowledge of different types of lenses and their application for image formation, various aberrations produced in the image and their removal methods. The students will also learn about the optical instruments designed using the lenses. They will also understand the polarization in the light, the production of polarized light and optical rotation of light.

Course Outcomes

CO1	Explain different types of lenses and image formation	
CO2	Describe the various aberrations in the image formed by the lenses and methods to remove	
	these aberrations	
CO3	Describe the construction and working of different optical instruments and their applications	
CO4	Illustrate the polarization of light and explain the methods to produce polarized light	
CO5	Explain the retardation plates and describe the optical rotation	
CO6	Plan for a research project on optical approaches which can be used for solving	
	environmental issues.	

Text Books:

- 1. A textbook of Optics: N. Subrahmanyam, Brijlal and M. N. Avadhanulu.
- 2. Fundamentals of Optics, F.A. Jenkins and H.E. White, 1981, McGraw-Hill
- 3. Optics, Ajoy Ghatak, 2008, Tata McGraw Hill

Reference Books:

- 1. Principles of Optics, Max Born and Emil Wolf, 7th Edn., 1999, Pergamon Press.
- 2. Optical Physics, A.Lipson, S.G.Lipson, H.Lipson, 4th Edn., 1996, Cambridge Univ. Press
- 3. Reference: <u>https://scholars.direct/Articles/photonics-and-optics/rapo-1-003.pdf</u>

Unit L enses and image formation	8h
Fermat's principle Principle of extremum path the aplanatic points of	a sphere and other applications
General theory of image formation: Cardinal points of an optical system	n: general relationship thick lens
and lens combinations, telephoto lenses	n, general relationship, there lens
and tens comonitations, telephoto tenses.	
Unit II Aberration in image	8h
Aberration in images: Chromatic aberrations; achromatic combination	of lenses in contact and
separated lenses, Monochromatic aberration and their reduction, asphere	rical mirrors and Schmidt
corrector plates, oil immersion objectives.	
Unit III Optical Instruments:	8h
Entrance and exit pupils, need for a multiple lens eyepiece, common ty	pes of Eyepieces and their
working and applications, resolving power of optical instruments, optic	al microscopes
Unit IV · Polarization of light	8h
Description of Lincor Circular and Elliptical Delegization Dropogation	of E M. Woyce in Aricotropic
Medie Ereenel's Ferryle Unionial and Disviel Crustels, Light Brane	of E.M. waves in Ansonopic
Refusction Delegization by Double Defraction Nicel Prices Ordinary	ation in Oniaxiai Crystal. Double
Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary a	isht Deleveid
Production & detection of Plane, Circularly and Emptically Polarized I	Light. Polaroid
Unit V : Retardation plates and polarimeter	8h
Dhace Retardation Diates: Quarter Waye and Half Waye Plates Analys	is of Polarized Light Potatory
Polarization Optical Potation, Dist's Laws for Potatory Polarization	Erospal's Theory of optical
Foralization. Optical Rotation. Blot's Laws for Rotatory Foralization.	riesher's Theory of optical
Totation. Specific rotation. Laurent's nan-snade polarimeter.	
Unit VI: Recent advancements in Optical Instruments and applications	(4h)
Novel Optical Flocculation Approach for Chemical Contaminations in	the Water Treatment Using
Micro/Nano Polymeric Beads	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Nanoscience and Nanotechnology				
Course Code	BSCG1001				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science				
	stream				
Corequisite	Students should have fundamental knowledge	of	subje	cts 1	ike
	mathematics, physics and chemistry				
Antirequisite	-				
		L	Т	Р	С
		4	-	-	4

Course Objectives: The objective of this course is to provide some knowledge in the field of nano science and technology. The students will learn about the preparation techniques of nano materials, properties of carbon nano materials for advanced technology and also the societal implication of nano technology.

Course Outcomes

CO1	Describe the basic science behind the properties of materials at the nanometer scale.
CO2	Illustrate the concept of physical and chemical method, application and fabrication of
	nanostructures.
CO3	Generalize and introduce the methods of preparation, methods of purification and
	applications of carbon nano materials.
CO4	Apply the concepts of nano energy conversion materials.
CO5	Generalize the importance of nano-catalysis.
CO6	Formulate the rudimentary knowledge of photovoltaic devices and propose synthesis of
	quantum junction solar cells.

Text Books:

- 1. Introduction to Nanotechnology C P Poole, Frank J. Owens, John Wiley & Sons, 2011, ISBN 978-81-265-1099-3.
- 2. Introduction to Nanoscience and Nanotechnology, KK Chattopadhyay, A N Banerjee, Phi Learning Pvt Ltd., New Delhi, 2012, ISBN-978-81-203-3608-7.
- Nanotechnology Science Innovation & Opportunity, Lynn E Foster, Pearson publication, 2008, ISBN-9788131711187.

Reference Books

- 1. The Evolution of Dip-pen nanolithography, D.Ginger ,H,Zang and C.A. Mirkin, Angw. Chem.. Int. Ed., 2004,43, 30-45.
- Carbon Materials and Nanotechnology, Anke Krueger, Wiley –VCH Verlag GmbH & Co., 2010, ISBN-10: 3527318038.
- 3. Jiang Tang et al., Quantum Junction Solar Cells, Nano Lett. 2012, 12, 4889–4894

Unit-I Introduction to Nanoscience and nanotechnology	(10 h)
Origin and properties of Nanomaterials, Bulk materials vs Nanomaterials, Fundamental o Nanospintronics, Nanomedicine, Nanostructured materials	of
Unit-II Nanomaterials preparation	(10 h)
Classification of Nanomaterials, Different approaches in synthesis, Growth mechanism o	f nanomaterials
Unit-III Carbon Materials	(10 h)
Carbon Materials; Fullerenes, Carbon Nanotubes, Graphene	
Unit-IV Nanomaterials in Energy Conversion devices	(10 h)
Nanomaterials in Energy Conversion devices, Semiconductors nanostructures, Photovolt	aics, Solar Cell

Unit-V Nanocatalysis and ethics in nanotechnology

(4h)

Introduction to nanocatalysis, Assembling nanocatalysts, metallic, metaloxide nanocrystals, nanoclusters, mesoporous materials, Applications of nanocatalysts, Societal concern of nanotechnology

Unit VI- Quantum Junction Solar Cells Photovoltaic devices, Colloidal Quantum dot cells, Efficiency of solar cells

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Electricity and Magnetism				
Course Code	BSCP2003				
Prerequisite	Students should qualify 10+2 or equivalent exaministream	natio	on in	Scie	nce
Corequisite	Students should have fundamental knowledge mathematics, physics and chemistry	of s	subje	cts 1	like
Antirequisite	-				
		L	Т	Р	С
		4	-	-	4

Course Objectives: This course provides the basics of electrostatics and law of electrostatics to calculate the potential and electric fields of charged particles. The students will also come to know the working of capacitors. The knowledge of different types of dielectric and magnetic materials will help the students to design the instruments working on the principle of electrostatics and magnetostatics.

Course Outcomes:

CO1	Explain the electric field and potential to anlyse the problems based on it.
CO2	Apply the concept of charge and its storage and explain the capacitors application
CO3	Explain the properties of dielectric materials and apply in various devices K2
CO4	Understand the magnetic field and various law based on it to apply the in many electrical circuits.
CO5	Understand the magnetic properties of magnetic materials and the behavior of EM wave in it.
CO6	Plan for the effective work on the certain ferrous materials and study its characteristics .

Text Books:

- 1. Electricity, Magnetism & Electromagnetic Theory, S. Mahajan and Choudhury, 2012, Tata McGraw
- 2. Electricity and Magnetism, Edward M. Purcell, McGraw-Hill Education
- 3. Introduction to Electrodynamics, D.J. Griffiths, 3rd Edn., Benjamin Cummings.

Reference Books:

- 1. Feynman Lectures Vol.2, R.P.Feynman, R.B.Leighton, M. Sands, 2008, Pearson Education
- 2. Elements of Electromagnetics, M.N.O. Sadiku, 2010, Oxford University Press.
- 3. Electricity and Magnetism, J.H.Fewkes&J.Yarwood.Vol.I, Oxford Univ. Press.

- 4. Basic Electronics: Devices, Circuits and it Fundamentals. By Santiram Kal, Prentice hall of India, 2006.
- A. M. Kuzmenko, D. Szaller, Th. Kain, V. Dziom, L. Weymann, A. Shuvaev, Anna Pimenov, A. A. Mukhin, V. Yu. Ivanov, I. A. Gudim, L. N. Bezmaternykh, A. Pimenov. Switching of Magnons by Electric and Magnetic Fields in Multiferroic Borates. *Physical Review Letters*, 2018; 120 (2) DOI: 10.1103/PhysRevLett.120.027203

UNIT 1: Electric Field and Electric Potential	(12h)
Electric field: Electric field lines. Electric flux. Gauss' Law with a	applications to charge distributions with
spherical, cylindrical and planar symmetry.	
Conservative nature of Electrostatic Field. Electrostatic Potential.	Laplace's and Poisson equations. The
Uniqueness Theorem. Potential and Electric Field of a dipole. For	ce and Torque on a dipole.
Unit 2: Applications of Electrostatics	(10h)
Electrostatic energy of system of charges. Electrostatic energy of a	a charged sphere. Conductors in an
electrostatic Field. Surface charge and force on a conductor. Capa	citance of a system of charged
conductors Parallel-plate capacitor Capacitance of an isolated co	nductor
conductors. I marier place cupacitor. Cupacitance of an isolated co	
Unit 3: Dielectric Properties of Matter:	(10h)
Electric Field in matter, Polarization, Polarization Charges, Electr	ical Susceptibility and Dielectric
Constant Capacitor filled with dielectric Displacement vector D	Relations between E P and D Gauss'
Law in dielectrics	Termions conversion 1, 1 and 21 Gauge
Unit 4: Magnetic Field:	(10 h)
Magnetic force between current elements and definition of Magne	tic Field B Biot-Savart's Law and its
simple applications: straight wire and circular loop. Current Loop	as a Magnetic Dipole and its Dipole
Moment (Analogy with Electric Dinole) Amnere's Circuital Law	and its application to (1) Solenoid and
(2) Toroid Properties of P: ourl and divergence. Vector Potential	Magnetic Force on (1) point charge (2)
(2) foroid. Froperties of B. currant divergence. Vector Potential.	wagnetic Porce on (1) point enarge (2)
current carrying wire (3) between current elements. Torque on a c	urrent loop
in a uniform Magnetic Field.	
Unit 5: Magnetic Properties of Matter:	(10b)
Magnetization mater (M) Magnetic Intersity (II) Magnetic Sugar	(1011)
Magnetization vector (M). Magnetic Intensity (H).Magnetic Susce	epublicy and permeability. Relation
between B, H, M. Ferromagnetism. B-H curve and hysteresis.	
Electromagnetic Induction: Faraday's Law. Lenz's Law. Self Indu	ictance and Mutual Inductance.
Reciprocity Theorem. Energy stored in a Magnetic Field. Introduc	ction to Maxwell's Equations. Charge
Conservation and Displacement current.	
	(1)
Unit-VI Application of Electricity and Magnetism	(4h)
Recent advancement in Electricity and Magnetism: Electrical fiel	ds to control the magnetic oscillations
in certain ferrous materials, Magnetic data storage, electrical writi	ng.
Continuous Assessment Pattern	

Internal Assessment (IA)Mid Term Test (MTE)End Term Test
(ETE)Total Marks302050100

Name of The Course	Elements of Modern Physics				
Course Code	BSCP2005				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science				
	stream				
Corequisite	Students should have fundamental knowledge	of	subje	cts 1	like
	mathematics, physics and chemistry				
Antirequisite	-				
		L	Т	Р	С
		4	-	-	4

Course Objectives: This course provides the basic knowledge of modern physics which includes the fundamentals of duality of quantum particle and SWE and it solutions. They will come to know about basics of nuclear structure and nuclear transformation. Also students will learn about the Holography and it applications.

Course Outcomes:

CO1	Explain the duality nature of quantum system and apply the concepts to verify and calculate
	the energy of the system.
CO2	Apply the Schrodinger Wave equation to solve the potential barrier problem
CO3	Explain the nuclear structure by various nuclear models and calculate the nuclear energy
CO4	Interpret the nuclear transformation and understand the various nuclear phenomenon
CO5	Explain the principle of holography and its applications
CO6	Organize the elementary knowledge of Dark matters to propose new research ideas in the
	field of Modern physics.

Text Books:

- 1. Concepts of Modern Physics, Arthur Beiser, McGraw-Hill.
- 2. Introduction to Modern Physics, Rich Meyer, Kennard, Coop, Tata McGraw Hill
- 3. Introduction to Quantum Mechanics, David J. Griffith, Pearson Education.

Reference Books

- 1. Modern Physics, J.R. Taylor, C.D. Zafiratos, M.A. Dubson, 2004, PHI Learning.
- 2. Theory and Problems of Modern Physics, Schaum's outline, R. Gautreau and W. Savin, 2nd Edn, Tata McGraw-Hill Publishing Co. Ltd.
- 3. Quantum Physics, Berkeley Physics, Vol.4. E.H.Wichman, Tata McGraw-Hill Co.
- 4. Basic ideas and concepts in Nuclear Physics, K. Heyde, 3rd Edn., Institute of Physics Pub.
- 5. Concepts of Modern Physics, Arthur Beiser, 2002, McGraw-Hill.
- 6. Introduction to Modern Physics, Richtmyer, Kennard, Coop, 2002, Tata McGraw Hill
- 7. Research Articles
- 8. https://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy
- 9. https://home.cern/science/physics/dark-matter

Unit 1: Wave particle Duality: (10 h)Blackbody Radiation, Planck's Radiation Law, Quantum theory of Light; Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment. Group and Phase velocities and relation between them. Gamma ray microscope thought experiment; Heisenberg uncertainty principle (Uncertainty relations involving Canonical pair of variables): Estimating minimum energy of a confined particle using uncertainty principle.

Unit 2: Ouantum Mechanics:

Schrodinger equation for non-relativistic particles; Momentum and Energy operators; physical interpretation of a wave function, probabilities and normalization; One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization; Quantum mechanical scattering and tunnelling in one dimension-across a step potential & rectangular potential barrier (brief explanation)

Unit 3: Nuclear Structure:

Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, Liquid Drop model: semi-empirical mass formula and binding energy, Nuclear Shell Model and magic numbers.

Unit 4: Nuclear transformation:

Radioactivity: stability of the nucleus; Law of radioactive decay; Mean life and half-life; Alpha decay; Beta decay, Pauli's prediction of neutrino; Gamma ray emission. Fusion- mass deficit, generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions driving stellar energy (brief qualitative discussions)

Unit 5 Holography

Coherent source and monochromatic light. Interference of light waves. 2D Holography: Principle of Holography. Recording and Reconstruction Method. Theory of Holography as Interference between two Plane Waves.

Unit-6: Application of Modern Physics

Recent development in Modern Physics: Fundamental aspects of dark matter in modern physics, Applicational horizons of dark matter, Recent research trends.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Classical Mechanics
Course Code	BBS09T2301

(10 h)

(10 h)

(10 h)

(10 h)

Prerequisite	Students should qualify 10+2 or equivalent examination in Scien	Students should qualify 10+2 or equivalent examination in Science			
	stream				
Corequisite	Students should have fundamental knowledge of subjects li mathematics, physics and chemistry	ike			
Antirequisite	-				
	L T P	С			
	4 0 0	4			

Course Objectives: This course is designed to make the students familiar with the dynamics of the rotational motion of the body. They will also learn the motion of the particle in gravitational and central force. The Elasticity and fluid dynamics are also provided for the basic knowledge. The knowledge of theory of relativity is useful for students in nuclear physics and quantum mechanics.

Course Outcomes:

CO1	Explain the conservation laws of momentum and energy and centre of mass and apply them				
	to solve the related Problems.				
CO2	Explain the rotational dynamics of mechanical systems and calculate the moment of inertia.				
CO3	Apply the concept of potentials and fields, central forces, two body problem and Kepler's				
	laws to solve the related problems				
CO4	Explain the ideas of elasticity, elastic constants, twisting torque and fluid motion and				
	Poiseuille's equation.				
CO5	Describe different types of frames of references and fundamental ideas of special theory of				
	relativity				
CO6	Students will be able to develop separation between COM and COP				

Text Books:

1. An introduction to mechanics by Daniel Kleppner, Robert J. Kolenkow (McGraw-Hill)

2. Mechanics Berkeley physics course, v.1: By Charles Kittel, Walter Knight, Malvin Ruderman, Carl Helmholz, Burton Moyer, (Tata McGraw-Hill)

3. Mechanics by D S Mathur (S. Chand & Company Limited)

Reference Books:

4. Mechanics by Keith R. Symon (Addison Wesley)

5. University Physics by F W Sears, M W Zemansky and H D Young (Narosa Publishing House)

6. Age-related reduction in sagittal plane center of mass motion during obstacle crossing", Michael E. Hahn, Li-Shan Chou, Journal of Biomechanics, 37 (2004) 837-844, doi:10.1016/j.jbiomech.2003.11.010

UNIT :1 Fundamentals of Dynamics (10 h) Dynamics of a System of Particles. Centre of Mass. Conservation of Momentum. Idea of Conservation of Momentum from Newton's Third Law. Impulse. Momentum of Variable Mass System: Motion of Rocket. Work and Energy Theorem:- Work and Kinetic Energy Theorem. Conservative and Non- Conservative Forces. Potential Energy. Energy Diagram. Stable and Unstable Equilibrium. Gravitational Potential Energy. Elastic Potential Energy. Force as Gradient of Potential Energy. Work and Potential energy. Work done by Non-conservative Forces. Law of Conservation of Energy.

UNIT :2 Rotational Dynamics	(10 h)
Angular Momentum of a Particle and System of Particle	es. Torque. Conservation of Angular Momentum.
Rotation about a Fixed Axis. Moment of Inertia. Cal	culation of Moment of Inertia for Rectangular,
Cylindrical, and Spherical Bodies. Kinetic Energy of I	Rotation. Motion involving both Translation and
Rotation.	
UNIT :3 Gravitation and Central Force Motion	(10 h)
Law of gravitation. Inertial and Gravitational Mass. Pot and Solid Sphere.	ential and Field due to Spherical Shell
Motion of a Particle under Central Force Field. Two Bo	dy Problem and its Reduction to One
Body Problem and its Solution. The Energy Equation at	nd Energy Diagram. Kepler's Laws
(Ideas Only). Orbits of Artificial Satellites.	
UNIT :4 Elasticity and Fluid Motion	(10 h)
Some definitions and different types of co-efficients of e	elasticity. Theorems on stress and strain. Relation
Between Elastic Constants. Bending of beams. Twistin	g Torque on a Cylinder or wire.
Properties of fluids. The continuity equation. Kinemati	cs of Moving Fluids:- Poiseuille's Equation for
Flow of a Liquid through a Capillary-Tube.	
LINIT :5 Special theory of Balativity	(10 h)
Divit Special meory of Relativity	(1011)
Kelefence Frames methal Frames and Gamean frames	na Destulates of Special Theory of Deletivity
Lorentz Transformations Simultaneity and Order of	f Events Lorentz Contraction Time Dilation
Relativistic Transformation of Velocity Relativistic	Addition of Velocities Variation of Mass with
Velocity Rest Mass and Mass-less Particles Mass ene	ray Equivalence
velocity. Rest Wass and Wass-less Fatheres. Wass enc.	
Unit VI Application of Classical Mechanics	(4h)
Recent advancement in classical mechanics : Center of	of mass and center of pressure, balance control,
sagittal plane, study of A/P distance between COM and	СОР

Name of The Course	Mathematical Physics-II				
Course Code	BSCP2001				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science				
	stream				
Corequisite	Students should have fundamental knowledge	of s	subje	cts	like
	mathematics and physics				
Antirequisite	-				
		L	Т	Р	С
		4	-	-	4

Course Objectives:

This course provides the knowledge of periodic function and Fourier series. The students will also learn about some special functions used to solve the various physical problems. The knowledge of partial differential equation is very useful to solve many physics related problems
Course Outcomes

CO1	Explain the periodic function and apply it to determine the Fourier coefficients
CO2	Understand Fourier Series and apply the knowledge so solve the problems.
CO3	Apply the various special function to solve the physics related problems
CO4	Apply the special integration and solve the problems based on this integration
CO5	Solve the various physical problems using the partial differential equation
CO6	Develop the solution of second order differential equation using Homotopy Perturbation
	Method

Text Books:

- 1. MathematicalMethodsforPhysicists:Arfken,Weber,Harris,Elsevier.
- 2. Fourier Analysis by M.R. Spiegel, TataMcGraw-Hill.
- 3. Mathematics for Physicists, Susan M. Lea, ThomsonBrooks/Cole.

Reference Books:

- 1. Differential Equations, George F. Simmons, TataMcGraw-Hill.
- 2. PartialDifferentialEquationsforScientists&Engineers,S.J.Farlow,DoverPub.
- 3. EngineeringMathematics,S.PalandS.C.Bhunia,2015,OxfordUniversityPress
- 4. MathematicalmethodsforScientists&Engineers,D.A.McQuarrie,VivaBooks

References:

- 1. Yusufo`glu, E. 2009, Improved homotopy perturbation method for solving Fredholm type integrodifferential equations, Chaos, Solitons & Fractals, 41, 28
- 2. Zhou, S., & Wu, H. 2012, Analytical solutions of nonlinear Poisson–Boltzmann equation for colloidal particles immersed in a general electrolyte solution by homotopy perturbation technique, Colloid and Polymer Science, 290, 1165

Unit-I Periodic functions

Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients.

Unit-II Fourier Series

Complex representation of Fourier series. Expansion of functions with arbitrary period. Expansion of nonperiodic functions over an interval. Even and odd functions and their Fourier expansions. Application. Summing of Infinite Series. Term-by-Term differentiation and integration of Fourier Series.Parseval Identity.

Unit-III Frobenius Method and Special Functions:

Singular Points of Second Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations. Legendre, Bessel, Differential Equations. Properties of Legendre Polynomials: Rodrigues Formula, Generating Function, Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre Polynomials. Bessel Functions of the First Kind: Generating Function, simple recurrence relations. Zeros of Bessel Functions ($J_0(x)$ and $J_1(x)$) and Orthogonality.

Unit-IV Some Special Integrals:

Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions.

(12h)

(12h)

(12h)

(12h)

Unit-V Partial Differential Equations:	(12 h)	
Solutions to partial differential equations, using separation of variables: Laplace's Equation in		
rectangular, cylindrical and spherical symmetry. Wave equation and its solution for vibrational mod		
stretched string, Diffusion Equation.		
Unit VI: Application Mathematical Physics II	(4h)	
Recent advancement in (In Differential Equations):	A Study of General First-order Partial Differential	
Equations Using Homotopy Perturbation Method		

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Electromagnetic Theory				
Course Code	BBS09T2401				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream				
Corequisite	Students should have fundamental knowledge o mathematics, physics	of s	subje	cts	like
Antirequisite	-				
		L	Т	Р	С
		4	0	0	4

Course Objectives: The course of Electromagnetic Theory is designed to provide the knowledge of electrodynamics and the Maxwell's equations. The students will understand the mechanism of E M wave propagation in different mediums, both in unbounded and in waveguide. This course gives clear understanding of the EM wave characteristics such as reflection, refraction, polarization, total internal reflection etc.

Course Outcomes

CO1	Explain the electrodynamics of the charge and interpret the induction phenomenon
CO2	Describe concept for the formulation of Maxwell's equations in electrodynamics
CO3	Explain the concepts of EM Wave Propagation in Unbounded Media and its application in dielectric media.
CO4	Discuss the EM Wave in Bounded Media
CO5	Describe the propagation of EM wave and different modes in waveguides.
CO6	Propose the concepts of millimeter wave in developing new research ideas toward communication & amp; technology fields.

Text Books:

- 1. Introduction to Electrodynamics, D.J. Griffiths, 3rd Ed., 1998, Benjamin Cummings.
- 2. Elements of Electromagnetics, M.N.O. Sadiku, 2001, Oxford University Press. Reference Books

- 1. Electromagnetic Fields & Waves, P.Lorrain&D.Corson, 1970, W.H.Freeman& Co.
- 2. Electromagnetics, J.A. Edminster, Schaum Series, 2006, Tata McGraw Hill.
- 3. Electromagnetic field theory fundamentals, B. Guru and H. Hiziroglu, 2004, Cambridge University Press

References:

- 1. Electromagnetic Fields & amp; Waves, P.Lorrain& amp; D.Corson, 1970, W.H.Freeman& amp; Co.
- 2. https://www.sciencedirect.com/science/article/pii/B9780128022078000010
- 3. https://www.sciencedirect.com/science/article/pii/B9780444522047500286

Unit 1: Electrodynamics: (10 h)Introduction to Electrodynamics, Electromotive force: Electromotive force, Motional emf, Electromagnetic Induction: Faraday's law, The Induced Electric field, Inductance, Energy in Magnetic Fields Unit 2: Maxwell Equations: (10 h)Review of Maxwell's equations. Maxwell's correction in Ampere's law, Displacement Current, Boundary Conditions at Interface between Different Media, Poynting Theorem and Poynting Vector. Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic Field Energy Density, Momentum Density and Angular Momentum Density Unit 3: EM Wave Propagation in Media: (10 h) Transverse nature of plane EM waves, Plane EM waves through vacuum and dielectric medium, refractive index and dielectric constant, Propagation through conducting media, relaxation time, skin depth Unit 4: : EM Wave in Unbounded Media: (10 h)Boundary conditions at a plane interface between two media. Reflection & Refraction of plane waves at Normal Incidence, Reflection & Refraction of plane waves at Oblique Incidence, Laws of Reflection & Refraction. Fresnel's Formulae, Brewster's law, Total internal reflection, Concept of polarization and problems. Unit 5: Wave Guides: (10 h) Introduction, Rectangular Waveguides, Transverse Magnetic (TM) modes, Transverse Electric (TE) modes, Wave propagation in the waveguide, Power transmission & attenuation Unit-6: Application of Electromagnetic Theory: (4h) Recent development in Electromagnetic Theory: Fundamental aspects of Millimeter waves in Electromagnetic theory, Applications of Millimeter wave, Recent research trend of millimeter wave systems and technologies.

Continuous Assessment Pattern

N	ame of The Course ANALOG SYSTEMS AND APPLICATIONS								
С	ourse Code	BSCP2013							
P	Prerequisite Students should qualify 10+2 or equivalent examination in Science stream						n		
С	orequisite	te Students should have fundamental knowledge of subjects like mathematics physics					ics,		
А	ntirequisite	-							
					L	Т	Р	С	
					4	I	-	4	4
Internal Assessment (IA) Mid Term Test (MTE) End Term Test Tota			ıl Ma	rks					
			(ETE)						
Ī	30	20	50	100					

Course Objectives: Student will acquire gain about the basic concepts of semiconductors and the dynamics of charge carrier. They will also learn the working of diodes and its applications. Further, the transistors are introduced for the study of its characteristics and applications as amplifiers. Moreover, students learn about operational amplifiers as adder, integrator, differentiator and many other applications.

Course Outcomes

CO1	Explain the basics of semiconductors and their dynamical properties
CO2	Describe the different types of diodes and their applications
CO3	Describe the bipolar transistors and its characteristics to apply in different electronic circuits
CO4	Explain the different types of amplifier and oscillators to be used for many electronic applications
CO5	Explain the operational amplifier and its characteristics
CO6	Propose the energy efficient analog circuit for the nanoscale technology

Text Book:

- 1. Integrated Electronics, J. Millman and C.C. Halkias , Tata Mc-Graw Hill.
- 2. Solid State Electronic Devices, B.G.Streetman & S.K.Banerjee, 6th Edn., PHI Learning
- 1. Electronics: Fundamentals and Applications, J.D. Ryder, Prentice Hall.
- 2. Electronic Devices & circuits, S.Salivahanan & N.S.Kumar, 3rd Ed., 2012, Tata Mc-Graw hill
- OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, Prentice Hall Reference: T. Ytterdal, "Design of energy efficient analog circuits in nanoscale CMOS technologies," 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, Shanghai, 2010, pp. 184-187, doi: 10.1109/ICSICT.2010.5667806.

UNIT:-1 Semiconductors:

(10h)

P and N type semiconductors. Energy Level Diagram. Conductivity and Mobility, Concept of Drift velocity. Barrier Formation in PN Junction Diode. Static and Dynamic Resistance. Current Flow Mechanism in Forward and Reverse Biased Diode. Drift Velocity. Derivation for Barrier Potential, Barrier Width and Current for Step Junction.

UNIT:-2 Diodes Applications

Rectifier Diode: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, C-filter, Zener Diode and Voltage Regulation. Principle and working of LEDs, Photodiode and Solar Cell.

UNIT:-3 Bipolar Junction transistors:

n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Current gains α and β Relations between α and β . Load Line analysis of Transistors. DC Load line and Q-point. Active, Cutoff and Saturation Regions. Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider Bias. Transistor as 2-port Network. h-parameter Equivalent Circuit. Analysis of a single-stage CE amplifier using Hybrid Model. Input and Output Impedance. Current, Voltage and Power Gains.

UNIT:-4 Amplifiers and Oscillators:

Classification of Class A, B & C Amplifiers. Coupled Amplifier: Two stage RC-coupled amplifier and its frequency response.

Feedback in Amplifiers; Effects of Positive and Negative Feedback on Input Impedance, Output Impedance, Gain, Stability, Distortion and Noise.

Sinusoidal Oscillators: Barkhausen's Criterion for self-sustained oscillations. RC Phase shift oscillator, Hartley & Colpitts oscillators.

UNIT:-5 Operational Amplifiers:

Characteristics of an Ideal and Practical Op-Amp. open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of Virtual ground.

Applications of Op-Amps; Inverting and non-inverting amplifiers, Adder, Subtractor, Differentiator, Integrator, Log amplifier, Weinbridge oscillator.

Unit VI: Application of Analog Systems

Recent advancement in Analog Systems: Design of energy efficient analog circuits in nanoscale CMOS technologies

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Research Methodology and Statistics
Course Code	BBS09T2411

(10h)

(10h)

(4h)

(10 h)

(10h)

Prerequisite	Students should qualify 10+2 or equivalent examination in Science			
	stream			
Corequisite	Students should have fundamental knowledge of subjects like mathematics, physics and chemistry			
Antirequisite	-			
	L T P C			

Course Objective: The objective of the course is to impart research based knowledge to the students. They would be taught the various ways of data collection, research methodologies adopted in different settings, and statistical methods.

Course Outcome:

CO1	Students will get separately familiar with terms research and methodology,		
	respectively.		
CO2	Identifying different type of research sampling and research design.		
CO3	Students will understand raw data, primary data, secondary data and their different		
	methods of collection.		
CO4	Students will appraise the application of sampling through statistics.		
CO5	Students will get familiar with different descriptors of statistics to analyse data both		
	quantitatively and qualitatively.		
CO6	Students will develop the statistical analysis indulges in modern research for drug		
	designing.		

Text & References:

- Broota, K. D., Experimental designs in psychological research, Wiley eastern, New York, 1992.
- Guilford, Statistics in Psychology and Education, McGraw Hill, New York, 1986.
- J T Walker, Statistics in Criminology and Criminal Justice analysis and Interpretation
- Leo, A., & Hoekman, D. H. (1995). *Exploring QSAR*. American Chemical Society.
- Chanin Nantasenamat, Chartchalerm Isarankura-Na-Ayudhya, Thanakorn Naenna, Virapong Prachayasittikul, A Practical Overview of Quantitative Structure- Activity Relationship. EXCLI Journal 2009;8:74-88.
- Wiktor Pronobis, Alexandre Tkatchenko, and Klaus-Robert Muller, J. Chem. Theory Comput. 2018, 14, 2991–3003

Course Contents:

Module I: Introduction to Research Methodology	6-
Lectures	
Definition, concept and research in science; Introduction to Research Methodology, Research	
methodology in science.	
Module II: Research in Scientific and Social Settings	5-
Lectures	
Research Design: Research Sampling, rationale for using a particular sampling procedure. Proba	ability.

Module III: Tools of Data Collection 5	;-
Lectures	
Data and its types, Methods for Collecting Data, Observation method, Questionnaire, Other Methods	
Module IV: Introduction to Statistics	4-
Lectures	
Introduction to statistics (Biostatistics); Sample and Population, parametric and non parametric statistic	cs.
Module V: Descriptive Statistics 5	5-
Lectures	
Measures of central tendency; Measures of dispersion and deviation; graphical representation of the da	ita.
Correlation and Regression	
Unit 6: Recent research advances 3 hrs	
Descriptors, Quantitative structure-activity relationship (QSAR), Quantitative structure-property	-
relationship(QSPR), Drug designing.	

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	SOLID STATE PHYSICS				
Course Code	BSCP2011				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream				
Corequisite	Students should have fundamental knowledge mathematics, physics	of	subje	cts	like
Antirequisite	-				
		L	Т	Р	С
		4	-	-	4

Course Objectives: The aim of this subject is to provide the knowledge of crystal structure and determination method of crystal structure. Students will also learn the theory and properties of dielectrics, magnetic and semiconducting materials alog with the superconductivity behaviours of materials.

Course Outcomes

CO1	Explain the crystal structure and categorize them based on their characteristics.
CO2	Describe the elementary lattice dynamics and explain the specific heat of solids
CO3	Explain the types of magnetic materials and their properties
CO4	Describe the basics of dielectrics materials and its parameters.
CO5	Explain the different types of semiconductors and superconductors and their applications
CO6	Plan the construction of Graphene based nanostructured devices such as-diodes.

Text Books:

1. Introduction to Solid State Physics, Charles Kittel, 8th Ed., 2004, Wiley India Pvt. Ltd.

2. Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India 95

3. Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill

Reference Books:

- 1. Solid State Physics, N.W. Ashcroft and N.D. Mermin, Cengage Learning
- 2. Elementary Solid State Physics, 1/e M. Ali Omar, Pearson India
- 3. Solid State Physics, M.A. Wahab, 2011, Narosa Publications State

Reference:

Di Bartolomeo, Graphene Schottky diodes, Physics Reports, Volume 606, 8 January 2016, Pages 1-58

Unit 1: Crystal Structure:(10h)Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors. Unit Cell. Miller Indices.Reciprocal Lattice. Types of Lattices. Brillouin Zones. Diffraction of X-rays by Crystals. Bragg's Law.

Unit 2: Elementary Lattice Dynamics:(10 h)Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and OpticalPhonons. Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids. T³law

Unit 3: Magnetic Properties of Matter: (10 h) Dia-, Para-, Ferri- and Ferromagnetic Materials. Domains. Quantum Mechanical Treatment of Paramagnetism.Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss.

Unit 4: Dielectric Properties of Materials: (8 h) Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion.

Unit 5 Semiconductor theory and Superconductors

Kronig Penny model. Band Gaps and Conductors, Semiconductors and insulators. P and N type Semiconductors. Conductivity of Semiconductors, mobility, Hall Effect, Hall coefficient. Superconductivity: Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, London's Equation and Penetration Depth. Applications

(12 h)

Unit VI- Graphene Schottky diodes Graphene Schottky diodes: An experimental review of the rectifying Graphene/semiconductor heterojunction

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Mathematical Physics-III				
Course Code	BSCP2009				
Prerequisite	Students should qualify 10+2 or equivalent exaministream	natic	on in	Scie	nce
Corequisite	Students should have fundamental knowledge mathematics, physics	of	subje	cts	like
Antirequisite	-				
		L	Т	Р	С
		4	-	-	4

Course Objectives:

The objective of this course is to develop students with certain mathematical techniques, and to highlight applications of mathematical method to physical systems.

Course Outcomes

CO1	Understand the basics of complex functions and analytical functions			
CO2	Solve the problems based on integration of complex variables			
CO3	Understand Fourier transform and apply it to solve the differential equations			
CO4	Understand Laplace transform and its properties			
CO5	Apply the Laplace transform to solve the 1 st and 2 nd order differential equations.			
CO6	Design the solution model using Laplace Transformations in various fields			
	Text Books			

- 1. Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd ed., 2006, Cambridge UniversityPress
- 2. MathematicsforPhysicists,P.DenneryandA.Krzywicki, ,DoverPublications
- 3. ComplexVariables,A.S.Fokas&M.J.Ablowitz,8thEd.,2011,CambridgeUniv.Press Reference Books
- 1. Mathematics for Physicists, P. Denneryand A. Krzywicki, 1967, Dover Publications
- 2. Complex Variables, A.S. Fokas & M.J. Ablowitz, 8th Ed., 2011, Cambridge Univ. Press
- 3. Complex Variables, A.K. Kapoor, 2014, Cambridge Univ.Press

References:

1. Tania Bakhos, Arvin K. Saibaba, Peter K. Kitanids. [2015] A fast algorithm for parabolic pde-based inverse problemsbased on Laplace transforms and flexible krylov solvers. Journal of computational Physics, 299: 940 - 954.

2.Zahra WK, Hikal MM, Taher A. Bahnasy. [2017] Solutions for fractional order electrical circuits in Laplace transform a non - standard finite difference method. Journal of the EgyptianMathematical Society, pp 1-10.

3.Sumit Gupta, Devendra kumar, Jagdev Singh [2015] Analytical solutions of convection-diffusion problems by combining Laplace transform method and homotopy perturbation. Alexandria Engineering Journal, 54: 645 – 651

Unit-I Complex Analysis-I

(12 h)

Brief Revision of Complex Numbers and their Graphical Representation. Euler's formula, De Moivre's theorem, Roots of Complex Numbers. Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions.

Unit-II Complex Analysis-II

Singular functions: poles and branch points, order of singularity, branch cuts. Integration of a function of a complex variable. Cauchy's Integral formula. Laurent and Taylor's expansion. Residues and Residue Theorem.

Unit-III Fourier Transforms:

Fourier Integral theorem. Fourier Transform. Examples. Fourier transform of trigonometric, Gaussian, finite wave train. Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Convolution theorem. Properties of Fourier transforms (translation, change of scale, complex conjugation, etc.). application of Fourier Transforms: Application of Fourier Transforms to differential equations: One dimensional Wave.

Unit-IV Laplace Transforms:

Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of 1st and 2ndorder Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function, Dirac Delta function, Periodic Functions. Convolution Theorem. Inverse LT.

Unit-V Application of Laplace Transforms

Application of Laplace Transforms to 2nd order Differential Equations: Damped Harmonic Oscillator, Simple Electrical Circuits, Coupled differential equations of 1st order. Solution of heat flow along infinite bar using Laplace transform.

Unit VI: Application Mathematical Physics III (In Laplace Transformations) (4h)

Recent advancement in (In Laplace Transformations): A review on applications of Laplace Transformations in various fields

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Heat and Thermodynamics
Course Code	BSCP3009

(12 h)

(12 h)

(12 h)

(12 h)
Prerequisite	Students should qualify 10+2 or equivalent examination in Science				
	stream				
Corequisite	Students should have fundamental knowledge	of	subje	cts	like
	mathematics, physics				
Antirequisite	-				
		L	Т	Р	С
		4	-	-	4

Course Objectives: The objective of this course is to acquire knowledge in heat transfer, entropy, production of low temperature and liquefaction of gases, thermal radiation and statistical thermodynamics

Course Outcomes

CO1	Understand the concepts of Zeroth and First laws of thermodynamics.
CO2	Identify and apply the concepts of second laws of thermodynamics, in particular entropy,
	to solve problems in thermodynamic systems such as gases, heat engines and refrigerators
	etc.
CO3	Analyze the thermodynamic relations between the functions.
CO4	Apply the classical theory of particles to a system of ideal gas.
CO5	Differentiate between real gas and ideal gas and describe the various experiments based on
	it.
CO6	Plan for a research project in the field of Manufacturing Processes.

Text Book:

1 Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, McGraw-Hill.

2 A Treatise on Heat, Meghnad Saha, and B.N.Srivastava, Indian Press

Reference Books:

1Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, Tata McGraw-Hill

2 Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer

3 Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. Narosa.

Reference: https://doi.org/10.3390/inventions4020028

UNIT-1: Zeroth and First Law of Thermodynamics:

Zeroth Law of Thermodynamics & Concept of Temperature, Concept of Work & Heat, State Functions, First Law of Thermodynamics and its differential form, Internal Energy, First Law & various processes, Applications of First Law: General Relation between C_P and C_V , Work Done during Isothermal and Adiabatic Processes,

UNIT-2: Second Law of Thermodynamics and Entropy:

(12 h)

(8 h)

Reversible and Irreversible process with examples. Conversion of Work into Heat and Heat into Work. Heat Engines. Carnot's Cycle, Carnot engine & efficiency. 2nd Law of Thermodynamics: Kelvin-Planck and Clausius Statements and their Equivalence. Carnot's Theorem. Applications of Second Law of Thermodynamics, Concept of Entropy, Clausius Theorem. Clausius Inequality, Second Law of Thermodynamics in terms of Entropy. Entropy of a perfect gas. Principle of Increase of Entropy. Principle of Increase of Entropy. Temperature–Entropy diagrams for Carnot's Cycle. Third Law of Thermodynamics.

Unit-3: Thermodynamic Potentials: (10 h) Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy. First and second order Phase Transitions with examples, Clausius Clapeyron Equation and Ehrenfest equations Derivations and applications of Maxwell's Relations, Maxwell's Relations: Clausius Clapeyron equation, Values of Cp-Cv, TdS Equations, Joule-Kelvin coefficient for Ideal and Van der Waal Gases, Energy equations, Change of Temperature during Adiabatic Process.

UNIT-4: Kinetic Theory of Gases:

(10 h)

Distribution of Velocities: Maxwell-Boltzmann Law of Distribution of Velocities in an Ideal Gas, Mean, RMS and Most Probable Speeds. Degrees of Freedom. Law of Equipartition of Energy (No proof required). Specific heats of Gases.

Molecular Collisions: Mean Free Path. Collision Probability. Estimates of Mean Free Path. Transport Phenomenon in Ideal Gases: Viscosity, Thermal Conductivity and Diffusion.

UNIT-5: Real Gases:

(10 h)

Behavior of Real Gases: Deviations from the Ideal Gas Equation. The Virial Equation. Andrew's Experiments on CO2 Gas. Critical Constants. Continuity of Liquid and Gaseous State. Vapour and Gas. Boyle Temperature. Van der Waal's Equation of State for Real Gases. Values of Critical Constants. Law of Corresponding States. Comparison with Experimental Curves. P-V Diagrams. Joule's Experiment. Free Adiabatic Expansion of a Perfect Gas. Joule-Thomson Porous Plug Experiment. Temperature of Inversion. Joule-Thomson Cooling.

Unit VI: Recent advancements in Heat and Thermodynamics (4h) Thermodynamics in the 21st Century: Thermodynamics of Manufacturing Processes—The Workpiece and the Machinery

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	DIGITAL SYSTEMS AND APPLICATIONS				
Course Code	BSCP3005				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science				
	stream				
Corequisite	Students should have fundamental knowledge of	of s	ubjec	ts 1	like
	mathematics, physics				
Antirequisite	-				
		L	T 1	Р	С
		4	-	-	4

Course Objectives:

The primary objective of this course is to prepare the students to perform the analysis and design of various digital electronic circuits with memory operations. Objective is also to cultivate skills in students to execute mathematical and logical operation by using digital circuits.

Course Outcomes

CO1	Differentiate between analog and digital circuits and interpret the working of logic gates.
CO2	Apply the Boolean laws and De Morgan's theorem to simplify logic circuits and convert a
	truth table to its equivalent Boolean expression using SOP, POS, K Map methods.
CO3	Describe the design and operation of various combinational circuits.
CO4	Explain the design and operation of various sequential circuits.
CO5	Identify the block diagram of IC555 and explain the working of multivibrators, registers,
	counters, RAM, ROM.
CO6	Create good quality digital audio systems with acquiring knowledge on Bluetooth wireless
	headphones, Hearing aids, iPod, Sound Microphones.

Text Book:

1.Digital Principles and Applications, A.P. Malvino, D.P.Leach and Saha, 7th Ed., 2011, TataMcGraw 2.Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.

Reference Books:

1. Digital Electronics G K Kharate ,2010, Oxford University Press

2.Digital Systems: Principles & Applications, R.J.Tocci, N.S.Widmer, PHI Learning

3. Digital Electronics, S.K. Mandal, 2010, 1st edition, McGraw Hill

Reference: Louis E.Frenzel Jr. Austin, TX, United States https://doi.org/10.1016/B978-0-12-811641-8.00010-2

UNIT:-1 Digital Circuits:

Difference between Analog and Digital Circuits, Binary Numbers, Decimal to Binary and Binary to Decimal Conversion.BCD, Octal and Hexadecimal numbers. AND, OR and NOT Gates (realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates and application.

UNIT:-2 Boolean algebra:

(10h)

(10h)

De Morgan's Theorems. Boolean Laws. Simplification of Logic CircuitusingBooleanAlgebra.FundamentalProducts.IdeaofMintermsandMaxterms.Conversion of a Truth table into Equivalent Logic Circuit by Sum of Products Method and Karnaugh Map.

UNIT:-3 Arithmetic and Combinational circuits:

(10 h) Binary Addition, Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor Basic idea of Multiplexers, De-multiplexers, Decoders, Encoders.

Quantum Mechanics & Applications

Digital audio, Hearing aids, iPod, Sound Microphones

I tullie of The Course	Qualitain Meenanes & Applications				
Course Code	BSCP3001				
Prerequisite	Students should qualify 10+2 or equivalent examination	natic	on in	Scie	nce
	stream				
Corequisite	Students should have fundamental knowledge	of	subje	cts]	like
	mathematics, physics				
Antirequisite	-				
		L	Т	Р	С
		4	-	-	4

Course Objectives:

Name of The Course

The primary objective of this course is to develop familiarity with the physical concepts and facility with the mathematical methods of quantum mechanics. A secondary, but still very important objective is to cultivate student skills at formulating and solving physics problems using Schrodinger Equations and Heisenberg Uncertainty Principle.

Course Outcomes

CO1	Interpret Schrodinger time dependent equation and describe the wave functions/ quantum
	operators to obtain information about a quantum particle and system.
CO2	Interpret Schrodinger time independent equation and describe Hamiltonian, Eigen States and
	Eigen values of a quantum system.

Continuous Assessment Pattern

UNIT-VI: - Audio Electronics;

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Audio, Audio compression, Bluetooth wireless headphones, Compact disks

Shift Registers (only up to 4 bits), Counters (4bits):Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter, Input/Output Devices .Data storage (idea of RAM and ROM).Memory

SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Race-around conditions in JK Flip-Flop. M/S JK Flip-Flop.

IC555: block diagram and applications: Astable multivibrator and Monostable multi vibrator, Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out

SCHOOL OF BASIC AND APPLIED SCIENCES

UNIT:-5 Computer Organization:

UNIT:-4 Sequential Circuits:

(10h)

(4h)

(10h)

CO3	Solve the Schrödinger equations for 1-D quantum systems (e.g. square well, harmonic
	oscillator).
CO4	Solve time independent Schrodinger equation in spherical polar coordinates to obtain radial
	wave functions for Hydrogen like atoms.
CO5	Discuss the behavior of atoms in electric and magnetic fields and describe electron spin
	,space quantization, electron magnetic moment, etc.
CO6	Develop some concept about the Quantum communication system by using surface acoustic
	waves.

Text Books:

- 1. NouredineZettili,Quantum Mechanics: concepts and applications, 2nd Edition, Wiley, UK, 2009f
- 2. Introduction to Quantum Mechanics, D.J. Griffith, 2ndEd. 2005, Pearson Education

Reference Books:

- 3. Quantum Mechanics, Robert Eisberg and Robert Resnick, 2ndEd., 2002, Wiley.
- 4. Quantum Mechanics, Leonard I. Schiff, 3rdEd. 2010, Tata McGraw Hill.
- 5. Reference: Bienfait et al., Science 364, 368–371 (2019) DOI: 10.1126/science.aaw8415

Unit I: Time Dependent Schrodinger Equation: (12 h) Basics Postulates of Quantum Mechanics; Properties of Wave Function. Interpretation of Wave Function Position, momentum & Energy operators; Time dependent Schrodinger equation and dynamical evolution of a quantum state; Normalization. Linearity and Superposition Principles. Eigen values and Eigen functions. Expectation values of position & momentum. Wave Function of a Free Particle. Commutation relations between the operators. Compatible observables and simultaneous measurements. Ehrenfest theorem.

Unit II: Time Independent Schrodinger Equation (10 h) Hamiltonian, stationary states and energy eigenvalues; expansion of an arbitrary wavefunction as a linear combination of energy eigenfunctions; General solution of the time dependent Schrodinger equation in terms of linear combinations of stationary states; wave packets, Position-momentum uncertainty principle.

Unit III: One Dimensional Problems:

continuity of wave function, boundary condition and emergence of discrete energy levels; application to one-dimensional problem- square well potential; Quantum mechanics of simple harmonic oscillator-energy levels and energy eigenfunctions, zero point energy.

Unit IV: Quantum Theory of Hydrogen-like Atoms:

(10 h)

(10 h)

Time independent Schrodinger equation in spherical polar coordinates; separation of variables for the second order partial differential equation; angular momentum operator and quantum numbers; Radial wavefunctions; Orbital angular momentum quantum numbers ; probability density

Unit V:Atoms in Electric and Magnetic Fields:	(8 h)
Electron Angular Momentum. Space Quantization. Electron Spin and	Spin Angular Momentum.
Spin Magnetic Moment. Stern-Gerlach Experiment. Normal Zeeman	Effect: Electron Magnetic
Moment and Magnetic Energy.	
Unit VI Application of Quantum communication	(4h)
Recent advancement in Quantum mechanics: Phonon-mediated quantum	m state transfer and remote
qubit entanglement	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	STATISTICAL MECHANICS				
Course Code	BSCP3003				
Prerequisite	Students should qualify 10+2 or equivalent examine	natio	on in	Scie	ence
	stream				
Corequisite	Students should have fundamental knowledge	of	subje	cts	like
	mathematics, physics				
Antirequisite	-				
		L	Т	Р	С
		4	-	-	4

Course Objectives:

- To understand statistics performed under different constraint over microscopic particles consequence established macroscopic properties.
- To get familiar with different type of particle distributions in realm of classical and quantum physics.

Course Outcomes

CO1	Apply the ensemble concepts for determination of thermodynamic functions.
CO2	Explain the properties of radiation using classical and quantum theory
CO3	Distinguish between classical and quantum theory of radiation.
CO4	Apply the Bose-Einstein statistic to non degenerate and strongly degenerate Bose gas.
CO5	Apply the Fermi-Dirac statistics to non-relativistic and relativistic Fermi gas.
CO6	Student will get familiar with different type of phase transition and associated characteristics.

Text Book:

1 Statistical Mechanics, R.K. Patharia, Butterworth Heinemann: , Oxford University Press.

2 Statistical Physics, Berkeley Physics Course, F. Reif, 2008, Tata McGraw-Hill

Reference Books:

1. Statistical and Thermal Physics, S. Lokanathan and R.S. Gambhir, Prentice Hall

2.Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Sears and Gerhard L. Salinger, Narosa.

3. Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, Springer

Reference: Papon P., Leblond J., Meijer P.H.E. (2002) Thermodynamics and Statistical Mechanics of Phase Transitions. In: The Physics of Phase Transitions. Advanced Texts in Physics. Springer, Berlin, Heidelberg

UNIT:-1 Classical Statistics:

Macrostate & Microstate, Elementary Concept of Ensemble, Phase Space, Entropy and Thermodynamic Probability, Maxwell-Boltzmann Distribution Law, Partition Function, Thermodynamic Functions of an Ideal Gas, Classical Entropy Expression, Gibbs Paradox, Sackur Tetrode equation, Law of Equipartition of Energy (with proof) – Applications to Specific Heat and its Limitations, Thermodynamic Functions of a Two-Energy Levels System, Negative Temperature.

UNIT:-2 Classical Theory of Radiation:

Properties of Thermal Radiation, Blackbody Radiation, Pure temperature dependence, Kirchhoff's law, Stefan-Boltzmann law: Thermodynamic proof. Radiation Pressure, Wien's Displacement law Wien's Distribution Law, Saha's Ionization Formula, Rayleigh-Jean's Law, Ultraviolet Catastrophe

UNIT:-3 Quantum Theory of Radiation:

Spectral Distribution of Black Body Radiation, Planck's Quantum Postulates, Planck's Law of Blackbody Radiation: Deduction of Wien's Distribution Law, Rayleigh-Jeans Law, Stefan-Boltzmann Law, Wien's Displacement law from Planck's law

UNIT:-4 Bose-Einstein Statistics:

B-E distribution law, Thermodynamic functions of a strongly Degenerate Bose Gas, Bose Einstein condensation, properties of liquid He (qualitative description), Radiation as a photon gas and Thermodynamic functions of photon gas.

UNIT:-5 Fermi-Dirac Statistics:

Fermi-Dirac Distribution Law, Thermodynamic functions of a completely and strongly Degenerate Fermi Gas, Fermi Energy, Electron gas in a Metal, Specific Heat of Metals, Relativistic Fermi gas, White Dwarf Stars, Chandrasekhar Mass Limit.

astrop

(8 h)

(10 h)

(12 h)

(10 h)

(10 h)

Unit VI. Phase Transition.

(4h)

Example of phase transition, Characteristics of phase transitions, Classification of phase transitions

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Detailed Syllabus (Laboratory)

Name of The Course	Wave and Optics Lab				
Course Code	BSCP1002				
Prerequisite	Students should qualify 10+2 or equivalent examination stream with a minimum of 50% marks secured in Ph	tion i	in Sc s	eience	e
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives: Students will learn the working principles of experiments and perform different experiments based on waves and optics.

Course Outcomes

CO1	Operate and handle the instruments effectively and safely in the physics laboratory
CO2	Apply the graphical ability to determine the physical constants with maximum accuracy
CO3	Verify the given physical laws by the existing instruments and interpret the basic principles.
CO4	Apply the knowledge of instruments such as spectrometer to measure the angular spectrum of light and hence to determine the physical properties of the material
CO5	Apply the fundamental principles of optics to design and perform the experiments to be realized for practical applications

Text Book (s)

- 1. B.Sc. Practical Physics by C.L Arora, S. Chand Limited.
- 2. B.Sc. Practical Physics by Harnam Singh, S. Chand Limited.

Reference Book (s)

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, Asia Publishing House
- 2. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., Kitab Mahal
- 3. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, Heinemann Educational Publishers

List of Experiments

- 1. To determine the Refractive Index of the Material of a Prism using Sodium Light.
- 2. To determine Dispersive Power of the Material of a Prism using Mercury Light
- 3. To determine the value of Cauchy Constants.
- 4. To determine the Resolving Power of a Prism.
- 5. To determine wavelength of sodium light using Fresnel Biprism.
- 6. To determine wavelength of sodium light using Newton's Rings.
- 7. To determine the wavelength of Laser light using Diffraction of Single Slit.
- 8. To determine wavelength of (1) Sodium and (2) Spectral lines of the Mercury light using plane diffraction Grating
- 9. Polarisation of light and Brewster law
- 10. To determine the Frequency of an Electrically Maintained Tuning Fork by Melde's Experiment and to verify $\lambda^2 T$ Law.
- 11. To study Lissajous Figures
- 12. Familiarization with Schuster's focussing; determination of angle of prism.

Continuous Assessment Pattern

Internal Assessment	End Term Test	Total Marks
(IA)	(ETE)	
50	50	100

Name of The Course	Programming in C and Python Lab				
Course Code	BCSE1031				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with a minimum of 50% marks secured in Physics				
Co requisite	Students should have fundamental knowledge of Computer and it's application.				
		L	Т	Р	С
		0	0	4	2

Course Objectives:

The aim of the lab is to make the students of physics familiar with the working of computer programming language, QBASIC and use of software as a tool to understand physics, and solve physics based problems.

116

Course Outcomes

CO1	Understand the different codes to execute the program.
CO2	Write the program for numbers and mathematical calculations.
CO3	Write the print command to the given program.
CO4	Write the program for control structure in python.
CO5	Understand the concept of classes and objects in python.

- 1. Write a program in C to find greatest of three numbers.
- 2. Write a program in C to find gross salary of a person
- 3. Write a program in C to find grade of a student given his marks.
- 4. Write a program in C to find divisor or factorial of a given number.
- 5. Write a program in C to print first ten natural numbers.
- 6. Write a program in C to print first ten even and odd numbers.
- 7. Write a program in python to print n terms of Fibonacci series.
- 8. Write a program in python to find all prime numbers within a given range.
- 9. Write a program in python to demonstrate working of classes and objects

Continuous Assessment Pattern

Practical IA	Practical ETE	Total Marks
50	50	100

Name of The Course	Hands on Basic Techniques and Measurements				
Course Code	BBS09P1101				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with a minimum of 50% marks secured in Physics				
Corequisite	Students should have fundamental knowledge of physics, chemistry				
Antirequisite					
		L	Т	P	С
		0	0	4	2

Course Objectives:

The main purpose of this laboratory is to provide the students an appreciation for basic techniques in applied sciences. It is also aimed to provide the students a degree of competence in the laboratory skills required for accurate and precise analysis. Therefore it is expected that the students will demonstrate proficiency in synthesizing some material in laboratory.

Course Outcomes

CO1	Explain and operate the microscope for measurements.(K2)
CO2	Prepare Soap and Resins and understand the mechanism of preparation. (K5)
CO3	Preparation of biodiesel from Vegetable oil/ Waste cooking oil and characterize it. (K5)
CO4	Apply the skill to solder and connect the electronic components. (K3)
CO5	Understand the functioning of CRO and develop the ability to use the micrometers. (K2)

Text Book (s)/ Reference Book (s)

- 1. Georg Stehli, The Microscope And How to Use It, English edition, 1970.
- 2. M.Sayer and A. Mansingh, PHI Learning. Measurement, Instrumentation and Experiment Design in Physics & Engineering, 2005.
- 3. Stocchi, E.(1990), Industrial Chemistry, Vol -I, Ellis Horwood Ltd. UK.
 - 1. Different types of microscopes and its applications.
 - 2. Preparation of Urea-formaldehyde Resin
 - 3. Preparation of Soap
 - 4. Preparation of Biodiesel from Vegetable oil/ Waste cooking oil.
 - 5. Characterization of biodiesel (TLC, Acid value and viscosity)
 - 6. Soldering of electrical circuits
 - 7. Measurement with Vernier calipers, Screw gauge and spherometer
 - 8. Operation of oscilloscope
 - 9. Familiarization with linear, logarithmic and polar graphs for plotting of experimental data
 - 10. Assembling of elementary electric circuits using breadboard.

Continuous Assessment Pattern

Practical IA	Practical ETE	Total Marks
50	50	100

Name of The Course	Mathematical Physics-I Lab					
Course Code	BSCP1004					
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with a minimum of 50% marks secured in Physics					
Corequisite						
Antirequisite						
		L	Т	Р	С	
		0	0	4	2	

Course Objectives: The objective of this lab is to make the students able to make programs of numerical methods and solve the problems using the various programming language such as C++ and python.

Course Outcomes

CO1	Describe the codes for solving mathematical problems and utilize different
	function loops.
CO2	Develop the programming code to solve any given algebraic equation
CO3	Develop the programming code to perform matrix operations.
CO4	Develop the programming code to solve any given first order differential equation
CO5	Develop the programming code to Integrate a given function

Text Book (s)

- 1. Introduction to Numerical Analysis, S.S. Sastry, 5thEdn., 2012, PHI Learning Pvt.Ltd.
- 2. Schaum's Outline of Programming with C++. J. Hubbard, 2000, McGraw-Hill Pub.

Reference Book (s)

- Numerical Recipes in C: The Art of Scientific Computing, W.H. Pressetal, 3rdEdn., 2007, Cambridge University Press.
- 2. A first course in Numerical Methods, U.M. Ascher & C. Greif, 2012, PHI Learning.
- 3. Elementary Numerical Analysis, K.E. Atkinson, 3rdEdn., 2007, Wiley India Edition.
- 4. An Introduction to computational Physics, T.Pang, 2ndEdn., 2006, Cambridge Univ. Press
- 5. Computational Physics, Darren Walker, 1stEdn., 2015, Scientific International Pvt.Ltd.

Introduction and Overview of programming language (C/C++/python)
Basics of scientific computing
Errors and error Analysis
Review of Programming fundamentals
Programs:
Random number generation
Solution of Algebraic and Transcendental equations by Bisection, Newton Raphson and Secant methods
Interpolation by Newton Gregory Forward and Backward difference formula, Error estimation of linear interpolation
Numerical differentiation (Forward and Backward difference formula) and Integration (Trapezoidal and Simpson rules), Monte Carlo method
Solution of Ordinary Differential Equations (ODE)
First order Differential equation Euler, modified Euler and Runge-Kutta (RK) second and fourth order methods

Continuous Assessment Pattern

Internal Assessment	End Term Test (ETE)	Total Marks
50	50	100

Name of The Course	General Chemistry Lab				
Course Code	BSCC1044				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with a minimum of 50% marks secured in Physics				
Corequisite					
Antirequisite					
	L		Т	Р	C
	0		0	4	2

Course Objectives: This lab is provided for students to learn the basic chemistry experiments and to understand how to find various chemical compounds in the mixtures.

Course Outcomes

CO1	Handle the instruments and apparatus carefully
CO2	Measure the readings of experiments accurately

CO3	Perform volumetric titration to estimate the amount of a compound present in a mixture
CO4	Employ different volumetric titration techniques to estimate the amount of acids, salts and
	ions
CO5	Perform different chromatographic techniques to identify the compounds present in a mixture

Text Book (s)

- 1. Svehla, G. Vogel's Qualitative Inorganic Analysis, Pearson Education, 2012.
- 2. Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.

Reference Book (s)

1. Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., Textbook

of Practical Organic Chemistry, Prentice-Hall, 5th edition.

2. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry Orient-Longman.

List of Experiments

A: Inorganic Chemistry - Volumetric Analysis

- 1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.
- 2. Estimation of oxalic acid by titrating it with KMnO4.
- 3. Estimation of water of crystallization in Mohr's salt by titrating with KMnO4.
- 4. Estimation of Fe (II) ions by titrating it with K2Cr2O7 using internal indicator.

5. Estimation of Cu (II) ions iodometrically using Na2S2O3.

Section B: Organic Chemistry

1. Detection of extra elements (N, S, Cl, Br, I) in organic compounds (containing upto two extra elements)

2. Separation of mixtures by Chromatography: Measure the Rf value in each case (combination of two compounds to be given)

(a) Identify and separate the components of a given mixture of two amino acids (glycine, aspartic acid, glutamic acid, tyrosine or any other amino acid) by paper chromatography

(b) Identify and separate the sugars present in the given mixture by paper chromatography.

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

Name of The Course	Nanoscience and Nanotechnology Lab				
Course Code	BSCG1051				
Prerequisite	Students should qualify 10+2 or equivalent examinat stream with a minimum of 50% marks secured in Ph	tion i ysics	n Sc	ience	;
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives: The objective of this lab is to provide the basic knowledge of Nanoscience and nanotechnology, synthesis and its characterisation using UV techniques. Students will also learn the properties and its vast applications.

Course Outcomes

CO1	Describe basics of nanoscience and nanotechnology	
CO2	Synthesis of nano particles by different materials	
CO3	Describe the general characteristics of nanosize materials.	
CO4	Demonstrate the nanomaterials characterization by UV techniques.	
CO5	Correlate the nano-materials properties & identify appropriate applications as well as its	
	ethical aspects	

Text Book (s)

- 1. Vogel, A. I. Vogel's Qualitative Inorganic Analysis 7th Ed., Prentice Hall.
- 2. Carbon Materials and Nanotechnology, Anke Krueger, Wiley -VCH Verlag GmbH & Co., 2010.
- 3. Nanotechnology, J.F. Mongillo Greenwood Press London, 2008.

Reference Book (s)

- 1. Introduction to Nanotechnology C P Poole, Frank J. Owens, John Wiley & Sons, 2011.
- 2. Micro fabrication and nano- manufacturing, M.J Jackson, CRC Press

Taylor & Francis Group 2006.

List of Experiments

- 11. Preparation of Ag nanoparticles and characterization.
- 12. Preparation and characterization of CaO nanoparticles.
- 13. Preparation and characterization of ZnO nanoparticles.
- 14. Synthesis of ZnS nanoparticles and Characterization of synthesized nanoparticles by different techniques.
- 15. Preparation of Cu nanoparticles and Characterization by UV-Vis spectrophotometer.
- 16. Synthesis of CdS nanoparticles UV-Vis and IR characterization.
- 17. Catalytic reduction of *p*-nitrophenol by Ag nanoparticle
- 18. Synthesis of magnetic Fe₂O₃ nanoparticles.
- 19. Synthesis of MnO nanoparticles under optimized conditions using different Manganese salts (Manganese acetate and Manganese nitrate) and Characterization by UV-Vis spectrophotometer and other characterization techniques.

- 20. Optimization and study of the size variation of Manganese oxide nanoparticles using time variation and temperature variation.
- 21. Synthesis of Nickel Oxide nanoparticles from Nickel Nitrate and optimization of conditions. Characterization by UV-Vis spectrophotometer.
- 22. Synthesis of Copper nanoparticles from Copper Sulphate in presence of Ascorbic acid and optimization of conditions.UV-Visible and IR characterization.

Continuous Assessment Pattern

Internal Assessment	End Term Test	Total Marks		
(IA)	(ETE)			
50	50	100		

Name of The Course	Elements of Modern Physics Lab				
Course Code	BSCP2006				
Prerequisite Students should qualify 10+2 or equivalent examination in Sci		ience	;		
	stream with a minimum of 50% marks secured in Physics				
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives: Student will perform the various experiments based on Laser, optical fibre, quantum mechanics

Course Outcomes

CO1	Operate and handle the physics instruments effectively and safely in the laboratory	
CO2	Determine the wavelength of monochromatic light using different methods.	
CO3	Apply the skill to measure the physical constants of the material in the lab	
CO4	Illustrate the experiments of optical fibre.	
CO5	Interpret the working of the experiments using the fundamental principle of physics	

Text Book (s)

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, Asia Publishing House
- 2. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 2011,Kitab Mahal

Reference Book (s)

1. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, Heinemann Educational Publishers

List of Experiments

- 1. Measurement of Planck's constant using photo-detector
- 2. To determine the Planck's constant using LEDs of at least 4 different colours.
- 3. To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- 4. To show the tunneling effect in tunnel diode using I-V characteristics.
- 5. To determine the wavelength of diode laser source using diffraction of single slit.
- 6. To determine the wavelength of laser using diffraction of double slits.
- 7. To determine wavelength of He-Ne laser using plane diffraction grating
- 8. To determine Angular spread of He-Ne laser using plane diffraction grating
- 9. Determination of Laser divergence
- 10. Determination of Numerical Aperture of Optical fibre
- 11. Study of signal attenuation in optical fibre using laser source.

Continuous Assessment Pattern

Internal Assessment	End Term Test	Total Marks
(IA)	(ETE)	
50	50	100

Name of The Course	Mathematical Physics-II Lab				
Course Code	BSCP2002				
Prerequisite	Students should qualify 10+2 or equivalent examinat stream with a minimum of 50% marks secured in Ph	tion i ysics	in Sc	eience	e
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives: The objective of this lab is to develop the ability to write the program using Sci lab. The student will learn the programming for curve fitting, matrix solution, special function, solution for ODE and partial differential equations.

Course Outcomes

CO1	Understand the basics of Scilab and apply to execute the various commands.
CO2	Develop the programs for curve fitting, least square fitting etc.
CO3	Develop the programs for Solution of Linear system of equations
CO4	Develop the programs for various special functions

CO5 Develop the programs for Solution of ordinary differential equation and partial differential equation

Text Book (s)

- Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd ed., Cambridge University Press
- 2. Complex Variables, A.S.Fokas &M.J.Ablowitz,8thEd.,2011,CambridgeUniv.Press
- 3. Computational Physics, D.Walker, 1stEdn., 2015, Scientific International Pvt.Ltd.
- 4. Scilab (A free software to Matlab): H. Ramchandran, A.S.Nair. 2011S.Chand&Company

Reference Book (s)

- 1. Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific and Engineering Applications: A.V. Wouwer, P. Saucez, C.V. Fernández. 2014 Springer
- 2. Scilab by example: M. Affouf 2012, ISBN:978-1479203444
- 3. ScilabImageProcessing:LambertM.Surhone.2010BetascriptPublishing
- 4. www.scilab.in/textbook_companion/generate_book/291

Contents: Computational Programming using Scilab/Python

Introduction to Numerical computation software Scilab: Scilab environment, Command window, Figure window, Edit window, Variables and arrays, Multidimensional arrays, Sub array, Special values, Displaying output data, data file, Scalar and array operations, Hierarchy of operations, Built in Scilab functions, Introduction to plotting, 2D and 3Dplotting, Branching Statements and program design, Relational & logical operators, the while loop, for loop, details of loop operations, break & continue statements, nested loops, logical arrays and vectorization. User defined functions, Introduction to Scilab functions, Variable passing in Scilab, optional arguments, preserving data between calls to a function, Complex and Character data, string function, Multi dimensional arrays, an introduction to Scilab file processing, file opening and closing, Binary I/o functions, comparing binary and formatted functions, Numerical methods and developing the skills of writing a program.

Curve fitting, Least square fit, Goodness of fit, standard deviation - Ohms law to calculate R, Hooke's law to calculate spring constant

Solution of Linear system of equations by Gauss elimination method and Gauss Seidal method. Diagonalization of matrices, Inverse of a matrix, Eigenvectors, eigen values problems - Solution of mesh equations of electric circuits (3 meshes), Solution of coupled spring mass systems (3 masses).

Generation of Special functions using User defined functions in Scilab: Generating and plotting Legendre Polynomials, Generating and plotting Bessel function

Solution of ODE

First order Differential equation Euler, modified Euler and Runge-Kutta second order methods, Second order differential equation Fixed difference method

Partial differential equations- Wave equation, Heat equation, Poisson equation, Laplace equation

Continuous Assessment Pattern

Internal Assessment	End Term Test	Total Marks
(IA)	(ETE)	
50	50	100

Name of The Course	ELECTRICITY AND MAGNETISM LAB				
Course Code	BSCP2004				
Prerequisite	Students should qualify 10+2 or equivalent examination	Students should qualify 10+2 or equivalent examination in Science			
_	stream with a minimum of 50% marks secured in Ph	ysics	3		
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives: Objective of this lab is to make the students to learn about using the multimeter, breadboard and electronic components. They will gain the skills to connect the LCR circuits and perform the experiments. Also verify the basic circuit theorems, and measure the resistance using Ballistic Galvanometer.

Course Outcomes

CO1	Operate and handle the electronic instruments effectively and safely in the physics
	laboratory
CO2	Apply the skill to measure the resistance and voltage using multimeter
CO3	Connect the electronic circuits using breadboard
CO4	Apply the skill to measure the resistance by Ballistic Galvanometer
CO5	Interpret the resonance due to LCR circuit and measure the various parameters.

Text Book (s)

- 1. A Text Book of Practical Physics, I.Prakash& Ramakrishna, 11th Ed., 2011, KitabMahal
- 2. Engineering Practical Physics, S.Panigrahi and B.Mallick, 2015, Cengage Learning.
- 3. A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, Vani Pub.

Reference Book (s)

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, Asia Publishing House
- 2. Advanced level Physics Practical, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted, Heinemann Educational Publishers

List of Experiments 1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses. 2. To study the characteristics of a series RC Circuit. 3. To determine an unknown Low Resistance using Potentiometer. 4. Measurement of field strength B and its variation in a solenoid (determine dB/dx) 5. To verify the Thevenin and Norton theorems. 6. To determine self inductance of a coil by Anderson's bridge. 7. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width. 8. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer 9. Determine a high resistance by leakage method using Ballistic Galvanometer. 10. To determine the mutual inductance of two coils by Absolute method.

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

Name of The Course	Solid State Electronics Lab				
Course Code	BBS09P2401				
Prerequisite	Students should qualify 10+2 or equivalent examinat stream with a minimum of 50% marks secured in Ph	tion i ysics	n Sc	ience	e
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives: This lab is designed to provide the knowledge how to perform the experiments to study the characteristics of diode and transistors. Students will also learn the various application of diode and transistors as voltage regulators, amplifiers etc.

Course Outcomes

CO1	Perform the experiments based on semiconductor and magnetic materials and interpret the results
CO2	Explain the I-V characteristics of different diodes and their applications
CO3	Perform the experiments of transistor in various mode and explain the characteristics
CO4	Demonstrate the application of transistor as amplifier and calculate the gain
CO5	Perform the experiments using operational amplifier and illustrate its various application

Text Book (s)

- 1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, Asia Publishing House.
- 2. A Text Book of Practical Physics, I.Prakash& Ramakrishna, 11th Edn., 2011, KitabMahal
- 3. Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-Graw Hill.
- 4. OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall.

Reference Book (s)

- 1. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition,
- 2. reprinted 1985, Heinemann Educational Publishers
- 3. Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India
- 4. Electronic Principle, Albert Malvino, 2008, Tata Mc-Graw Hill.
- 5. Electronic Devices & circuit Theory, R.L. Boylestad & L.D. Nashelsky, 2009, Pearson

List of Experiments

- 1. Measurement of susceptibility of paramagnetic solution (Quinck's Tube Method)
- 2. To study the BH curve of iron using a Solenoid and determine the energy loss.
- 3. To measure the resistivity of a semiconductor (Ge) crystal with temperature by four-probe method (room temperature to 150 oC) and to determine its band gap.
- 4. To determine the Hall coefficient of a semiconductor sample
- 5. To study V-I characteristics of PN junction diode, and Light emitting diode.
- 6. To study the V-I characteristics of a Zener diode and its use as voltage regulator.
- 7. Study of V-I & power curves of solar cells, and find maximum power point & efficiency.
- 8. To study the characteristics of a Bipolar Junction Transistor in CE configuration.
- 9. To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.
- 10. To design non-inverting amplifier using Op-amp (741,351) & study its frequency response
- 11. To investigate the use of an op-amp as an Integrator.
- 12. To investigate the use of an op-amp as a Differentiator.

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

Name of The Course	Thermal Physics lab				
Course Code	BSCP3002				
Prerequisite	Students should qualify 10+2 or equivalent examinat stream with a minimum of 50% marks secured in Physical Stream	tion i ysics	in Sc	ience	2
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives: The thermal Physics lab is offered to students for their experimental hand on to measure Planck constant, Stefan's constant, and coefficient of thermal conductivity. Also students will learn about the applications of thermo couples.

Course Outcomes

CO1	Operate and handle the instruments effectively and safely in the physics laboratory –K2
CO2	Determine the Planck constant and Stefan's constant-K3
CO3	Calculate the Thermal conductivity by various methods. K3
CO4	Calculate the temperature coefficient of resistance-K3
CO5	Use the thermocouple and perform the different experimentsK3

Text Book (s)

- 1. Advanced Practical Physics for students, B.L.Flint & H.T.Worsnop, Asia Publishing House.
- 2. A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, KitabMahal, New Delhi.
- 3. A Laboratory Manual of Physics for Undergraduate Classes, D.P. Khandelwal, Vani Publication.

Reference Book (s)

1. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers

List of Experiments

1. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.

- 2. Measurement of Planck's constant using black body radiation.
- 3. To determine Stefan's Constant.

4. To determine the coefficient of thermal conductivity of copper by Searle's Apparatus.

5. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method.

6. To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method.

7. To determine the temperature co-efficient of resistance by Platinum resistance thermometer.

8. To study the variation of thermo emf across two junctions of a thermocouple with temperature.

9. To record and analyze the cooling temperature of an hot object as a function of time using a thermocouple and suitable data acquisition system

10. To calibrate Resistance Temperature Device (RTD) using Null Method/Off-Balance Bridge

Continuous Assessment Pattern

Internal Assessment	End Term Test	Total Marks
(IA)	(ETE)	
50	50	100

Name of The Course	Digital Systems and Applications Lab				
Course Code	BSCP3006				
Prerequisite	Students should qualify 10+2 or equivalent examinat stream with a minimum of 50% marks secured in Ph	tion i ysics	n Sc	ience	;
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives: The objective of this lab is to provide the skills to students about testing and the diode transistor and other electronic components. The student will learn how to design the various logic gates, adder, subtractor and flip flops using diodes, transistors and ICs.

Course Outcomes

CO1	Operate and handle the instruments effectively and safely in the physics laboratory K2
CO2	Employ the understanding of logic gates using transistors and diodes to design switches, AND, OR, NOT, XOR gates. K3
CO3	Design logic gate circuits and verify the truth table. K3
CO4	Design the adder and subtractor using ICs. K3
CO5	Demonstrate and design the various flip flops using ICs. K4

Text Book (s)

- Modern Digital Electronics, R.P. Jain, 4th Edition, 2010, Tata McGrawHill.
- Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-GrawHill.

Reference Book (s)

- Microprocessor Architecture Programming and applications with 8085, R.S. Goankar, 2002, PrenticeHall.
- Microprocessor 8085: Architecture, Programming and interfacing, A. Wadhwa, 2010, PHILearning.

List of Experiments

- 1. To measure (a)Voltage, and(b)Time period of a periodic wave form using CRO.
- 2. To test a Diode and Transistor using a Multimeter.
- 3. To design a switch (NOT gate) using a transistor.
- 4. To verify and design AND, OR, NOT and XOR gates using NAND gates.
- 5. To design a combinational logic system for a specified Truth Table.
- 6. To convert a Boolean expression into logic circuit and design it using logic gate ICs.
- 7. To minimize a given logic circuit.
- 8. Half Adder, Full Adder and 4-bit binary Adder.
- 9. Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C.
- 10. To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates.
- 11. To build JK Master-slave flip-flop using Flip-Flop ICs
- 12. To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram.

Continuous Assessment Pattern

Internal Assessment	End Term Test	Total Marks
(IA)	(ETE)	
50	50	100

Elective Courses

Elective-I

Name of The Course	Laser Physics
Course Code	BSCP2051
Prerequisite	Students should qualify 10+2 or equivalent examination in Science
	stream

Corequisite	Students	should	have	fundamental	knowledge	of	subje	cts	like
	mathema	tics and p	physics	5					
Antirequisite	-								
						L	Т	Р	С
						4	-	I	4

Course Objectives: This course is designed to make the students familiar with the different types of laser, their properties, working principle and applications in various fields

Course Outcomes

CO1	Explain the laser properties and the condition to achieve the laser action
CO2	Explain the quantum theory of radiation and spectral line broadening
CO3	Identify the dynamics of the laser process and describe it to realize the laser light.
CO4	Describe the different types of laser and their production methods.
CO5	Explain the various application of laser in industry, medical and other fields.
CO6	Prepare the digital image hologram in the recent research field of laser.

Text Books:

1. B. B. Laud Lasers and Nonlinear optics (2ndEdn.). New Delhi: New Age international (P) Limited

2. K. Thyagarajan, A. K. Ghatak, Lasers: Theory and Applications. New Delhi: Macmillan India Ltd Reference Books:

- 1. Anthony Seigman, Lasers, University Science Books,
- 2. Walter Koechner ,Solid State Laser Engineering, Springer Science & Business Media
- 3. L. V. Tarasov, Laser Physics. Moscow: Mir Publisher
- 4. L. Allen, Essentials of Lasers. Oxford: Pergamon Press

References:

- 1. Martin J. Richardson John D. Wiltshire, The Hologram: Principles and Techniques, Technology & Engineering, John Wiley & Sons, November 22, 2017.
- 2. Recent advances in self-interference incoherent digital holography, Advances in Optics and Photonics, Vol. 11, Issue 1, pp. 1-66, (2019)
- 3. https://doi.org/10.1364/AOP.11.000001
- 4. https://doi.org/10.1364/AO.53.000G44

UNIT I LASER PROPERTIES

Light waves and photons, optical directionality, interactivity, monochromaticity and coherence, quantum transitions in absorption and Emission of light. The active medium, meta stable state, creating population inversion, Laser gain curve.

UNIT II QUANTUM THEORY OF RADIATION

Einstein's quantum theory of radiation, Einstein coefficients and their relationship. Shape and width of spectral lines, line broadening mechanism, and Doppler broadening.

132

(8hr)

(8hr)

UNIT III DYNAMICS OF LASER PROCESSES

Optical resonators of various kinds and their role in confinement of laser beam. Control of laser output: Interactivity, control of spectral characteristics, method of Q switching, Pulsed Lasing, mode locking for ultra-short pulses, modifying the spatial structure of laser output, Frequency transformations in nonlinear media, wave front correction of laser output, Light beam manipulation.

(12hr)

(12hr)

(10hr)

UNIT IV TYPES OF LASERS

Solid state laser, organic dye laser, photo dissociation lasers, Molecular Laser (CO2 laser), Electro ionization Lasers, Chemical Lasers, Semiconductor Lasers.

UNIT V APPLICATIONS OF LASERS

Nonlinear optics: harmonic generation, second harmonic generation, phase matching and optical mixing, Lasers in optical communications: different types of optical fibre (brief description) and applications, ranging and measurement

Unit VI- Recent development in application of laser in holography(4hr)Digital Image Hologram, E-beam Lithographic grating, Grating security feature.

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Astronomy and Astrophysics				
Course Code	BBS09T5321				
Prerequisite	Students should qualify 10+2 or equivalent exaministream	natio	n in	Scie	ence
Corequisite	Students should have fundamental knowledge mathematics and physics	of s	subje	ects	like
Antirequisite	-				
		L	Т	Р	C
		4	-	-	4

Course Objective:

This course aims to provide a broad overview of astronomy and astrophysics to students. They will learn the various parameters used in astronomy, formation and characteristics of the Sun and Solar System, including the planets, Telescopes, the birth, life and death of stars, Black Holes and Supernova.

Course Outcomes:

S.No	COs
CO1	Describe the various parameters used in astronomy.
CO2	Identify the various coordinate system used in astronomy.
CO3	Describe the working principle of the astronomical telescopes.
CO4	Explain the mechanism of star formation and various stages of evolution, including Red giant, White Dwarfs, Neutron Star, Black Holes and Supernova.
CO5	Demonstrate an understanding of the basic physical processes in the Sun and origin of Solar system;
CO6	Plan a project on Black hole studies

Text Books:

- 1. An Introduction to Modern Astrophysics and Cosmology (Second Edition), B.W. Carroll & D.A. Ostlie, Addison-Wesley Publishing Co., 2006
- 2. An Introduction to Astronomy and Astrophysics, Pankaj Jain, CRC Press Taylor & Francis Group, 2015
- 3. Astrophysics for Physicists, by ArnabRaiChoudhuri, 2012 Cambridge University Press.
- 4. Textbook of Astronomy and Astrophysics with elements of cosmology, V. B. Bhatia, Narosa Publication, 2001

Reference Books:

- 1. Introductory Astronomy and Astrophysics (Fourth Edition), M. Zeilik and S. A. Gregory
- 2. Saunders College Publishing, 1998 Fundamental of Astronomy (Fifth Edition), H. Karttunen et al. Springer, 2007
- 3. The Cosmic Perspective (Eighth Edition), J. O. Bennet, M. Donahue, N. Schneider & M. Voit, Pearson Publications, 2017
- 4. The Physical Universe: An Introduction to Astronomy, Frank Shu, Oxford University Press, 1985
- Astrophysics: Stars and Galaxies, K. D. Abhyankar, Universities Press, 2001 Reference: Leor Barack1, Vitor Cardoso et.al Classical and Quantum Gravity, Volume 36, Number 14

Unit-I Basic Astronomical Parameters(10 I	lectures)
Astronomical scales and dimensions: Light Distances, Stellar Parallax, Angular Siz	zes and Distances,
Brightness, Radiant Flux and Luminosity, Apparent and Absolute magnitude scale, I	Distance Modulus,
Measurement of Astronomical Quantities (Distances, Stellar Radii, Masses of Stars f	from binary orbits,
Stellar Temperature, Color index of stars)	
Unit-II The celestial sphere and the coordinate systems(10 I	lectures)
Celestial Sphere, Geometry of a Sphere, Astronomical Coordinate Systems,	Horizon System,
Equatorial System, Ecliptic System, Galactic Coordinate System, Space Velocity a	nd Proper Motion
of Stars, Coordinate transformation between Horizon and Equatorial system, Meas	surement of Time,
Sidereal Time, Apparent Solar Time, Mean Solar Time, Equation of Time, Julian Da	ite, Stellar spectra:
Spectral types and their temperature dependence, Hertzsprung-Russell Diagram	
Unit-III Astronomical telescopes and techniques:	(10 Lectures)

Atmospheric Windows, Optical telescopes, Radio telescope, Telescope mountings, Magnification, Light gathering power, resolving power and diffraction limit, Detection limit of telescope, Modern terrestrial and space telescopes (GMRT, Keck, Chandra, HST).

Unit-IV Star Formation and Stellar Evolution

(10 Lectures)

Pressure Gradient, Mass Distribution, Temperature Gradient, Equation of State, Derivation of Ideal Gas Law, Radiation Pressure, Energy Production in Stars, Nuclear Fusion Reactions, Nuclear Reaction Rate,, Energy Released in Nuclear Reactions, Early Stage of Star Formation, Evolution on the Main Sequence, Degenerate Free Electron Gas, Evolution beyond the Main Sequence, Population I and II Stars, Red giant, White Dwarfs, Neutron Star, Black Holes, Supernova

Unit-V The Sun and the Solar System:

(10 Lectures)

(4h)

Solar Atmosphere, Solar Photosphere, Chromosphere, Corona, Solar Activity, Basics of Solar Magnetohydrodynamics, Sunspots and the Solar Cycle, Origin of the Solar System (The Nebular Model, Tidal Forces, Planetary Rings and their formation); Extra Solar Planets.

UNIT-6: Recent development in Astronomy

Black holes, gravitational waves and fundamental physics: a roadmap

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Elective-II

Name of The Course	Classical Dynamics				
Course Code	BSCP2052				
Prerequisite	Students should qualify 10+2 or equivalent exaministream	natio	on in	Scie	nce
Corequisite	Students should have fundamental knowledge mathematics, physics	of	subje	ects	like
Antirequisite	-				
		L	Т	Р	С
		4	-	-	4

Course Objectives: Objective of this course is to provide the advanced knowledge of applying the classical mechanics for point charge particle in a field, and also to find the equation of dynamical particles. Students will also learn the advanced topics on special theory of relativity and fluid dynamics.

Course Outcomes

CO1	Apply the concept of classical mechanics to solve the motion of a charge particle in external electric and magnetic fields
CO2	Describe the Dynamics of Point Particles
CO3	Explain the motion of a Particle in a central force field
CO4	Estimate the motion of a particle in a relativistic limit
CO5	Explain the dynamics and the motion of fluids

CO6 Propose the ideas in the field of phase space and phase configurations

Text Books:

1. Classical Mechanics, H.Goldstein, C.P. Poole, J.L. Safko, 3rdEdn. 2002, Pearson Education.

2. Mechanics, L. D. Landau and E. M. Lifshitz, 1976, Pergamon.

Reference Books:

- 1. Classical Mechanics, R. Douglas Gregory, 2015, Cambridge University Press.
- 2. Classical Mechanics: An introduction, Dieter Strauch, 2009, Springer.
- 3. Solved Problems in classical Mechanics, O.L. Delange and J. Pierrus, 2010, Oxford Press

Reference: Donald T. Greenwood (1989). Classical Dynamics, Dover Publications; Revised ed.

edition (July 7, 1997)

Unit-1: Classical Mechanics of Point Particles: (12 h) Review of Newtonian Mechanics; Application to the motion of a charge particle in external electric and magnetic fields- motion in uniform electric field, magnetic field- gyro radius and gyro frequency, motion in crossed electric and magnetic fields.

Unit-2: Dynamics of Point Particles: (10 h) Generalized coordinates and velocities, Hamilton's principle, Lagrangian and the Euler-Lagrange equations, one-dimensional examples of the Euler-Lagrange equations- one-dimensional Simple Harmonic Oscillations and falling body in uniform gravity.

Unit 3: Central force: (10 h) Particle in a central force field- conservation of angular momentum and energy, Equation of motion, Application, Hamilton's equations of motion. Applications: Hamiltonian for a harmonic oscillator, solution of Hamilton's equation for Simple Harmonic Oscillations;

Unit 4: Special Theory of Relativity: (10 h) Postulates of Special Theory of Relativity. Lorentz Transformations. Minkowski space. The invariant interval, light cone and world lines. Space-time diagrams. Time -dilation, length contraction and twin paradox. Four-vectors: space-like, time-like and light-like. Four-velocity and acceleration.

Unit 5: Fluid Dynamics:

(10 h)

Density and pressure in a fluid, an element of fluid and its velocity, continuity equation and mass conservation, stream-lined motion, laminar flow, Poiseuille's equation for flow of a liquid through a pipe, Navier-Stokes equation, qualitative description of turbulence, Reynolds number.

Unit VI Application of Classical Dynamics (4h) Generalized coordinate, velocity and momentum. Configuration space and phase space. Phase Portraits, The pendulum, Phase portrait, Elliptic function.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	PHYSICS OF DEVICES AND COMMUNICATI	ON	SYS'	ГЕМ	[S
Course Code	BBS09T5421				
Prerequisite	Students should qualify 10+2 or equivalent exami stream	natio	on in	Scie	nce
Corequisite	Students should have fundamental knowledge mathematics, physics and chemistry	of s	subje	ects	like
Antirequisite	-				
		L	Τ	P	С
		4	-	-	4

Course Objective:

In this course the students will get familiarized with the working of semiconductor devices, power supply and filters. They will get an insight into the various processes involved in device fabrication. Also, they will be given an overview of communication systems and Digital Data Communication Standards.

Course Outcomes

S.NO	COs
CO1	Interpret the working, characteristics and applications of various semiconductor devices.
CO2	Explain diagrammatically the operation of power supply and differentiate between the working and applications of a variety of filters.
CO3	Illustrate the different processes involved in device fabrication.
CO4	Identify the different building blocks of serial and parallel communication system
CO5	Explain the basic structure of electronic communication system and the importance of different modulations in communication.
CO6	Organize the concept of Li-Fi communication and apply it with 5G / Wi-Fi technology

Text Books:

- 1. Physics of Semiconductor Devices, S.M. Sze & K.K. Ng, 3rd Ed.2008, John Wiley & Sons
- 2. Electronic Communication systems, G. Kennedy, 1999, Tata McGrawHill.

3. Introduction to Measurements & Instrumentation, A.K. Ghosh, 3rd Ed., 2009, PHI Learning Pvt.Ltd.

Reference Books:

- 1. Electronic devices and integrated circuits, A.K. Singh, 2011, PHI Learning Pvt.Ltd.
- 2. Op-Amps & Linear Integrated Circuits, R.A.Gayakwad, 4 Ed. 2000, PHI Learning Pvt.Ltd
- 3. Electronic Devices and Circuits, A. Mottershead, 1998, PHI Learning Pvt.Ltd.
- 4. PC based instrumentation; Concepts & Practice, N.Mathivanan, 2007, Prentice-Hall ofIndia

Unit I Semiconductor Devices:12 hCharacteristic and small signal equivalent circuits of UJT and JFET. Metal- semiconductor Junction.Metal oxide semiconductor (MOS) device. MOSFET- their frequency limits. Enhancement andDepletion Mode MOSFETS, CMOS. Tunnel diode.

8h

10h

8h

12h

Unit II Power supply and Filters:

Block Diagram of a Power Supply, Qualitative idea of C and L Filters. IC Regulators, Line and load regulation, Short circuit protection

Active and Passive Filters, Low Pass, High Pass, Band Pass and band Reject Filters.

Unit III Processing of Devices:

Basic process flow for IC fabrication, Electronic grade silicon. Crystal plane and orientation. Defects in the lattice. Oxide layer. Oxidation Technique for Si. Metallization technique. Positive and Negative Masks. Optical lithography. Electron lithography. Lift off Technique. Diffusion and implantation.

Unit IV Digital Data Communication Standards:

Serial Communications: RS232, Handshaking, Implementation of RS232 on PC. Universal Serial Bus (USB): USB standards, Types and elements of USB transfers. Devices (Basic idea of UART).

Parallel Communications: General Purpose Interface Bus (GPIB), GPIB signals and lines, Handshaking and interface management, Implementation of a GPIB on a PC. Basic idea of sending data through a COM port.

Unit V Introduction to communication systems:

Block diagram of electronic communication system, Need for modulation. Amplitude modulation. Modulation Index. Analysis of Amplitude Modulated wave. Sideband frequencies in AM wave. CE Amplitude Modulator. Demodulation of AM wave using Diode Detector. basic idea of Frequency, Phase, Pulse and Digital Modulation

Unit VI- Physics of Devices and Communication Systems

Transmission of data through light, Coexistence of Wi-Fi and Li-Fi toward 5G: concepts, opportunities, and challenges

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Elective-III

Name of The Course	Nuclear and Particle Physics				
Course Code	BSCP3051				
Prerequisite	Students should qualify 10+2 or equivalent examin	natio	on in	Scie	ence
	stream				
Corequisite	Students should have fundamental knowledge	of	subje	cts	like
	mathematics, physics				
Antirequisite	-				
		L	Т	Р	С
		4	-	-	4

Course Objectives:

This course introduces the modern nuclear and particle physics to the students. They will learn basic nuclear properties, nuclear force, elementary particles and their interactions. This course will cover various decay modes of nucleus, nuclear reactions, particle detection, fundamental constituents of matter, their classifications, symmetry laws and fundamental interactions between the particles.

Course Outcomes

CO1	Explain in details of the atomic nucleus and its general properties
CO2	Interpret the various decay process of nuclei and explain the kinematics.
CO3	Describe the nuclear reactions and radiation interaction with matter
CO4	Explain the basic principle of particle detection and describe different accelerators
CO5	Indentify the fundamental constituents of matter and explain the conservation laws.
CO6	Plan a project on scattering experiments at LHC

Text Books:

- 1. Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd.).
- 2. Concepts of nuclear physics by Bernard L. Cohen. (Tata Mcgraw Hill). Reference Books:
- 1. Introduction to the physics of nuclei & particles, R.A. Dunlap. (Thomson Asia).
- 2. Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press
- 3. Introduction to Elementary Particles, D. Griffith, John Wiley & Sons
- 4. Quarks and Leptons, F. Halzen and A.D. Martin, Wiley India, New Delhi
- 5. Basic ideas and concepts in Nuclear Physics An Introductory Approach by K. Heyde (IOP- Institute of Physics Publishing).

Reference: J. Phys. G 46 (2019) 12, 123001 DOI: 10.1088/1361-6471/ab4698

140

SCHOOL OF BASIC AND APPLIED SCIENCES

Module 1: General Properties of Nuclei Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, angular momentum, parity, magnetic moment, electric moments, nuclear excites states. Liquid drop model approach, semi empirical mass formula and significance of its various terms.

Module 2: Radioactivity decay

Laws of radioactivity, Laws of radioactive decay, Alpha decay: basics of α -decay processes, theory of α emission, Gamow factor, Geiger Nuttall law, α -decay spectroscopy. β -decay: energy kinematics for γ decay, positron emission, electron capture, neutrino hypothesis. Gamma decay: Gamma rays emission & kinematics, internal conversion.

Module 3: Nuclear Radiation and Nuclear Reactions (10 h)Types of Reactions, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct Reaction, resonance reaction, Coulomb scattering (Rutherford scattering), Energy loss due to ionization (Bethe-Block formula), energy loss of electrons, Cerenkov radiation. Gamma ray interaction through matter, pair production, neutron interaction with matter.

Module 4: Particle Acceleration and Detection (12 h) Basic principle of Ionization chamber and GM Counter, Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility), neutron detector, Van-de Graaff generator(Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons.

Module 5: Particle physics

Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm, concept of quark model.

UNIT-6: Advance in Particle physics

Exploring the energy frontier with deep inelastic scattering at the LHC

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Material Synthesis and Characterization Technique
Course Code	BBS09T5521

(12 Lectures)

(4 h)

(10 h)

(10 h)

Prerequisite	Students should qualify 10+2 or equivalent examination in Science				ence
	stream				
Corequisite	Students should have fundamental knowledge	of	subje	cts	like
_	mathematics, physics and chemistry		÷		
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Objective: This course focuses on the fundamental aspects of materials science which is very useful for the graduate students. The course discusses the basic structure of solids, classification of materials based on the structure and the correlation between the structure and properties. The aim is also to provide students with the knowledge of techniques used for synthesis and characterization of nanomaterials.

Course Outcomes:

S. No	COs
CO1	Describe the various methods used to determine the Crystal Structures such as- JSPDS, Indexing etc.
CO2	Demonstrate thermal characterization techniques used for microstructure examination and various phases.
CO3	Identify the microscopy techniques to investigate optical, structural and surface morphology of materials.
CO4	Explain the different methods involved in nanomaterial synthesis.
CO5	Describe the basic working principle of vacuum pump and physical process used in growth of thin film.
CO6	Plan the construction of Graphene based nanostructured photovoltaic devices such as- solar cells, battery etc.

Text Books

- 1. Introduction to Solid State Physics, Charles Kittel, 8th Ed., 2004, Wiley India Pvt. Ltd.
- 2. Materials Science and Engineering: An Introduction; William D. Callister, Jr., David G. Rethwisch, 8th Ed., 2019, John Wiley & Sons, Inc.
- 3. Nanostructures and Nanomaterials: Synthesis, Properties, and Applications, Cao; World Scientific Publishing Company, 2011.
- 4. Materials Science of Thin Films; Milton Ohring; Academic Press; 2001.

Reference Books

- 1. Microstructural characterization of materials, D. Brandon and W. Kaplan, John Wiley & Sons, 2013.
- 2. Surface Characterization Methods: Principles, Techniques and Applications; Milling; CRC Press; 1999.
- 3. Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill.
- 4. Thin Film Fundamentals; Goswami; New Age International Pvt. Ltd; 2007.

Unit I: Determination of Crystal Structure

Miller's Plane and indices, Diffraction of *X*-rays from powder samples, Bragg's X-ray spectrometer and its working principle, Concept of Peak Shape, Determination of crystal size and strain (Williamson-Hall Plot, Indexing and structure solution from powder diffraction data (JCPDS Pattern), Electron Diffraction and Neutron diffraction, Berger's Vector, Experimental methods of dislocations.

10h

Unit II: Thermal Characterization

Point defects and Dislocations, Phase Diagram: Basic principle, Simple binary systems, Solid solutions, Eutectic systems: Application, Super lattices - Intermediate and interstitial phases, Liquid crystal, Thermal characterization: DSC, TGA, DTA, Impedance Spectroscopy: Bode Plot and Nyquist Plot.

Unit III: Characterization Techniques

Light microscopy- bright field, dark field, phase contrast illumination, Spectrophotometry, Ellipsometry, Luminescence spectroscopy, UV-Vis Spectroscopy, Fourier Transform infrared (FTIR) spectroscopy, Raman spectroscopy, Scanning Electron Microscope (SEM), Atomic force microscopy (AFM).Transmission electron microscope (TEM).

Unit IV: Synthesis Methods

Classification of nanomaterials, Top-down and Bottom-up approach, Overview of different fabrication and synthesis techniques. Physical Vapor Deposition, Pulsed Laser Deposition, Molecular Beam Epitaxy, hydrothermal method

Unit V: Vacuum Pump and Thin Film Growth

Vacuum Generation: Basic terms and concepts; Continuum and Kinetic gas theory; Types of flow; Vacuum pumps – Principle of operation, Rotary pump, Diffusion Pump, Turbo molecular Pump (TMP), Cryogenic Pump.

Nucleation and Growth: Film formation and structure; Thermodynamics of nucleation, Nucleation theories: Capillarity model – homogeneous and heterogeneous nucleation, Post-nucleation growth; Deposition parameters; Epitaxy; Thin film structure, Thickness measurement, basics of lithography

Unit VI- Application of Material Synthesis and Characterization Technique4hStructure of Graphene, synthesis of Graphene and nanostructure, Hybrid structure of

Graphene, Applications-solar cells, battery, biomedical etc

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	Medical Physics				
Course Code	BBS09T5522				
Prerequisite	Students should qualify 10+2 or equivalent exaministream	natio	n in	Scie	nce
Corequisite	Students should have fundamental knowledge mathematics, physics and chemistry	of s	subje	cts 1	like
		L	Т	Р	С
		4	0	0	4

Course Objectives:

The aim of the paper is to make the students familiar with the activities of the physical bodies, effect of radiations and different techniques to measure the biological activities in the physical body

10h

10h

10h

10h

Course Outcomes:

CO1	Understand and explain the mechanics, energy household and pressure system of the body.
CO2	Understand and explain the acoustics, optical system and electrical system of the body
CO3	Describe the production of x-rays and the diagnostic nuclear medicine
CO4	Describe the radiation physics, detection and the principles of radiation protection
CO5	Explain the principle and working of medical imaging instruments for the measurement of
	diagnosis of the body
CO6	Modify the anesthetic molecular interaction to enhance the surgical procedure

Text Books:

1. Medical Physics, J.R. Cameron and J.G.Skofronick, Wiley

2. Basic Radiological Physics Dr. K. Thayalan - Jayapee Brothers Medical Publishing Pvt. Ltd. New Delhi

3. Christensen's Physics of Diagnostic Radiology: Curry, Dowdey and Murry - Lippincot Williams and Wilkins

Reference Books:

- *1*.Physics of the human body, Irving P. Herman, Springer(2007).
- 2. Physics of Radiation Therapy : F M Khan Williams and Wilkins, 3rd edition(2003)
- 3. The essential physics of Medical Imaging: Bushberg, Seibert, Leidholdt and Boone Lippincot Williams and Wilkins, Second Edition
- 4. The Physics of Radiology-H E Johns and Cunningham.

5. Reference: Kundu et al. Current Drug Delivery, V- 15, 1381-1392 (2018)

Unit I PHYSICS OF THE BODY-I

Mechanics of the body: Skeleton, forces, and body stability. Muscles and the dynamics of body movement, Physics of body crashing. **Energy household of the body:** Energy balance in the body, Energy consumption of the body, Heat losses of the body, **Pressure system of the body:** Physics of breathing, Physics of cardiovascular system.

Unit II PHYSICS OF THE BODY-II

Acoustics of the body: Nature and characteristics of sound, Production of speech, Physics of the ear, Diagnostics with sound and ultrasound. **Optical system of the body:** Physics of the eye. **Electrical system of the body:** Physics of the nervous system, Electrical signals and information transfer.

Unit III PHYSICS OF DIAGNOSTIC AND THERAPEUTIC SYSTEMS 10h

X-RAYS: Electromagnetic spectrum – production of x-rays – x-ray spectra- Brehmsstrahlung-Characteristic x-ray – X-ray tubes – Coolidge tube – x-ray tube design– tube cooling stationary mode – Rotating anode x-ray tube – Tube rating – quality and intensity of x-ray. X-ray generator circuits – half wave and full wave rectification. Diagnostic nuclear medicine: Radiopharmaceuticals for radioisotope imaging, Radioisotope imaging equipment, Single photon and positron emission tomography.

10h

10h
Radiation units - exposure - absorbed dose – units: rad, gray- relative biological effectiveness - effective dose - inverse square law - interaction of radiation with matter - linear attenuation coefficient. Radiation Detectors -Thimble chamber- condenser chambers – Geiger counter – Scintillation counter – ionization chamber – Dosimeters Principles of radiation protection – protective materials-radiation effects – somatic, genetic stochastic & deterministic effect, Personal monitoring devices – thermo-luminescent (TLD) film badge – pocket dosimeter. Radiation dosimetry, Natural radioactivity, Biological effects of radiation, Radiation monitors

Unit V MEDICAL IMAGING PHYSICS:

10h

(4h)

X-ray diagnostics and imaging, Physics of nuclear magnetic resonance (NMR) – NMR imaging – MRI Radiological imaging – Radiography – Filters – grids – cassette – X-ray film – film processing – fluoroscopy – computed tomography scanner – principle function – display – generations– mammography. Ultrasound imaging – magnetic resonance imaging – thyroid uptake system – Gamma camera (Only Principle, function and display)

Unit VI Application of Medical Physics

Recent advancement in Medical Physics: Anesthetic Molecule Interaction of Noble Gases with Proteins and Lipids and their Effect

Continuous Assessment Pattern

Internal Assessment	nent Mid Term Test End		Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

(Established under Galgotias University Uttar Pradesh Act No. 14 of 2011)

School of Basic and Applied Sciences Department of Life Sciences Division of Microbiology

Programme: B.Sc. (Hons) Microbiology

Scheme: 2020 – 2023

Date of BoS: 22.04.2020

Galgotias University

Vision

"To be known globally for value-based education, research, creativity and innovation"

Mission

- 1. Establish state-of-the-art facilities for world class education and research.
- 2. Collaborate with industry and society to align the curriculum,
- 3. Involve in societal outreach programs to identify concerns and provide sustainable ethical solutions.
- 4. Encourage life-long learning and team-based problem solving through an enabling environment.

School of Basic and Applied Sciences

Vision:

To be recognized globally as a center of excellence in imparting value-based education in Basic and Applied Sciences by creating innovation in fundamental and multidisciplinary research.

Mission

- M1: To excel in imparting contemporary knowledge and skills by developing an educational ecosystem with diverse interests and talents.
- M2: To perform cutting edge research leading to innovation in sciences through national and international collaborations.
- M3: To develop solutions for the emerging challenges in Basic and Applied Science to cater the needs of society.
- M4: To attract best quality faculty to facilitate knowledge and develop confidence in our graduates to succeed in the world.

Preamble

B.Sc.(Hons) Microbiology is an undergraduate Microbiology course. Microbiology is the branch of the science that deals with the study of microscopic organisms. Microscopic organisms are any living organism that is either a single cell, a cell cluster or has no cells at all. Microorganisms are responsible for the disease so the course usually studies about the immune system (Immunology). The applicants of the program study about the subjects and topics like Macromolecular Structure & Analysis, Basic Microscopy & Instrumentation, Principles of Transmission Genetics, Principles of Immunology, Computational Biology, etc. The duration of the course is three years and the complete syllabus of the program is divided into six semesters.

Scope of the Proposed Programme

The B.Sc., programme of three years is designed to help all the students to get good quality education in the field of Microbiology so that they can pursue Post Graduation or find employment. The ultimate aim is to enable the students to develop an integrated approach for understanding the various life science problems at the molecular level. In addition, the present curriculum gives scope for the students entering different modules to update their knowledge depending upon the employment opportunities in each area. Various practical courses have been designed not only to enable the students to appreciate scientific basis of various life processes but also to train them for self-employment.

There is a greater demand globally for trained manpower in the area of microbiology .After completion of the course candidate can work as Bacteriologist, Biochemist, Geneticist, and Industrial Microbiologist , Food Microbiologist, Ecologist, Environmental Microbiologist Medical Microbiologist , Weed Scientist , Science Adviser, Research Development, in Multinational Companies, Public Sectors, Quality Control Labs, Biopharmaceuticals companies, Food industries as well as in Universities and the present curriculum will cater to that needs.

The course will provide solid foundation for all the students regardless of background and will gain a comprehensive understanding of the microbial tools, microorganisms and allied areas, including clinical and research aspects and with the special attention to current development in the discipline.

Eligibility

Candidate for admission to the first year of B.Sc. Degree Course in Microbiology shall be required to have passed the Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in cience stream with a minimum of 50 % marks in aggregate.

Programme Objectives

- To ignite young minds, from different backgrounds, to understand the world of microorganism through application based learning.
- To provide high quality teaching to the students through traditional classroom teaching as well as varied exposure to audio-visual aids and hands on training on various aspects of Microbiology and allied biological subjects. More emphasis is given on understanding the subject rather than rote learning.
- Develop skills as a self-directed learner, recognize continuing educational needs.
- To equip the students to occupy important positions in Research, Industries and related organizations.
- To inspire the students to apply their knowledge gained for the development of society in general.

PSO1Igniting young minds, from different backgrounds to understand the world of
microorganisms through application based learning.PSO2Equip students with analytical and technical skills to practice evidence based
microbiology for industrial applications.

Program Educational Objectives (PEO)

PEO1: The graduates shall be successful professionals in Academia, Industry, Government and Entrepreneurship.

PEO2: The graduates shall pursue higher education/research at institute of national and international repute.

PEO3: The graduate shall effectively address the challenges of the society and undertake the projects for bridging the gap between industry and societal needs.

Programme Outcomes (POs)

- PO1: Apply the principles and conceptual knowledge of basic and applied science to understand and solve the complex biological problems.
- PO2: Employ critical thinking and the scientific knowledge to design, carry out, record and analyze the results of biological reactions.
- PO3: Create, select and apply appropriate techniques, resources and modern science and research tools within a defined specification that meet specified needs with appropriate consideration for public health and safety.

PO4: Apply reasoning informed by the contextual knowledge to assess societal,

health, safety, legal issues and the consequent responsibilities relevant to the professional biologist.

- PO5: Understand the impact of professional life sciences solutions in communal and environmental contexts and demonstrate knowledge and need for sustainable development.
- PO6: Articulate ideas, comprehend and write effective reports, documentation and to communicate effectively with the basic and applied sciences community and with society at large, professionally and ethically.
- PO7: Demonstrate knowledge and understanding of science and technical principles to manage projects in multidisciplinary research areas and function effectively as an individual, and as a member or leader in diverse resource teams.
- PO8: Seeking stimulation and to exploring numerous opportunities to engage in independent and life-long learning in the broadest context of technological change.

Programme Specific Outcome (PSOs):

Detailed Syllabus

Curriculu	im 2020-2023
Current	

		Semester 1							
Sl.	Course Code	Name of the Course			-	-	Ass	essment	Pattern
No			L	Τ	P	С	IA	MTE	ETE
1.	BSDB1001	Chemistry	4	0	0	4	30	20	50
2.	BSDB1002	Fundamental of Cell Biology	4	0	0	4	30	20	50
3.	BSDB1003	Biochemistry	4	0	0	4	30	20	50
4.	BSMB1004	Introduction to Microbial World	4	0	0	4	30	20	50
5.		Hands on Workshop on Basic							
	BSBA1061	Analytical Techniques and	0	0	4	2	50		50
		Measurements							
6.	BSMB1012	Microbiology Lab-I	0	0	6	3	50		50
7	XXXX	Liberal Art				0.5			
8	XXXX	Soft Skill				0			
9	XXXX	Environmental Science		-	-	0.5			
10	XXXX	AI and Machine learning				2			
11	XXXX	BEC- B1				3			
12	XXXX	Computer awareness				0			
		Total				27			
CI		Semester II	1						D //
SI	Course Code	Name of the Course	-		D	0	ASS	essment	Pattern
No				1	P	C		MIE	
1	BSBD1007	Bioinstrumentation-1	4	0	0	4	30	20	50
2	BSMB1006	Bacteriology		0	0	4	30	20	50
3	BSMB1007	Phycology and Mycology	4	0	0	4	30	20	50
4	BSDB1011	Concept of immunology		0	0	4	30	20	50
5	RSMR1012	Microbiology Lab-II	U	U	0	3	30	20	50
0	XXXX	BEC-BI				3			
7	XXXX	*** I wo week social internship							
		(during summer)				22			
		I Otal Somostor III							
SI	Course Code	Nome of the Course					Acc	osemont	Dottorn
No	Course Coue		T.	Т	Р	С	IASS	MTE	FTE
1		Fundamentals of Molecular		0	1		30	20	50
•	BSDB2001	Riology	-	v	v	-	50	20	50
2	BSDB2001	Bioinstrumentation-II	4	0	0	4	30	20	50
3	20222002	Microbial Physiology and	4	0	0	4	30	20	50
•	BSMB2003	Metabolism	-	Ŭ	Ŭ	-			
4	BSMB2002	Virology	4	0	0	4	30	20	50
5	BSMB2014	Microbiology Lab-III	0	0	6	3	50		50
6	BSMB2015	Microbiology Lab-IV		0	6	3	50		50
7	BSDB2006	Web based Course/Seminar-I	0	0	0	2	50		50
		Total		-	-	24			
		Semester IV							
Sl	SI Course Code Name of the Course Assessment Patt				Pattern				
No			L	Τ	P	С	IA	MTE	ETE
1		Programming Language in C and	1				30	20	50
	BCSE1020	Python	4	0	0	4			
2	BSDB2010	Biotechnology	4	0	0	4	30	20	50

3		Food and Agricultural					30	20	50
	BSMB2006	Microbiology	4	0	0	4			
4	BSDB2008	Plant Pathology	4	0	0	2	30	20	50
5	XXXX	Elective (Group-I, GE)	4	0	0	4	30	20	50
6	BSMB2017	Microbiology Lab -V	0	0	6	3	50		50
7		Programming Languages					50		50
	BCSE1031	Laboratory	0	0	6	3			
8	XXXX	IPR				1			
9	XXXX	Foreign Language				1			
10	XXXX	Presentation/reveiw paper				2			
11	BBSO9P2411	Research methodology and	2			2	30	20	50
		Statistics							
		Total				30			
		Semester V							
Sl	Course Code	Name of the Course				Ass	essment	Pattern	
No			L	Т	Р	С	IA	MTE	ETE
1	BSBC3001	Minor Project*	0	0	0	3	50		50
2	BSMB3003	Microbial Genetics and Genomics	4	0	0	4	30	20	50
3	BSDB3004	Medical Microbiology	4	0	0	4	30	20	50
4	BSMB3005	Industrial Microbiology	4	0	0	4	30	20	50
5	XXXX	Elective (Group-II, DSE)	4	0	0	4	30	20	50
6	BSMB3010	Microbiology Lab-VI	4	0	6	3	50		50
7	BSMB3011	Microbiology Lab-VII	4	0	6	3	50		50
8	XXXX	Campus to corporate				2			
		Total				27			
		Semester VI							
Sl	Course Code	Name of the Course	Assessment P		Pattern				
No			L	Τ	Р	С	IA	MTE	ETE
1	BSMB9997	Dissertation	0	0	0	12	50		50
2	BSDB3010	Web based Course/Seminar-II	0	0	0	2	50		50
		Total				14			
		Grand Total				144			

*Minor project will be done in IV Semester; credit will be evaluated in V Semester

List of Electives

Sl	Course	Name of the Course					Assessment Pattern		
No	Code		L	Т	P	С	IA	MTE	ETE
Gro	up I								
	BSDB2011	Bioinformatics	4	0	0	4	30	20	50
	BSDB2012	Biostatistics	4	0	0	4	30	20	50
	BSDB2013	Biophysics	4	0	0	4	30	20	50
	BSDB2014	Organic Farming	4	0	0	4	30	20	50
	BSDB2015	Biofertilizers and Pesticides	4	0	0	4	30	20	50
Gro	Group II								
	BSDB3011	Nanobiotechnology	4	0	0	4	30	20	50
	BSDB3012	Bioresource Management	4	0	0	4	30	20	50
	BSDB3013	Biosafety and IPR	4	0	0	4	30	20	50
	BSDB3015	Mushroom Culture Technology	4	0	0	4	30	20	50
	BSDB3016	Parasitology	4	0	0	4	30	20	50

COURSE CURRICULUM

SEMESTER - I

Name of The Course	CHEMISTRY				
Course Code	BSDB1001				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: To provide a broad foundation in chemistry that stresses scientific reasoning and analytical problem solving with a molecular perspective.

Course Outcomes

CO1	Understand atomic structure with various Bohrs, Aufbau, Pauli's principles.
CO2	Demonstrate chemical thermodynamics, law of thermodynamics.
CO3	Interpret chemical bonding and molecular forces.
CO4	Express the knowledge Stereochemistry.
CO5	Interpret the ionic equilibria.
CO6	Evaluate the recent advancement in chemistry.

Text Book (s)

- 1. J.D. Lee : A New Concise Inorganic Chemistry, E.L.B.S.
- 2. P.W. Atkins : Physical Chemistry, Oxford University Press

Reference Book (s)

- 1. R.T. Morrison & R.N.Boyd : Organic Chemistry, Prentice Hall
- 2. James E.Huheeyetl. : Inorganic Chemistry : Principles of Structure and reactivity

Unit-1: ATOMIC STRUCTURE

Recapitulation of Bohr's theory and its limitations, dual behavior of matter and radiation, de-Broglie's relation, Heisenberg Uncertainty principle. Quantum numbers and their significance. Shapes of s, p, d and f orbitals. Discovery of spin, spin quantum number (s) and magnetic spin quantum number (ms). Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Pauli's exclusion principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations, Variation of orbital energy with atomic number.

Unit-2: CHEMICAL THERMODYNAMICS

10 hours

Introduction of thermodynamics, state of system, state variables, thermodynamic equilibrium, thermodynamic properties, various types of systems and processes.Laws of Thermodynamics.

Unit-3: CHEMICAL BONDING AND MOLECULAR FORCES 09 hours

10 hours

Introduction to ionic interactions and covalent bond, inter-molecular and intra-molecular forces, types of intermolecular forces and their characteristics: ion-dipole, dipole-dipole, dipole-induced dipole and dispersion (London) forces, hydrogen bond (intra-molecular and inter-molecular), effect of inter/intra-molecular forces on structure of different biomolecules.

Unit-4: STEREOCHEMISTRY

08 hours

Optical isomerism: Optical activity, specific rotation, enantiomerism, D and L designation, racemic modification, R and S sequence rules, diasteroisomers. Conformational isomers: conformation of ethane and butane, interconversion of projection formula, cyclohexane (mono-and di-substituted), resolution, optical purity, Walden inversion, enantiotopic and diastereotopichydrogens and prochiral centers. Geometrical isomerism: Definition, nomenclature– E and Z.

Unit-5: IONIC EQUILIBRIA

08 hours

Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionizationconstant and ionic product of water. Ionization of weak acids and base, pH scale, common ion effect, Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts.Buffer solutions. Qualitative treatment of acid base titration curves. Theory of acid – base indicators.

Unit-6 Recent Advancement in Chemistry

04hours

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	FUNDAMENTAL OF CELL BIOLOGY					
Course Code	BSDB1002					
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.					
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.					
Antirequisite						
		L	Т	P	С	
		4	0	0	4	

Course Objectives:

1. Students will understand the structures and purposes of basic components of prokaryotic and eukaryotic cells, especially macromolecules, membranes, and organelles.

2. These can include responses to environmental or physiological changes, or alterations of cell function brought about by mutation.

Course	Outcomes

CO1	Identify cell types, structure, functions and differentiate between various cell organelles.
CO2	Interpret the membrane biochemistry and transport of ions across the membrane.
CO3	Summarize the different types Cell-Cell Interaction and cellular communication.
CO4	Demonstrate protein sorting and transport.
CO5	Express the knowledge cell aging and death.
CO6	Evaluate the recent advancement in fundamental of Cell Biology

Text Book(s)

- 1. The Cell: A Molecular Approach (2009) 5th ed., Cooper, G.M. and Hausman, R.E., ASM Press & Sunderland (Washington DC), Sinauer Associates, MA, ISBN:978-0-87893-300-6.
- 2. Molecular Cell Biology (2012) 7th ed., Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell. J., W.H. Freeman & Company (New York), ISBN:13:978-1-4641-0981-2 / ISBN:10: 1-4641-0981-8.

Reference Book (s)

Unit-2:STRUCTURE OF CELL

1. Molecular Biology of the Cell (2008) 5th ed., Alberts, B., Johnson, A., Lewis, J., and Enlarge, M., Garland Science (Princeton), ISBN:0-8153-1619-4.

7 hours

Introduction to the cell, its chemical composition, Cell types - organization of prokaryotic and eukaryotic cells, Plant and animal cells: variation in structure and function, cell theory. Structure and functions of cell organelles - Nucleus, mitochondria, chloroplast, ribosome, lysosomes.

Unit-2:MEMBRANE BIOCHEMISTRY 7 hours

Membrane: chemical composition and its structural plan; molecular model of cell membrane fluid mosaic model and membrane fluidity; Overview of types of transport systems and macromolecule transport: Exocytosis; Endocytosis; Pinocytosis and phagocytosis.

Unit-3:CELLULAR COMMUNICATION

Cell Wall: Eukaryotic cell wall, Extracellular matrix and cell matrix interactions, Cell-Cell Interactions - adhesion junctions, tight junctions, gap junctions, and plasmodesmata. Cytoskeleton: Structure and organization of actin filaments, association of actin filaments with plasma membrane, cell surface protrusions, intermediate filaments, microtubules.

Unit-4:PROTEIN SORTING AND TRANSPORT

Endoplasmic Reticulum – Structure, targeting and insertion of proteins in the ER, protein folding, processing and quality control in ER, smooth ER and lipid synthesis, export of proteins and lipids Golgi Apparatus - Organization, protein glycosylation, protein sorting and export from Golgi Apparatus.

Unit-5:CELL CYCLE AND CELL DEATH

Cell cycle - phases of cell cycle; cell division - mitosis and meiosis; Cell cycle regulation; Cell aging and death - necrosis and apoptosis; Stem cells. Types: Embryonic stem cell, induced pluripotent stem cells.

Unit-6 Recent Advancement in Cell Biology

04hours

Research article/ Review paper/ MOOC

10 hours

7 hours

12 hours

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOCHEMISTRY				
Course Code	BSDB1003				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: The course objectives are as following -

- Demonstrate knowledge and understanding of the molecular machinery of living cells;
- Demonstrate knowledge and understanding of the principles that govern the structures of macromolecules and their participation in molecular recognition.

Course Outcomes

CO1	Understand Chemical and physical foundations of biomolecules like carbohydrates.
CO2	Identify major classes of storage and structural lipids.
CO3	Understand the properties of amino acids, proteins and nucleic acids
CO4	Interpret basic concepts in enzymology and Vitamins function.
CO5	Express the knowledge in the area Bioenergetics.
CO6	Evaluate the recent advancement in Biochemistry.

Text Book (s)

- 1. Campbell, MK (2012) Biochemistry, 7th ed., Published by Cengage Learning
- 2. Campbell, PN and Smith AD (2011) Biochemistry Illustrated, 4th ed., Published by Churchill Livingstone

Reference Book (s)

- 1. Tymoczko JL, Berg JM and Stryer L (2012) Biochemistry: A short course, 2nd ed., W.H.Freeman
- 2. Berg JM, Tymoczko JL and Stryer L (2011) Biochemistry, W.H.Freeman and Company

Unit-1:CARBOHYDRATES	07 hours
Chemical and physical foundations of biomolecules, Carbo classification, properties, chemical reactions, stereoisomerism carbohydrate derivatives.	ohydrates: structure of sugars, a and optical isomers of sugars,
Unit-2:LIPIDS	07 hours
Definition and major classes of storage and structural lipi structure and functions. Essential fatty acids, Lipids with spec- and liposomes	ds. Storage lipids. Fatty acids ific biological functions, micelles
Unit-3:AMINO ACIDS, PROTEINS AND NUCELIC ACIDS	12 hours

Amino acids; classification, chemical reactions and physical properties; biosynthesis and catabolism; Nucleotides; biosynthesis and catabolism.

Unit-4:ENZYMES AND VITAMINS

10 hours

Basic concepts in enzymology, enzyme classification, Enzyme kinetics, Enzyme inhibition: competitive, noncompetitive and uncompetitive inhibition, allosteric enzymes, Vitamins and cofactors: structure, distribution and biological properties

Unit-5:BIOENERGETICS

08 hours

First and second laws of Thermodynamics. Definitions of Gibb's Free Energy, enthalpy and Entropy and mathematical relationship among them, Standard free energy change and equilibrium constant, Coupled reactions and additive nature of standard free energy change, Energy rich compounds: Phosphoenolpyruvate, 1,3- Bisphosphoglycerate, Thioesters, ATP

Unit-6 Recent Advancement in BIOCHEMISTRY 04hours

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	INTRODUCTION TO MICROBIAL WORLD					
Course Code	BSMB1004	BSMB1004				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.					
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.					
Antirequisite						
	L		Т	Р	С	

Course Objectives: Students are able to understand the basic concept of light in biological system. Course Outcomes

CO1	Identify history and scope and techniques in microbiology.
CO2	Differentiate between various classes of microbial world
CO3	Understand the Viruses, viroids and prions.
CO4	Express the knowledge in the area of bacteria, algae and fungi.
CO5	Interpret the Protozoa and of Scope of Microbiology.
CO6	Evaluate the recent advancement in Microbiology

Text Book (s)

- 1. Microbiology; Lansing M Prescott, John P. Harley, Donald A Klein, Sixth edition, McGraw Hill Higher education.
- 2. 2. General Microbiology; R.Y. Ingraham, J.L. Wheels, M.L. Painter. Thess Macmillan Press Ltd.

Reference Book (s)

- 1. Brock Biology of Microorganism; M.T, Martinko, J.M. Parker, Prentice-Hall.
- 2. 4. Microbiology; M.J. Pelczar, E.C.S Chan and N.R. Kreig, Tata MacGraw Hill.

Unit-1:INTRODUCTION TO MICROBIOLOGY 8 hours Development of microbiology as a discipline, Spontaneous generation vs.biogenesis, development of various microbiological techniques, concept of fermentation, establishment of fields of medical microbiology, immunology and environmental microbiology **Unit-2:DIVERSITY OF MICROBIAL WORLD** (12 hours)Systems of classification: Binomial Nomenclature, Whittaker's five kingdom and Carl Woese's three kingdom classification systems and their utility. Difference between prokaryotic and eukaryotic microorganisms. General characteristics of different groups: Acellular microorganisms (Viruses, Viroids, Prions) and Cellular microorganisms (Bacteria, Algae, Fungi andProtozoa) with emphasis on distribution and occurrence, morphology, mode ofreproduction and economic importance. **Unit-3:VIRUSES, VIROIDS AND PRIONS** (**07 hours**) A general introduction with special reference to the structure of the following: TMV, poliovirus, T4 and λ phage, lytic and lysogenic cycles **Unit-4:BACTERIA. ALGAE AND FUNGI** (12 hours) Eubacteria, chlamydiae&rickettsiae (obligateintracellular parasites), mycoplasma, and archaebacteria (extremophiles). History of phycology, General characteristics of algae including occurrence, thallus organization, algae cell ultrastructure, pigments, flagella, eyespot food reserves and vegetative, asexual and sexual reproduction. Historical developments in the field of Mycology including significant contributions of eminent mycologists. General characteristics of fungi including habitat, distribution, nutritional requirements, fungal cell ultra- structure, thallus organization and aggregation, fungal wall structure and synthesis, asexual reproduction, sexual reproduction, heterokaryosis, heterothallism and parasexual mechanism. Unit-5PROTOZOA AND AN OVERVIEW OF SCOPE OF MICROBIOLOGY (05 hours) General characteristics with special reference to Amoeba, Paramecium and Giardia Unit-6 Recent Advancement in Microbial world 04hours

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	Hands on Workshop on Basic Analytical Techniq Measurements	ues a	and		
Course Code	BSBA1061				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives:

- To provide the knowledge of the scientific instruments in life sciences and biotechnology along with the applications.
- This will enable the students to understand all the subjects of biological sciences as these tools and techniques will be used therein.
- Also acquire the basic knowledge of the microbiological techniques to be applied in the laboratory.
- To know the general microbiological techniques for isolation of pure cultures of microorganisms.

Course Outcomes

CO1	Demonstration of principle and application of different types of microscope
CO2	Analysis and preparation of nano-particles
CO3	Preparation of solution and calculation of molarity, normality and surface tension of given solution
CO4	Soldering and assembling of electric circuits
CO5	Demonstration of measurement with Vernier calipers, Screw, spherometer and oscilloscope
CO6	Lab report

Referred Books:

- 1. Georg Stehli ,The Microscope And How to Use It, English edition, 1970.
- 2. M.Sayer and A. Mansingh, PHI Learning. Measurement, Instrumentation and Experiment Design in Physics & Engineering, 2005.
- 3. Aliofkhazraei, Mahmood, Handbook of Nanoparticles, Springer, 2016
- 4. Huheey, J.E., Keiter, E.A., Keiter, R.L. & Medhi, O.K. Inorganic Chemistry: Principles of Structure and Reactivity, Pearson Education India, 2006.

1.	Different types of microscopes and its applications.
2.	Direct analysis of nanoparticles.
3.	Preparation of nano- particles.
4.	Preparation of solution and molarity and normality calculation.

5.	Measurement of surface tension and viscosity of given liquid.
6.	Soldering of electrical circuits
7.	Measurement with Vernier calipers, Screw gauge and spherometer
8.	Operation of oscilloscope
9.	Familiarization with linear, logarithmic and polar graphs for plotting of experimental data
10.	Assembling of elementary electric circuits using breadboard.

Continuous Assessment Pattern

Internal Assessment Lab (IA)	Mid Term Lab (MTE)	End Term Lab (ETE)	Total Marks
50		50	100

Name of The Course	MICROBIOLOGY LAB I				
Course Code	BSMB1012				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	Р	С
		0	0	6	3

Course Objectives:

- Supporting or strengthening theoretical knowledge.
- Experiencing the pleasure of discovery and development of their psycho-motor skills.
- Teaching how scientific knowledge may be used in daily life.
- Increasing creative thinking skills.
- Gains in scientific working methods and higher order thinking skills.
- Developing manual dexterity by using tools and equipment and allowing students to apply skills instead of memorizing.

Course Outcomes

CO1	Demonstrate the basic principle and applications of important instruments
CO2	Handle and maintenance of glassware
CO3	Preparation of microbiological media
CO4	Qualitative analysis of biomolecules
CO5	Demonstration of different cell cycle

CO6 Lab report

Text Books

- 1. Cappucino J and Sherman N. (2010). Microbiology: A Laboratory Manual. 9th edition. Pearson
- 2. Wiley JM, Sherwood LM and Woolverton CJ. (2013) Prescott's Microbiology. 9th Edition. McGrawHill International.
- 3. Atlas RM. (1997). Principles of Microbiology. 2nd edition. M.T.BrownPublishers.Education Limited.

S.N.	Name of Practicals				
1.	Study of the life history of the following scientists and their contributions with the				
	help of their photographs: Anton von Leeuwenhoek, Linus Pauling, KaryMullis,				
	Robert Hooke and Alexander Fleming.				
2.	To study the principle and applications of important instruments (Microscope,				
	Spectrophotometer, autoclave, Centrifuge) used in the microbiology laboratory.				
3.	Qualitative analysis of carbohydrates present in the given solution.				
4.	Qualitative analysis of amino acid and protein present in the given solution.				
5.	Qualitative analysis of lipid present in the given solution.				
6.	To understand the principle of Osmosis and Diffusion				
7.	Demonstration of different stages of mitosis.				
8.	Demonstration the different stages of meiosis.				

Continuous Assessment Pattern

Internal Assessment Lab (IA)	Mid Term Lab (MTE)	End Term Lab (ETE)	Total Marks
50		50	100

Name of The Course **BIOINSTRUMENTATION-I Course Code BSDB1007** Candidate for admission to the first year of B.Sc. Degree Course **Prerequisite** in Biochemistry should passed the Higher Secondary **Examination with Chemistry and Biology or Chemistry, Botany** and Zoology with a minimum of 50 % marks in aggregate. Corequisite Students should have the basic knowledge of chemistry and environmental science. Antirequisite Т L Р С 4 0 0 4

<u>SEMESTER – II</u>

Course Objectives: Students will understand the principle and application of basic instruments and the fundamental concept of microscopy, spectroscopy and radioisotopic techniques.

CO1	Describe different types of microscopes for the study of cell, identification of cellular
	changes within organs
CO2	Explain various kind centrifugation techniques for study of separation of different
	cells and cellular organs
CO3	Describe the Principles and applications of chromatography, separation techniques
	based on chromatography, types of chromatography and application in industry
CO4	Explains absorbance based techniques like Visible and UV spectroscopy, Basic concepts
	and applications of MS and NMR.
CO5	Explain basic concepts of crystallography and its application
CO6	Evaluate the recent advancement in Bioinstrumentation.

Text Book (s)

- 1. Principles and Techniques of Practical Biochemistry Wilson, K., Walker, J. (eds.); Cambridge University Press, Cambridge, 2000, 784 pp., ISBN 0-521-65873.
- 2. An Introduction to Practical Biochemistry (1998) 3rd ed., Plummer D. T., Tata McGraw Hill Education Pvt. Ltd. (New Delhi), ISBN:13: 978-0-07-099487-4 / ISBN:10: 0-07-099487-0.

Reference Book

- 1. Physical Biochemistry: Principles and Applications (2010) 2nd ed., Sheehan, D., Wiley Blackwell (West Sussex), ISBN:978-0-470-85602-4 / ISBN:978-0-470-85603-1.
- 1. Physical Biochemistry: Applications to Biochemistry and Molecular Biology (1982) 2nd ed., Freifelder, D., W.H. Freeman and Company (New York), ISBN:0-7167-1315-2/ISBN:0-7167-1444-2.

Unit-1 : Separation techniques	(08hours)
Different methods of protein precipitation: Pro	ecipitation using inorganic salts (salting out) and
organic solvents, isoelectric precipitation, Dial	ysis, Ultrafilteration, Lyophilization
Unit-2 MICROBIAL TECHNIQUES	(8 hours)
Buffer, Principle and working of pH meter, I	aminar-air flow. Decontamination, sterilisation
and disinfection techniques, media preparatio	n technique, Culture of Human, Plant & Animal
cells. Preparation of microbial, animal and pla	ant samples for microscopy.
Unit-3 MICROSCOPY (10 hours)	

Basic principles and applications of - Light microscopy, Bright & Dark Field microscopy, Fluorescence microscopy, Phase Contrast microscopy, TEM, SEM, Confocal Laser microscopy, Radio Microscopy.

Unit-4: CENTRIFUGATION

(10 hours)

Basic Principle of Centrifugation, Types of centrifuge machines, preparative and analytical centrifuges, differential centrifugation, sedimentation velocity, Factors affecting Sedimentation velocity, Standard Sedimentation Coefficient, Centrifugation of associating systems, Rate-Zonal centrifugation, sedimentation equilibrium Centrifugation, density gradient methods and their applications

Unit-5 : COLORIMETRY AND SPECTROSCOPY (10 hours)

Simple theory of the absorption of light by molecules, Beer-Lambert law, Principle and use of study of absorption spectra of biomolecules.Visible and UV spectroscopy.Colorimetry, turbidometry, Spectrofluorimetry, nephelometry and luminometry.

Unit-6 Recent Advancement in BACTERIOLOGY 04hours Research article/ Review paper/ MOOC 04hours

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BACTERIOLOGY				
Course Code	BSMB1006				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
	L]	Г	Р	С
	4		0	0	4

Course Objectives: Students are able to understand the basic concept of structure, classification of various groups of bacteria.

Course Outcomes

CO1	Understand cell organization and Identify the structure of Gram positive and gram negative bacteria.
CO2	Demonstrate various bacteriological techniques likePure culture isolation and cultivation of bacteria.
CO3	Interpret the growth nutrition and reproduction in bacteria.
CO4	Understand the bacterial systematics.

CO5	Express the knowledge in the area important archaeal and eubacterial groups.
CO6	Evaluate the recent advancement in Bacteriology.

Text Books:

- 1. Atlas RM. (1997). Principles of Microbiology. 2nd edition. WM.T.BrownPublishers.
- 2. Black JG. (2008). *Microbiology: Principles and Explorations*. 7th edition. PrenticeHall
- 3. Madigan MT, and Martinko JM. (2006). *Brock Biology of Micro-organisms*. 8thedition. Parker J. Prentice Hall International, Inc.
- 4. PelczarJr MJ, Chan ECS, and Krieg NR. (2004). *Microbiology*. 5th edition TataMcGraw Hill.

Reference Book (s)

- 1. Srivastava S and Srivastava PS. (2003). Understanding Bacteria. Kluwer AcademicPublishers, Dordrecht.
- 2. Stanier RY, Ingraham JL, Wheelis ML and Painter PR. (2005). *GeneralMicrobiology*. 5th edition McMillan.
- 3. Tortora GJ, Funke BR, and Case CL. (2008). *Microbiology: An Introduction*. 9th edition Pearson Education.
- 4. Willey JM, Sherwood LM, and Woolverton CJ. (2008). *Prescott, Harley andKlein's Microbiology*. 7th edition. McGraw Hill Higher Education.

Unit-1:CELL ORGANIZATION

Cell size, shape and arrangement, glycocalyx, capsule, flagella, endoflagella, fimbriae and pili.Cell-wall: Composition and detailed structure of gram positive and gram-negativecell walls, Archaebacterial cell wall, Gram and acid fast staining mechanisms,lipopolysaccharide (LPS), sphaeroplasts, protoplasts, and L-forms. Effect of antibiotics and enzymes on the cell wall. Cell Membrane: Structure, function and chemical composition of bacterial and archaeal cell membranes.Cytoplasm: Ribosomes, mesosomes, inclusion bodies, nucleoid, chromosome andPlasmids. Endospore: Structure, formation, stages of sporulation.

Unit-2:BACTERIOLOGICAL TECHNIQUES

Pure culture isolation: Streaking, serial dilution and plating methods; cultivation, maintenance and preservation/stocking of pure cultures; cultivation of anaerobic bacteria, and accessing non-culturable bacteria

Unit-3:GROWTH NUTRITION AND REPRODUCTION IN BACTERIA

(12 hours)

Nutritional requirements in bacteria and nutritional categories; Culture media: components of media, natural and synthetic media, chemically defined media, complex media, selective, differential, indicator, enriched and enrichment media

Sterilization and Disinfection: *Physical methods of microbial control*: heat, low temperature, high pressure, filtration, desiccation, osmotic pressure, radiation *Chemical methods of microbial control*: disinfectants, types and mode of action.

Asexual methods of reproduction, logarithmic representation of bacterial populations, phases of growth, calculation of generation time and specific growth rate

Unit-5:IMPORTANT ARCHAEAL AND EUBACTERIAL GROUPS 8 hours

Archaebacteria: General characteristics, phylogenetic overview, Methanogens ,thermophiles and Halophiles(*Halobacterium, Halococcus*)] Eubacteria: Morphology, metabolism, ecological significance and economic importance of following groups: Gram Negative, Gram Positive, cyanobacteria

Unit-6 Recent Advancement in BACTERIOLOGY 04hours Research article/ Review paper/ MOOC (07 hours)

10 hours

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Continuous Assessment Pattern

Name of The Course	PHYCOLOGY AND MYCOLOGY				
Course Code	BSMB1007				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	P	С
		4	0	0	4

Course Objectives: Students are able to understand the diversity, classification, interaction and ecological importance of algae and fungi

Course Outcomes

CO1	Understand cell organization and Identify the structure of Gram positive and gram negative bacteria.
CO2	Demonstrate various bacteriological techniques like Pure culture isolation and cultivation of bacteria.
CO3	Interpret the growth nutrition and reproduction in bacteria.
CO4	Understand the bacterial systematics.
CO5	Express the knowledge in the area important archaeal and eubacterial groups.
CO6	Evaluate the recent advancement in Phycology And Mycology

Text Books:

- 1. Phycology (4th Edition) R.L. Lee, Cambridge University Press, 2008.
- 2. Algae- An introduction to Phycology- C Van den Hoek, DG Mann, HM Janes, Cambridge University Press, 1995.
- 3. Hand Book of Microalgal culture. Ed by A. Richmond. Blackwell Publishing House, 2003
- 4. The Mycota- Esser, K. and Bennet J. W. (Eds.)
- 5. An Introduction to Mycology Mehrotra, R.S. and Aneja, K.R.

Reference Book (s)

1. Algae- Anatomy, Biochemistry and biotechnology-L. Barsanti& P. Gualtieri. Taylor & Francis,2006.

- 2. Molecular Biology of Cyanobacteria- DA Bryant. Kluwer Academic Publisher, 1995.
- 3. Introduction to Fungi- John Webster and Roland W.S. Weber
- 4. Introductory Mycology -Alexopoulos C.J., C.W. Mims and M. Blackwell.

Unit-1:INTRODUCTION TO PHYCOLOGY	(05 hours)
Introduction, Classification of Algae	
Unit-2:LIFE CYCLES OF SOME ALGAL CLASSES	10 hours
a) Chlorophyceae: Volvox, Coleochaete, b) Charop features with reference to pinnate and centric diato Phaeophyceae: Ectocarpus ,f) Rhodophyceae: Polysiph	hyceae: Chara (c) Diatoms: General ms, d) Xanthophyceae: Vaucheria ,e) nonia ,g) Cyanobacteria: Nostoc
Unit-3:APPLICATIONS OF ALGAE	(07 hours)
Applications of Algae in Agriculture, Industry, Enviro	nment and Food.
Unit-4: CLASSIFICATION, OCCURRENCE, SO CYCLES OF FUNGI	MATIC STRUCTURE AND LIFE (12 hours)
a) Cellular slime molds - Dictyostelium ,b) True slime Oomycetes - Saprolegnia, Phytophthora ,d) Ch Zygomycetes - Mucor , f) Ascomycetes - Sacchar Basidiomycetes - Agaricus, h) Deuteromycetes - Candi	e molds (Myxomycetes) – Physarum, c) ytridiomycetes – Neocallimastix, e) romyces, Penicillium, Neurospora, g) da, Alternaria
Unit-5:APPLICATION OF FUNGI	(12 hours)
Economic importance of fungi with examples in Medicine, Food, Biodeterioration (of wood, paper, to fungi: concept of fungistatic, fungicidal.	Agriculture, Environment, Industry, extile, leather),Mycotoxins, Ecology of
Unit-6 Recent Advancement in PHYCOLOGY AND N	IYCOLOGY 04hours

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	CONCEPT OF IMMUNOLOGY				
Course Code	BSDB1011				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

• To provide students with a foundation in immunological processes

• To provide students with knowledge on how the immune system works building on their previous knowledge from biochemistry, genetics, cell biology and microbiology

Course Outcome:

CO1	Describe the basic concept of immunology
CO2	It describeshow immuneresponse work in our body and explain defense mechanisms by CTL and NK cells
CO3	Demonstrate complementary system, organ transplantation, Antigen processing and presentation by MHC complex
CO4	Elucidate immunological disorders autoimmunity, hypersensitivity and immunodeficiency.
CO5	Evaluate vaccine production, Immunization, immunotherapy
CO6	Evaluate the recent advancement in Immunology

Text Book (s)

- 1. Immunology, 6th edition, (2006), J. Kuby et al, W.H. Freeman and Company, New York. ISBN-13: 978-1429202114.
- 2. Roitt"s Essential Immunology, 12th edition, (2011), Wiley-Blackwell Science. ISBN-13: 978-1405196833.
- 3. Cellular and Molecular Immunology, 7th edition, (2011). Abul K. Abbas, Andrew H. Lichtman, Shiv Pillai. Saunders. ISBN-13: 978-1437715286.

Reference Book (s):

- 1. Murphy K, Travers P, Walport M. (2008). Janeway'sImmunobiology. 7th edition Garland Science Publishers, New York.
- 2. Peakman M, and Vergani D. (2009). Basic and Clinical Immunology. 2nd edition Churchill
- 3. Livingstone Publishers, Edinberg.
- 4. Richard C and Geiffrey S. (2009). Immunology. 6th edition. Wiley Blackwell Publication.

Unit -1: INTRODUCTION TO IMMUNE SYSTEM

Types of immunity; organs and cells involved in immune system; Antigen, haptens, adjuvants, antigenicity, antigenic determinants and epitopes; Antibody structure and functions; Theories of antibody formation; Antibody diversity.

Unit -2: IMMUNE RESPONSE

8 hours

Primary and Secondary Immune Response; Generation of Humoral Immune Response (Plasma and Memory cells); Generation of Cell Mediated Immune Response (Self MHC restriction, T cell activation, Co- stimulatory signals); Killing Mechanisms by CTL and NK cells, Introduction to tolerance.

Unit -3: COMPLEMENT SYSTEM AND MAJOR HISTOCOMPATIBILITY COMPLEX10 hours

Components of the Complement system; Activation pathways (Classical, Alternative and Lectin pathways); Biological consequences of complement Activation. MHC - Organization of MHC locus (Mice & Human); Structure and Functions of MHC I & II molecules; Antigen processing and presentation (Cytosolic and Endocytic pathways).Transplantation - types, genetics of transplantation, graft versus host reactions.

Unit -4: IMMUNOLOGICAL DISORDERS

12 hours

10 hours

Types of AutoimmUnity and Hypersensitivity with examples; Immunodeficiencies - Animal models (Nude and SCID mice), SCID, DiGeorge syndrome, Chediak- Higashi syndrome, Leukocyte adhesion deficiency, CGD; Types of tumors, tumor Antigens, causes and therapy for cancers.

Unit -5: VACCINES AND IMMUNOLOGICAL TECHNIQUES. 10 hours

Vaccines - Types and their characteristics; Immunization practices-immunoprophylaxis and immunotherapy.Immunological techniques -Principles of Precipitation, Agglutination, Immunodiffusion, Immunoelectrophoresis, ELISA, Western blotting, Immunofluoresence, Flow cytometry, Immunoelectron microscopy.

Unit-6 Recent Advancement in CONCEPT OF IMMUNOLOGY.	04hours
Research article/ Review paper/ MOOC	

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	MICROBIOLOGY LAB II				
Course Code	BSMB1013				
Prerequisite	Higher Secondary Examination with Chemistry and B Botany and Zoology or Biochemistry and Chemistry from science stream with a minimum of 50 % marks in aggrega	iolog a rec te.	y or cogniz	Cher ed Bo	nistry, oard in
Corequisite	Students should have understanding of general biolog knowledge of the biological molecules, the cell, structure/function, interaction with the environment, and	gy, in gene evolt	ncludi tics, 1tion.	ng a regu	basic lation,
Antirequisite					
		L	Т	Р	С
		0	0	6	3

Course Objective:Students are able to prepare the microbial medium, describe the principle of pH meter, centrifugation and microscopy.

Course Outcome

CO1	Preparation of pure culture by different methods
CO2	Understanding and usage of different component of compound microscope and centrifuge
CO3	Understanding and usage of different component of pH meter and determination of pH of milk and different water
CO4	Preparation of gram's staining and mobility for bacteria
CO5	Understand the basic principle of blood group and Rh typing
CO6	Lab report

List of Practical

1.	Isolation of microorganisms by streak plate method.
2.	To isolate the microorganisms by spread plate method.
3.	Estimation of CFU count by spread plate method/pour plate method.
4.	Understanding the different components and working principle of light microscope using pre- prepared slide.
5.	Preparation of onion cell slide to study cell morphology using light microscope.
6.	To perform the isoelectric precipitation of casein present in milk.
7.	To determine the pH of 0.1 M NaOH and tap water using pH meter.
8.	Demonstrating the basic principle of centrifugation and calculating the relation between RCF and
	RPM during centrifugation.
9.	To perform gram staining of given sample.
10.	Motility by hanging drop method.
11.	Separate serum from the blood sample (demonstration).
12.	To perform immuno-diffusion by Ouchterlony/ Mancini method.
13.	Grouping of blood and Rh typing.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50	0	50	100

SEMESTER -III

Name of The Course	FUNDAMENTAL OF MOLECULAR BIOLOGY	Y			
Course Code	BSDB2001				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:Students are able to determine the process and regulation of replication, translation and transcription.

Course Outcome:

CO1	Explain the functional and structural organization of genetic material
CO2	Illustrate the different stages of DNA replication and type of DNA repair
CO3	Explain detail process of transcription and its regulation
CO4	Elucidate the mechanism of translation and posttranslational modification
CO5	Summarize the basic concept of gene regulation in pro and eukaryotes
CO6	Evaluate recent advancement in Molecular Biology

Text Book (s)

- Molecular Biology of the Gene (2008) 6th ed., Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M. and Losick, R., Cold Spring Harbor Laboratory Press, Cold spring Harbor (New York), ISBN:0-321-50781 / ISBN:978-0-321-50781-5.
- 2. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W. H. Freeman & Company (New York), ISBN:13: 978-1-4292-3414-6 / ISBN:10-14641-0962-1.

References Book (s)

- Molecular Cell Biology (2012) 7th ed., Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell. J., W.H. Freeman & Company (New York), ISBN:13:978-1-4641-0981-2 / ISBN:10: 1-4641-0981-8.
- 2. Molecular biology of the gene, (4thed)J D Watson, Benjamin/Cummings publ. Co Inc.

Unit - 1: NUCLEIC ACID STRUCTURE AND ORGANIZATION 8 hours				
DNA and RNA as genetic material, chemical structure, base composition and types of nucleic acids, supercoiling of DNA, DNA reassociation kinetics (cot curve analysis), DNA organization into chromatin, bacterial and eukaryotic genomic organization.				
Unit - 2: DNA REPLICATION AND REPAIR8 hours				
Enzymes and proteins of DNA replication, prokaryotic and eukaryotic replication mechanism, replication in phages and retroviruses, Mutagenesis, DNA damage and repair mechanisms				
Unit - 3: TRANSCRIPTION 10 hours				
Transcription in prokaryotes and eukaryotes.Mechanism of transcription, enzymes and transcription factors. Post-transcriptional modifications in mRNA, rRNA andtRNA.				
Unit - 4: TRANSLATION (12 hours)				
Genetic code - properties of the genetic code, deciphering of the genetic code. Translation in prokaryotes and eukaryotes; Translational mechanism in prokaryotes and eukaryotes, post translational modification and transport of proteins.				
Unit - 5: REGULATION OF GENE EXPRESSION 10 hours				
Regulation of gene expression in prokaryotes - The operon concept, lac &tryp operons.Transcriptional control. Post translational control. Regulation in eukaryotes - Control by promoter, enhancer and silencers.Cis-trans elements.DNA methylation & gene expression.				
Unit-6 Recent Advancement in FUNDAMENTAL OF MOLECULAR BIOLOGY. 04hours				
Research article/ Review paper/ MOOC				

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOINSTRUMENTATION-II				
Course Code	BSDB2002				
Prerequisite	Candidate for admission to the first year of B.Sc.	Deg	ree (Cours	se
-	in Biochemistry should passed the Higher Secondary				
	Examination with Chemistry and Biology or Chemistry, Botany				
	and Zoology with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology,				
	including a basic knowledge of the biological molecules, the				
	cell, genetics, regulation, structure/function, interaction with the				
environment, and evolution.					
Antirequisite	requisite				
		L	Т	P	C
		4	0	0	4

Course Objectives: : Students are able to determine the principle of advanced spectroscopy, chromatographic techniques

CO1	Describe different types of electrophoretic techniques for separation and isolation of biomolecules.
CO2	Explain various kinds of Spectroscopic techniques to characterize and detect structural changes in biomolecules.
CO3	Describe the principle and applications of various chromatographic techniques.
CO4	Explain the different types of radioactive detection techniques.
CO5	Demonstrate the principle of Sanger and Maxam Gilbert method of Nucleotide sequencing.
CO6	Evaluate recent advancement in bio analytical techniques.

Text Book (s)

- 3. Molecular Biology of the Gene (2008) 6th ed., Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M. and Losick, R., Cold Spring Harbor Laboratory Press, Cold spring Harbor (New York), ISBN:0-321-50781 / ISBN:978-0-321-50781-5.
- 4. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W. H. Freeman & Company (New York), ISBN:13: 978-1-4292-3414-6 / ISBN:10-14641-0962-1.

Reference Book

1. The Cell: A Molecular Approach (2009) 5th Ed. Cooper, G.M. and Hausman, R.E. ASM Press & Sunderland, (Washington DC), Sinauer Associates. (MA). ISBN:978-0-87893-300- 6.

Unit-1 : ELECTROPHORESIS	(10 hours)
Principle and applications of native polyacrylamide gel electrophor	esis, SDS- polyacrylamide
gel electrophoresis, 2D gel electrophoresis Isoelectric focusing, Zym	ogram preparation and
Agarose gel electrophoresis	
Unit-2 : ADVANCED SPECTROSCOPY	(10 hours)

Basic concepts - Circular Dichroism (CD) and Optical Rotatory Dispersion (ORD), Fluorescence spectroscopy, Infrared spectroscopy, FTIR, NMR spectroscopy. Mass spectroscopy- MALDI-TOF, Nano-SIMS (10L)

Unit-3 CHROMATOGRAPHY

Principles and applications of paper chromatography (including Descending and 2-D), Thin layer chromatography. Column packing and fraction collection. Gel filtration chromatography, ionexchange chromatography and affinity chromatography, GLC, HPLC.

Unit-4: RADIOGRAPHY

(10 hours)

(10 hours)

Use of radioisotopes in life sciences, radioactive labeling, principle and application of tracer techniques, detection and measurement of radioactivity using ionization chamber, proportional chamber, Autoradiography, FISH-MAR, Pulse chase experiment, Liquid scintillation counting, Phosphor imaging, IRMA, Dosimetry.

Unit-5 : ADVANCED TECHNIQUES

(08 hours)

Chemical synthesis of nucleotides and peptides, Sequencing of proteins and nucleic acids, Enzyme purification and assay techniques.

Unit-6 Recent Advancement in bio analytical techniques.04hoursResearch article/ Review paper/ MOOC04hours

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	MICROBIAL PHYSIOLOGY AND METABOLISM				
Course Code	BSMB2003				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite	ntirequisite				
		L	Т	Р	С

Course Objectives:

Students are able to understand the basic concept of microbial nutrition, growth, control, and cultivation method in microbiology.

The course will emphasize determination of growth curve of microbial growth and influence of environment and primary and secondary metabolism. It will also enhance the knowledge of microbial metabolism of biomolecules.

Course Outcome:

CO1	Describe the brief introduction of microbial culture and their growth curve
CO2	Explain type of transport system in prokaryotes

CO3	Explain basic biochemistry of aerobic and anaerobic respiration.
CO4	Illustrate the process of photosynthesis in various bacterial system
CO5	Discuss about role of bacteria in nitrogen cycle
CO6	Evaluate recent advancement in Microbial Physiology and Metabolism

TextBook (s)

- 1. Madigan MT, and Martinko JM (2014). Brock Biology of Microorganisms. 14th edition. PrenticeHall International Inc.
- 2. Moat AG and Foster JW. (2002). Microbial Physiology. 4th edition. John Wiley & Sons
- 3. Reddy SR and Reddy SM. (2005). Microbial Physiology. Scientific Publishers India
- 4. Gottschalk G. (1986). Bacterial Metabolism. 2nd edition. Springer Verlag.

References Book (s)

- 1. Stanier RY, Ingrahm JI, Wheelis ML and Painter PR. (1987). General Microbiology. 5th edition,
- 2. McMillan Press.
- 3. Willey JM, Sherwood LM, and Woolverton CJ. (2013). Prescott's Microbiology. 9th edition. McGraw Hill Higher Education

Unit-1: MICROBIAL GROWTH AND EFFECT OF ENVIRONMENT ON MICROBIAL GROWTH (12 hours)

Definitions of growth, measurement of microbial growth, Batch culture, Continuous culture, generation time and specific growth rate, synchronous growth, diauxic growth curve. Microbial growth in response to environment -Temperature (psychrophiles, mesophiles, thermophiles, extremophiles, thermodurics, psychrotrophs), pH (acidophiles, alkaliphiles), solute and water activity(halophiles, xerophiles, osmophilic), Oxygen (aerobic, anaerobic, microaerophilic, facultative aerobe, facultative anaerobe), barophilic. Microbial growth in response to nutrition and energy – Autotroph/Phototroph, heterotrophy, Chemolithoautotroph, Chemolithoheterotroph, Chemolithotroph, Photoorganoheterotroph.

Unit-2: PRINCIPLES OF PHYSIOLOGY

8 hours

Nutrient transport in prokaryotic cell, Passive and facilitated diffusion, Primary and secondary active transport, concept of uniport, symport and antiport,Signal transduction in bacteria, Microbial cell surfaces, Bacterial Bioluminescence, Microbial toxins

Unit-3: CHEMOHETEROTROPHIC METABOLISM - AEROBIC RESPIRATION, ANAEROBIC
RESPIRATION AND FERMENTATION- AEROBIC RESPIRATION, ANAEROBIC
(12 hours)

Concept of aerobic respiration, anaerobic respiration and fermentation, Sugar degradation pathways i.e. EMP, ED, Pentose phosphate pathway, TCA cycle, Electron transport chain: components of respiratory chain, comparison of mitochondrial and bacterial, ETC, electron transport phosphorylation, uncouplers and inhibitors.

Anaerobic respiration with special reference to dissimilatory nitrate reduction (Denitrification; nitrate/nitrite and nitrate/ammonia respiration; fermentative nitrate reduction) Fermentation - Alcohol fermentation and Pasteur effect; Lactate fermentation (homofermentativeand heterofermentative pathways

Unit- 4: CHEMOLITHOTROPHIC AND PHOTOTROPHIC METABOLISM

(09 hours)

Introduction to aerobic and anaerobic chemolithotrophy with an example each.Hydrogenoxidation(definition and reaction) and methanogenesis (definition and reaction). Introduction to phototrophic metabolism - groups of phototrophic microorganisms, anoxygenicvs.

Г

oxygenic photosynthesis with reference to photosynthesis in cyanobacteria	green bacteria	a, purple bacte	eria and	
Unit- 5: NITROGEN METABOLISM	(06	hours)		
Introduction to biological nitrogen fixation:Ammonia assimilation, Assimilatory nitrate reduction, dissimilatory nitrate reduction, denitrification.				

Unit-6 Recent Advancement in MICROBIAL PHYSIOLOGY AND METABOLISM 04hours Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term TestEnd Term Test(MTE)(ETE)		Total Marks	
30	20	50	100	

Name of The Course	VIROLOGY				
Course Code	BSMB2002				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:Students will understand the classification, basic characteristics and ultra structure of viruses. The course will emphasize on developing an understanding the virus life cycles and their interactions with host cells.

Course Outcomes

CO1	Explain the structure and general property of Virus and virus like particle
CO2	Elucidate the classification and feature of different Virus groups
CO3	Explain about the genetic material of virus and basic concept of bacteriophage
CO4	Explain the life cycle of virus and it's transmission
CO5	Describe the strategies to prevent viral diseases and its therapeutic role
CO6	Evaluate recent advancement in Virology

TextBooks

- 1. Dimmock, NJ, Easton, AL, Leppard, KN (2007). Introduction to Modern Virology. 6th edition, Blackwell Publishing Ltd.
- 2. Carter J and Saunders V (2007). Virology: Principles and Applications. John Wiley and Sons.

3. Flint SJ, Enquist, LW, Krug, RM, Racaniello, VR, Skalka, AM (2004). Principles of Virology, Molecular biology, Pathogenesis and Control. 2nd edition. ASM press Washington DC.

REFERENCES Books

- 1. Levy JA, Conrat HF, Owens RA. (2000). Virology. 3rd edition. Prentice Hall publication, New Jersey.
- 2. Wagner EK, Hewlett MJ. (2004). Basic Virology. 2nd edition. Blackwell Publishing.

Unit- 1: INTRODUCTION, STRUCTURE AND PURIFICATION OF VIRUSES 8 hours

Discovery of viruses, nature and definition of viruses, general properties of viruses.Concept of viroids, virusoids, satellite viruses and prions. Theories of viral origin ,Capsid symmetry, enveloped and non-enveloped viruses,Isolation, purification and cultivation of viruses

Unit-2: VIRAL TAXONOMY

(07 hours)

Classification and nomenclature of different groups of viruses infecting microbes, plants and animals.

Unit -3: SALIENT FEATURES OF VIRAL GENOMES AND BACTERIOPHAGES

(12 hours)

Unusual bases (TMV, T4 phage), overlapping genes (Φ X174, Hepatitis B virus), alternate splicing (Picornavirus), terminal redundancy (T4 phage), terminal cohesive ends (lambda phage), ambisense genomes (arenavirus), partial double stranded genomes (Hepatitis B), long terminal repeats (retrovirus), segmented (influenza virus) and non segmented genomes (picornavirus), capping and tailing (TMV).

Diversity, classification, one step multiplication curve, lytic and lysogenic phages (lambda and P1 phage), concept of early and late proteins, regulation of transcription in lambda phage and applications of bacteriophages.

Unit- 4: VIRAL MULTIPLICATION, REPLICATION AND TRANSMISSION STRATEGIES 8 hours

Interaction of viruses with cellular receptors and entry of viruses.Replication strategies of viruses as per Baltimore classification.Assembly, maturation and release of virions. Concept of defective particles Transmission: Persistent and non-persistent mode

Unit-5: PREVENTION, CONTROL OF VIRAL DISEASES AND APPLICATIONS OF VIROLOGY (07 hours)

General principles of viral vaccination, Antiviral compounds, interferons and viral vaccines, Use of viral vectors in cloning and expression, Gene therapy and Phage display

Unit-6 Recent Advancement in VIROLOGY	04hours
Research article/ Review paper/ MOOC	

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	Web based course/seminar				
Course Code	BSDB2006				
Prerequisite	Candidate for admission to the first year of B.Sc. Degree Course in Biochemistry should passed the Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biol	logy	y.		
Antirequisite					
	I	L	Τ	Р	С
		0	0	0	2

Course Objectives:

- **Students are** directly engage and learn particular subject of their interest. This strengthens the fundamentals of the student in the course.
- It gives the students the opportunities to explore new areas of interest. Also gives students the opportunity to learn in greater depth the subjects they wish to master.
- Promotes the self-learning initiative of the students where their own motivation is what drives them to complete the course. This fosters the habit of keeping oneself updated always by means of self-study.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	ЕТЕ	Total Marks
50		50	100

Name of The Course	MICROBIOLOGY LAB-III				
Course Code	BSMB2014				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a % marks in aggregate.	and and min	Bio Ch Dimu	ology temis tm of	or try 50
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	Р	С
		0	0	6	3

Course Objective:

Student will learntostudy microbial growth and metabolic processes. They will gain knowledge the about techniques used for study and characterization of cellular DNA and proteins. Study structure of viruses and their characterization.

Course Outcome:

CO1	Study the different types of DNA and RNA and demonstration of the semi-conservative replication of DNA			
CO2	Preparation of DNA isolation from microorganism			
CO3	Estimation of the quantity and quality of genetic material			
CO4	Visualization of genetic material			
CO5	Demonstration of principle and application of agarose and PAGE gel electrophoresis			
CO6	Lab report			

Text Book (s)

- 1. Sambrook J and Russell DW. (2001). Molecular Cloning: A Laboratory Manual. 4th Edition, Cold Spring Harbour Laboratory press.
- 2. Primrose SB and Twyman RM. (2006). Principles of Gene Manipulation and Genomics, 7th edition.
- 3. Blackwell Publishing, Oxford, U.K.
- 4. Carter J and Saunders V (2007). Virology: Principles and Applications. John Wiley and Sons

Reference Book (s):

- 1. Dimmock, NJ, Easton, AL, Leppard, KN (2007). Introduction to Modern Virology. 6th edition, Blackwell Publishing Ltd.
- 2. Brown TA. (2010). Gene Cloning and DNA Analysis. 6th edition. Blackwell Publishing, Oxford, U.K.
- 3. Clark DP and Pazdernik NJ. (2009). Biotechnology: Applying the Genetic Revolution. Elsevier Academic Press, USA.

1.	Study of different types of DNA and RNA using micrographs and model / schematic representations.
2.	Study of semi-conservative replication of DNA through micrographs / schematic representations
3.	Isolation of genomic DNA from <i>E. coli</i>
4.	Estimation of DNA using UV spectrometer.
5.	Isolation of RNA using UV spectrometer.
6.	Demonstration of resolution and visualization of DNA by Agarose Gel Electrophoresis.
7.	Demonstration of resolution and visualization of proteins by Polyacrylamide Gel Electrophoresis (SDS-PAGE).

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA) Lab	(MTE)	Lab (ETE)	
50	0	50	100

Name of The Course	MICROBIOLOGY LAB-IV				
Course Code	BSMB2015				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a % marks in aggregate.	and and and mir	Bio Ch Bimu	ology iemis im of	or try 50
Corequisite	BSMB2002 and BSMB2003				
Antirequisite					
		L	Т	Р	С
		0	0	6	3

Course Objective:

Student will learntostudy microbial growth and metabolic processes. They will gain knowledge the about techniques used for study and characterization of cellular DNA and proteins. Study structure of viruses and their characterization.

Course Outcome:

CO1	Demonstration of bacterial growth.
CO2	Estimation of generation time and growth curve of bacterial growth.
CO3	Determine the effect of temperature and pH on bacterial growth.
CO4	Alcoholic fermentation
CO5	Preparation of isolation, purification and cultivation of viruses
CO6	Lab report

Text Book (s)

- 5. Sambrook J and Russell DW. (2001). Molecular Cloning: A Laboratory Manual. 4th Edition, Cold Spring Harbour Laboratory press.
- 6. Primrose SB and Twyman RM. (2006). Principles of Gene Manipulation and Genomics, 7th edition.
- 7. Blackwell Publishing, Oxford, U.K.
- 8. Carter J and Saunders V (2007). Virology: Principles and Applications. John Wiley and Sons

Reference Book (s):

- 4. Dimmock, NJ, Easton, AL, Leppard, KN (2007). Introduction to Modern Virology. 6th edition, Blackwell Publishing Ltd.
- 5. Brown TA. (2010). Gene Cloning and DNA Analysis. 6th edition. Blackwell Publishing, Oxford, U.K.
- 6. Clark DP and Pazdernik NJ. (2009). Biotechnology: Applying the Genetic Revolution. Elsevier Academic Press, USA.

1. Study and plot the growth curve of <i>E. coli</i> by tubidometric method.			
2. Calculations of generation time and specific growth rate of bacteria from the graph plotted with the given data.			
3. Effect of temperature on growth of <i>E. coli</i> .			
4. Effect of pH on growth of <i>E. coli</i> .			
5. Demonstration of alcoholic fermentation.			

6. Study the morphological structures of viruses (DNA and RNA) and their important characters using electron micrographs.				
7. Demonstration of isolation of viruses.				
8. Demonstration of purification of viruses.				
9 Demonstration of cultivation of viruses				

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA) Lab	(MTE)	Lab (ETE)	
50	0	50	100

EMESTER – IV

Name of The Course	PROGRAMMING LANGUAGES				
Course Code	BCSE1020				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of and basic knowledge of the computers.				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

Course Outcome:

CO1	Understand about the computers, Logic Development and Program Development Tools, Operations and Expressions.			
CO2	Identify Data Input and Output, Interactive Programming. Control Structures and functions.			
CO3	Interpret Arrays, Structure and Union.			
CO4	Interpret the applications of Pointers, Initializing Pointers, Creating the data files.			
CO5	Express the knowledge in the area of C++.			

Text Book (s)

- 13. P KanetkarYashvant, Let us C, BPB Publications, New Delhi, Seventh Edition.
- 14. E. Balagurusami, Programming in ANSI C, Tata McGraw Hill, Fourth Edition.

Reference Book (s)

- 1. Schaum Outline Series, Programming in C.
- 2. HerbtzSchildt, "C++: The Complete Reference", Fourth Edition, McGrawHill.

3. John R. Hubbard, "Programming with C++", Schaum's Series, 2nd Edition, 2000.

10 hours

Introduction to computers: Units of computers, Block Diagram, Generation of Computers, Characteristics of Computers, Phases of Computers, Different types of Memory, Input and Output Devices.
Logic Development and Program Development Tools: Data Representation, Flowcharts, Problem Analysis, Decision Trees/Tables, Pseudo Code and Algorithms, ProgramDebugging, Compilation and Execution.
Fundamentals: Character Set, Identifiers and Key Words, Data Types, Constants, Variables, Expressions, Statements, Symbolic Constants.

Operations and Expressions: Arithmetic Operators, Unary Operators, Relational Operators, Logical Operators, Assignment and Conditional Operators, Library functions.

Unit-2:

Unit-I

10 hours

Data Input and Output: Single Character Input, Single Character Output, Entering Input Data, More About Scan Functions, Writing Output Data, More About Print Functions, Gets and Puts Functions, Interactive Programming.

Control Structures: Introduction, Decision Making with If – Statement, If Else and Nested If, While And Do-While, For Loop. Jump Statements: Break, Continue, Goto, Switch Statement.

Functions: Introduction To Functions, Function Declaration, Function Categories, Standard Functions, Parameters And Parameter Passing, Pass – By Value/Reference, Recursion, Global and Local Variables, Storage Classes.

Unit-3:

10 hours

Arrays: Introduction to Arrays, Array Declaration, Single and Multidimensional, Array, Memory Representation, Matrices, Strings, String Handling Functions.

Structure and Union: Declaration of Structure, Accessing Structure Members, Structure Initialization, Arrays of Structure, Nested Structures, Unions.

Unit-4:

10 hours

10 hours

Pointers: Introduction To Pointers, Address Operator And Pointers, Declaring and Initializing Pointers, Assignment through Pointers, Pointers and Arrays.

Files: Introduction, Creating a Data File, Opening and Closing a Data File, Processing a Data File.

Unit-5:

Using Classes in C⁺⁺:

Principles of Object-Oriented Programming, Defining & Using Classes, Class Constructors, Constructor Overloading, Function overloading in classes, Class Variables &Functions, Objects as parameters, Specifying the Protected and Private Access, Copy Constructors, Overview of Template classes and their use.Introduction to Inheritance and Polymorphism

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks			
(IA)	(MTE)	(ETE)				
30	20	50	100			
Name of The Course	BIOTECHNOLOGY					
--------------------	--	------------------------	-----------------------	-------------------------	---------------------------	--------------------------
Course Code	BSDB2010					
Prerequisite	Higher Secondary Examination with Chemistry an Botany and Zoology or Biochemistry and Chemi Board in science stream with a minimum of 50 % r	nd B nistry marl	Biolo y fr ks i	ogy o com a n agg	r Che a reco gregat	mistry, ognized æ.
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.					
Antirequisite						
]	L	Т	Р	С	
		4	0	0		4

Course Objective:

Students will understand the molecular methods and applications of recombinant DNA technology and gene transfer techniques.

Course Outcome:

CO1	Brief account of plant tissue culture and advantages of somatic hybridization
CO2	Explain the basic techniques of cell culture
CO3	Describe the different methods of DNA sequencing
CO4	Describe the type and process of genetic exchange
CO5	Explain the various categories of transposable element
CO6	Evaluate the application of Biotechnology in research and deployment

Text Book (s)

- 1. Principles of Gene Manipulations 1994 by Old and Primrose Blackwell Scientific Publications.
- 2. DNA Cloning: A Practical Approach by D.M. Glower and B.D. Hames, IRL Press, Oxford. 1995.
- 3. Molecular Biotechnology 2nd Edition by S.B. Primrose. Blackwell Scientific Publishers, Oxford. 1994.
- 4. Genetic Engineering and Introduction to Gene Analysis and Exploitation in Eukaryotes by S.M. Kingsman and A.J. Kingsman, Blackwell Scientific Publications, Oxford 1998.

References Book (s)

- 1. PCR Technology Principles and Applications for DNA Amplification by Henry A. Erlich (Ed.) Stockton Press. 1989.
- 2. Biotechnology: A Guide to Genetic Engineering by Peters.
- 3. Genetic Engineering 2000 by Nicholl.
- 4. Recombinant DNA and Biotechnology: Guide for Teachers. 2nd Edition by Helen Kreuz. 2001. ASM Publications.

Unit -1: INTRODUCTION TO PLANT BIOTECHNOLOGY8 hoursBasic introduction to animal and plant biotechnology; types of plant tissue culture, Somatic
hybridization

Screening and preservation of DNA libraries, DNA Sequencing and cloning strategies. **Unit -4: GENE TRANSFER TECHNIQUES**

Unit -3: CONSTRUCTION OF DNA LIBRARIES

Unit -2: INTRODUCTION TO ANIMAL BIOTECHNOLOGY

Gene transfer techniques: biological methods; chemical methods; physical or mechanical methods.

storage of nucleic acids, Construction of cDNA library, Construction of Genomic library,

Animal Biotechnology - organ culture; cell culture and initiation of cell culture; evolution of

Unit -5: TRANSGENICS

continuous cell lines.

Plant Genetic Engineering: Restriction enzymes; Transformation of plant cells; different type of vectors including viral vectors and their benefits; Screening and selection of transformants, PCR and hybridization methods; Application of transgenic science in plant and animal improvement.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	FOOD AND AGRICULTURAL MICROBIOLOGY				
Course Code	BSMB2006				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general bi a basic knowledge of the biological molecules, the regulation, structure/function, interaction with the and evolution.	iolog he co he ei	y, ir ell, g nvir	nclud geneti onme	ing ics, ent,
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objective:

Student will understand the role of microorganisms in food industry and food spoilage. Further, it also helps to better understand the mode of food preservation and the quality of different foods can be preserved following the various international guidelines.

Course Outcome

10 hours

10 hours

10 hours Isolation and purification of nucleic acid (genomic/plasmid DNA and RNA), Quantification and

CO1	Explain the role of microorganism in food industry
CO2	Describe the uses of microorganism in dairy products
CO3	Explain the application of baker's yeast and other microbial products
CO4	Describe benefits of use of microorganism over chemicals in agriculture
CO5	Brief account of tissue culture and transgenic crops
CO6	Evaluate the application of Food and Agricultural Microbiology

Text Book (s)

- 1. TE Frazier and Klesthoff (2004) Food Microbiology
- 2. James, MJ(2005) Modern Food Microbiology, 4th edition

Reference Book (s)

1. Adams, MR and Moss, MO (2003) Food Microbiology

Unit-I: INTRODUCTION TO FOOD MICROBIOLOGY

Food as substrate for microorganisms: Microorganisms important in food microbiology and their importance, principles of food preservation, Asepsis- removal of microorganisms Factors influencing microbial growth in food, chemical preservatives and food additives, canning, Contamination and Spoilage, Food borne infection and intoxications.

Unit-2: DAIRY TECHNOLOGY

Starter cultures, Cheese production, Fermented foods and other dairy products, Evaluation and role of Probiotics, Nutraceuticals, food control agencies and its regulations.

Unit -3: BIOMASS PRODUCTION AND APPLICATIONS 07 hours

Fungal biomass- baker's yeast and single cell oil, Mushroom cultivation, Use of Algal biomass, Microbial production for food and feed, Carotenoid pigments- β-carotene, lycopene

Unit-4: MICROBES IN AGRICULTURE

Biofertilizer: types, production and applications,Mycorrhizae: classification and significance, Vermicomposting, Bioinsecticides: their production by bacterial fungal and viral, Integrated pest management

Unit-5: AGRICULTURE TECHNOLOGY

Organic matter decomposition, Microbial plant hormones, Tissue culture technology and commercial application, Transgenic crops and Plants.

Unit-6 Recent Advancement in FOOD AND AGRICULTURAL MICROBIOLOGY 04hours Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	

10 hours

10 hours

08 hours

08 nour

20	
. 7U	

20 50 100

Name of The Course	PLANT PATHOLOGY				
Course Code	BSMB2008				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry and recognized Board in science stream with a minimum aggregate.	and Cher of 50	Bio nistr) % 1	ology ry froi marks	or m a s in
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: To acquaint the students with the science of phytopathology; its objectives, general concepts and classification of plant diseases

Course Outcome:

CO1	Describe the different stages of disease development and molecular Koch's postulates.
CO2	Explain the difference among monocyclic, polycyclic and polyetic diseases.
CO3	Explain the adverse effect of pathogen on plant physiology, resistance genes and type of defense mechanisms.
CO4	Explain various majors to control plant disease.
CO5	Discuss the pathophysiology and symptoms of any two plant disease caused by fungi.
CO6	Evaluate the recent advancement in plant pathology.

TEXT & REFERENCES Book (s):

- 1. Agrios GN. (2006). Plant Pathology. 5th edition. Academic press, San Diego,
- 2. Lucas JA. (1998). Plant Pathology and Plant Pathogens. 3rd edition. Blackwell Science, Oxford.
- 3. Mehrotra RS. (1994). *Plant Pathology*. Tata McGraw-Hill Limited.

TEXT & REFERENCES Book (s):

- 1. Rangaswami G. (2005). *Diseases of Crop Plants in India*. 4th edition. Prentice Hall of India Pvt. Ltd., New Delhi.
- 2. Singh RS. (1998). Plant Diseases Management. 7th edition. Oxford & IBH, New Delhi

Unit-1: INTRODUCTION AND HISTORY OF PLANT PATHOLOGY10 hoursConcept of plant disease- definitions of disease, disease cycle & pathogenicity, symptomsassociated with microbial plant diseases, types of plant pathogens, economic losses and social

impact of plant diseases. Significant landmarks in the field of plant pathology, molecular Koch's postulates. Contributions of eminent Indian plant pathologists, Stages in development of a disease:nfection, invasion, colonization, dissemination of pathogens and perennation.

Unit-2: PLANT DISEASE EPIDEMIOLOGY

07 hours

Concepts of monocyclic, polycyclic and polyetic diseases, disease triangle & disease pyramid, forecasting of plant diseases and its relevance in Indian context.

Unit -3: HOST PATHOGEN INTERACTION

12 hours

A. Microbial Pathogenicity

Virulence factors of pathogens: enzymes, toxins (host specific and non specific) growth regulators, virulence factors in viruses (replicase, coat protein, silencing suppressors) in disease development. Effects of pathogens on host physiological processes (photosynthesis, respiration, cell membrane permeability, translocation of water and nutrients, plant growth and reproduction).

B. Genetics of Plant Diseases

Concept of resistance (**R**) gene and avirulence (avr) gene; gene for gene hypothesis, types of plant resistance: true resistance– horizontal & vertical, apparent resistance.

C. Defense Mechanisms in Plants

Concepts of constitutive defense mechanisms in plants, inducible structural defenses (histologicalcorklayer, abscission layer, tyloses, gums), inducible biochemical defenses [hypersensitive response(HR), systemic acquired resistance (SAR), phytoalexins, pathogenesis related (PR) proteins, plantibodies, phenolics, quinones, oxidative bursts].

Unit-4: CONTROL OF PLANT DISEASES

Principles & practices involved in the management of plant diseases by different methods, *viz.* regulatory - quarantine, crop certification, avoidance of pathogen, use of pathogen free propagative material cultural - host eradication, crop rotation, sanitation, polyethylene traps and mulches chemical - protectants and systemic fungicides, antibiotics, resistance of pathogens to chemicals. biological - suppressive soils, antagonistic microbes-bacteria and fungi, trap plants genetic engineering of disease resistant plants- with plant derived genes and pathogen derived genes

Unit-5: SPECIFIC PLANT DISEASES

Study of some important plant diseases giving emphasis on its etiological agent, symptoms,epidemiology and controlImportant diseases caused by fungi, phytopathogenic bacteria, phytoplasmas, viruses, viroids.

Unit-6 Recent Advancement in PLANT PATHOLOGY04hoursResearch article/ Review paper/ MOOC04hours

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

8 hours

Course Code	Course Name	L	Т	Р	С
BBS09T2411	RESEARCH METHODOLOGY AND STATISTICS	2	0	0	2

Course Objective: The objective of the course is to impart research based knowledge to the students. They would be taught the various ways of data collection, research methodologies adopted in different settings, and statistical methods.

Course Outcome:

CO1	Students will get separately familiar with terms research and methodology,
	respectively.
CO2	Identifying different type of research sampling and research design.
CO2	Students will understand raw data, primary data, secondary data and their
	different methods of collection.
CO4	Students will appraise the application of sampling through statistics.
CO5	Students will get familiar with different descriptors of statistics to analyse
	data both quantitatively and qualitatively.
CO6	Students will develop the statistical analysis indulges in modern research for
	drug designing.

Course Contents:

Module I: Introduction to Research Methodology	6-Lectures
Definition, concept and research in science; Introduction to Research Methodolog	gy, Research
methodology in science.	
Module II: Research in Scientific and Social Settings	5-
Lectures	
Research Design: Research Sampling, rationale for using a particular sampling proced	ure,
Probability.	
Module III: Tools of Data Collection	5-
Lectures	
Data and its types, Methods for Collecting Data, Observation method, Questionnaire, O	ther Methods
Module IV: Introduction to Statistics	4-
Lectures	
Introduction to statistics (Biostatistics); Sample and Population, parametric and non	n parametric
statistics.	
Module V: Descriptive Statistics	5-
Lectures	
Measures of central tendency; Measures of dispersion and deviation; graphical representation	ntation of the
data. Correlation and Regression	
Unit 6: Recent research advances3 lec	etures
Descriptors, Quantitative structure-activity relationship (QSAR), Quantitative struct	ure-property
relationship(QSPR), Drug designing.	

Text & References:

- Broota, K. D., Experimental designs in psychological research, Wiley eastern, New York, 1992.
- Guilford, Statistics in Psychology and Education, McGraw Hill, New York, 1986.
- J T Walker, Statistics in Criminology and Criminal Justice analysis and Interpretation
 - Leo, A., & Hoekman, D. H. (1995). *Exploring QSAR*. American Chemical Society.
 - Chanin Nantasenamat, Chartchalerm Isarankura-Na-Ayudhya, Thanakorn Naenna, Virapong Prachayasittikul, A Practical Overview of Quantitative Structure- Activity Relationship. EXCLI Journal 2009;8:74-88.
 - Wiktor Pronobis, Alexandre Tkatchenko, and Klaus-Robert Muller, J. Chem. Theory Comput. 2018, 14, 2991–3003

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Continuous Assessment Pattern

Name of The Course	MICROBIOLOGY LAB V				
Course Code	BSMB2017				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
	I	L	Т	Р	С
		0	0	6	3

Course ObjectivesStudent will learntostudy isolation and characterization of genetic material. They will gain knowledge the about techniques used for study and characterization of cellular DNA and proteins. Study the role of microbes and plant pathogens.

Course Outcome:

CO1	Demonstration of the isolation of plasmids
CO2	Study the application of restriction and ligation enzymes
CO3	Estimation of the quantity and quality of genetic material
CO4	Interpretation of gel electropherograms
CO5	Roe of microbe as plant pathogens
CO6	Lab report

Text Books

- 1. Brown TA. (2010). Gene Cloning and DNA Analysis. 6th edition. Blackwell Publishing, Oxford, U.K.
- 2. Sambrook J and Russell D. (2001). Molecular Cloning-A Laboratory Manual. 3rd edition. Cold Spring Harbor Laboratory Press.
- 3. Agrios GN. (2006). Plant Pathology. 5th edition. Academic press, San Diego,

4. Lucas JA. (1998). Plant Pathology and Plant Pathogens. 3rd edition. BlackwellScience, Oxford.

Reference Book (s)

- 1. Clark DP and Pazdernik NJ. (2009). Biotechnology: Applying the Genetic Revolution. Elsevier Academic Press, USA.
- 2. Primrose SB and Twyman RM. (2006). Principles of Gene Manipulation and Genomics, 7th edition. Blackwell Publishing, Oxford, U.K.
- 3. Mehrotra RS. (1994). Plant Pathology. Tata McGraw-Hill Limited.
- 4. Rangaswami G. (2005). Diseases of Crop Plants in India. 4th edition. Prentice Hallof India Pvt. Ltd., New Delhi.

1. Demonstration of isolation of Plasmid DNA from <i>E.coli</i> .
2. Digestion of DNA using restriction enzymes and analysis by agarose gel electrophoresis
3. To study the Ligation of DNA fragments
4. Interpretation of sequencing gel electropherograms
5. Amplification of DNA by PCR.
6. Demonstration of Koch's postulates in fungal, bacterial and viral plant pathogens.
7. Study of important diseases of crop plants by cutting sections of infected plant material - Albugo,Puccinia, Ustilago, Fusarium, Colletotrichum.
8. Study microflora of different types of soils.
9. Design and functioning of a biogas plant
10. Isolation of cellulose degrading organisms.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test Lab	Total Marks
Lab (IA)	(MTE)	(ETE)	
50		50	100

Name of The Course	PROGRAMMING LANGUAGES LABORATORY				
Course Code	BCSE1031				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry and a recognized Board in science stream with a minimum in aggregate.	and Che n of :	Bio mist 50 %	logy try fro 6 mai	or om rks
Corequisite	Students should have understanding and a basic k computing	now	ledg	e of	the
Antirequisite					
		L	Т	Р	С
		0	0	6	3

Course Objective:

Students are able to understand the basic data structures used in programming (such as arrays and array lists).

Text / References Books:

- 1. E Balaguruswamy, "Object Oriented Programming with C++", Tata McGraw-Hill Education, 2008.
- 2. Paul Deitel, Harvey Deitel, "C++ How to Program", 8th Edition, Prentice Hall, 2011.
- 3. John R. Hubbard, "Programming with C++", Schaum's Series, 2nd Edition, 2000.
- 4. Harry, H. Chaudhary, "Head First C++ Programming: The Definitive Beginner's Guide", First Create space Inc, O-D Publishing, LLC USA.

1.	Write a program to find greatest of three numbers.
2.	Write a program to find gross salary of a person
3.	Write a program to find grade of a student given his marks.
4.	Write a program to find divisor or factorial of a given number.
5.	Write a program to print first ten natural numbers.
6.	Write a program to print first ten even and odd numbers.
7.	Write a program to find grade of a list of students given their marks.
8.	Create Matrix class. Write a menu-driven program to perform following Matrix operations (2-D array implementation):
9.	Sum b) Difference c) Product d) Transpose

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50		50	100

SEMESTER - V

Name of The Course	MINOR PROJECT				
Course Code	BSMB3001				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	Р	С
		0	0	0	3

COURSE CONTENTS:

Minor Project is considered as a special course involving application of knowledge in solving / analyzing /exploring a real life situation / difficult problem. The duration of Minor project is 1 month (4-6 weeks). A Minor Project may be given in lieu of a discipline specific elective paper/Microbiology. This should be done

in consultation with the faculty supervisor and agency supervisor under whom he / she is getting trained. The project report should be around 20 pages and chaptered as follows:

Chapter I: Introduction Chapter II: Review of Literature Chapter -3:: Methodology Chapter IV: Results&Discussion Chapter V: Summary and Conclusion

The research should be original and should be action oriented in that the results should be able to throw light on some of the important unexplored areas that would be of practical use to the microbiologists.

Students are expected to decide on the specific project area and title, and carry out substantial portion of the literature survey during the end of their 4th semester. After the end of their 4thsemester ETEs, each student will be asked to make presentation about the project including literature available, objective sought and work plan including methodologiesto the Student Project Monitoring Committee constituted by the HOD. The Project Work may be a work based on theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, etc. or a combination of these. The final project report will be evaluated by a panel of examiners consisting of HOD, Guide and Co-guide (wherever applicable) and an External Examiner. Viva-voce examination for the same will be conducted.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
50		50	100

Name of The Course	MICROBIAL GENETICS AND GENOMICS				
Course Code	BSMB3003				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
]	L	Т	Р	С
		4	0	0	4

Course Objectives: The objective of the course is to familiarize the students with the basic concepts in genetic engineering; to acquaint the students to versatile tools and techniques employed in genetic engineering and recombinant DNA technology; and to appraise them about applications genetic engineering.

Course Outcome:		
CO1	Explain the Mendelian Laws of inheritance and its application in Genetics	

CO2	Explain genomic configuration of prokaryotes, type and underlying mechanism of mutation
CO3	Explain the type and uses of plasmids
CO4	Describe the type and process of genetic exchange
CO5	Explain the various categories of transposable element
CO6	Evaluate the recent advancement in biochemistry of basic metabolic pathway.

Text & References Book (s):

- 1. Klug WS, Cummings MR, Spencer, C, Palladino, M (2011). Concepts of Genetics, 10th Ed., Benjamin Cummings.
- 2. Krebs J, Goldstein E, Kilpatrick S (2013). Lewin's Essential Genes, 3rd Ed., Jones and Bartlett Learning.
- 3. Pierce BA (2011) Genetics: A Conceptual Approach, 4th Ed., Macmillan Higher Education Learning.

Unit-I MENDELIAN GENETICS

Genetic terminology Impact of Genetics on other disciplines. Mendelian Laws of inheritance, its application in animal Genetics, analysis of results of Genetic crosses by various methods. Codominance, incomplete dominance, RFLP markers, gene interactions, multiple alleles.

Unit-2: GENOME ORGANIZATION AND MUTATIONS

Genome organization: E. coli, Saccharomyces, Tetrahymena. Organelle genome: Chroloroplast and Mitochondria. Mutations and mutagenesis: Definition and types of Mutations; Physical and chemical mutagens; Molecular basis of mutations; Functional mutants (loss and gain of function mutants); Uses of mutations. Reversion and suppression: True revertants; Intra- and inter-genic suppression; Ames test; Mutator genes.

Unit-2:I PLASMIDS

Types of plasmids – F plasmid, R Plasmids, colicinogenic plasmids, Ti plasmids, linear plasmids, yeast-2 μ plasmid, Plasmid replication and partitioning, Host range, plasmid-incompatibility, plasmid amplification, Regulation of copy number, curing of plasmids.

Unit-IV MECHANISMS OF GENETIC EXCHANGE

Transformation - Discovery, mechanism of natural competence. Conjugation - Discovery, Hfr and F' strains,Interrupted mechanism. mating technique and time ofentrymapping.Transduction - Generalized transduction, specialized transduction, LFT & HFT lysates, Mapping by recombination and co-transduction of markers.

Unit-V TRANSPOSABLE ELEMENTS

Prokaryotic transposable elements - Insertion Sequences, composite and non-composite transposons, Replicative and Non replicative transposition, Mu transposon.Eukaryotic transposable elements - Yeast (Ty retrotransposon), Drosophila (P elements), Maize (Ac/Ds).Uses of transposons and transposition.

Unit-6 Recent Advancement in MICROBIAL GENETICS AND GENOMICS 04hours Research article/ Review paper/ MOOC

10 hours

8 hours

10 hours

(07 hours)

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Continuous Assessment Pattern

Name of The Course	MEDICAL MICROBIOLOGY		
Course Code	BSDB3004		
Prerequisite	Higher Secondary Examination with Chemistry and Biology or		
_	Chemistry, Botany and Zoology or Biochemistry and Chemis	stry	
	from a recognized Board in science stream with a minimum of	f 50	
	% marks in aggregate.		
Corequisite	Students should have understanding of general biology, includ	ing	
_	a basic knowledge of the biological molecules, the cell, genet	ics,	
	regulation, structure/function, interaction with the environme	ent,	
	and evolution.		
Antirequisite			
	L T P	С	
		4	

Course Objectives:

- To introduce basic principles and application relevance of clinical disease
- The course will provide the conceptual basis for understanding pathogenic microorganisms and particularly address the fundamental mechanisms of their pathogenicity.
- It will also provide opportunities for a student to develop diagnostic skills in microbiology, including the • practical application and interpretation of laboratory tests for the diagnosis of infectious diseases.

Course Outcome:

CO1	Overview of microorganism, routes of transmission, pathogenesis and treatment
CO2	Explain molecular diagnosis of microbial diseases, study of diagnostic techniques PCR, ELISA
CO3	Describe Characteristics, diagnosis, treatment, prevention and control of bacterial disease, gastrointestinal and viral disease
CO4	Explains about protozoans infection, route of infection and treatment, types of fungus and causative agents of fungal disease
CO5	Principle of antibiotics and its application for treatments of various kinds of disease
CO6	Evaluate the recent advancement in Medical Microbiology

Text Book (s):

- 1. Chaechter M. Medoff G. and Eisenstein BC. (1993) Mechanism of Microbial Diseases 2nd edition. Williams and Wilkins, Baltimore.
- 2. Collee, JG. Duguid JP, Fraser AG, Marimon BP. (1989) Mackie and McCartney Practical Medical Microbiology, 13th Edition. Churchill Livingstone.

References Book (s):

- 1. Pharmaceutical Microbiology Edt. byW.B.Hugo&A.D.Russell Sixth edition. Blackwell scientific Publications.
- 2. Analytical Microbiology –Edt by Frederick Kavanagh Volume I &II.Academic Press New York.

Unit-1: BASICS IN MEDICAL MICROBIOLOGY

Infectious diseases overview.Medically important microbes.Microbial diseases - sources, route of transmission. Host pathogen interaction: Definitions - Infection, Invasion, Pathogen, Pathogenicity,Virulence, Toxigenicity Pathogenesis, Microbial virulence and virulence factors - Signs and symptoms of microbial diseases. Treatment, Prevention and control of microbial infections.Immunity of microbial diseases.

Unit-2: DIAGNOSIS OF MICROBIAL DISEASES

Collection, transport and preliminary processing of clinical pathogens.Clinical, microbiological, immunological and molecular diagnosis of microbial diseases.Modern methods of microbial diagnosis. Principles of different diagnostic tests (ELISA, Immunofluorescence, Agglutination based tests,Complement fixation, PCR, DNA probes).

Unit-3: BACTERIAL DISEASES AND VIRAL DISEASES 15hours Characteristics, diagnosis, treatment, prevention and control of diseases caused by Bacteria,

The following diseases in detail with Symptoms, mode of transmission, prophylaxis and control

Respiratory Diseases: Streptococcus pyogenes, Haemophilusinfluenzae, Mycobacterium tuberculosis

Gastrointestinal Diseases: Escherichia coli, Salmonella typhi, Vibrio cholerae, Helicobacter pyloriOthers: Staphylococcus aureus, Bacillus anthracis, Clostridium tetani, Treponemapallidum, Clostridium difficie.

List of viral diseases of various organ systems and their causative agents.

Symptoms, mode of transmission, prophylaxis and control of Polio, Herpes, Hepatitis, Rabies, Dengue, AIDS, Influenza with brief description of swine flu, Ebola, Chikungunya, Japanese Encephalitis

Unit-4: PROTOZOAN AND FUNGAL DISEASES

List of diseases of various organ systems and their causative agents. The following diseases in detailwith Symptoms, mode of transmission, prophylaxis and control Malaria, Kala-azar. Brief description of each of the following types of mycoses and one representative disease to be studied with respect to transmission, symptoms and prevention Cutaneous mycoses: Tineapedis (Athlete's foot), Systemic mycoses: Histoplasmosis, Opportunistic mycoses: Candidiasis

Unit-5: ANTIBIOTICS, SYNTHETIC ANTIMICROBIAL AGENTS AND ACTION MECHANISM OF ANTIBIOTICS

07 hours

Antibiotics and synthetic antimicrobial agents, Antifungal antibiotics, antitumor substances. Peptide antibiotics, Chloramphenicol, Sulphonamides and Quinolinone antimicrobial agents. Chemical disinfectants, antiseptics and preservatives, Mechanism of action of antibiotics (inhibitors of cell wall synthesis, nucleic acid andprotein synthesis). Bacterial resistance to antibiotics, Penetrating defenses – How the antimicrobial agents reach the targets (cellular permeability barrier, cellular transport system and drug diffusion).

10 hours

8 hours

Unit-6 Recent Advancement in MEDICAL MICROBIOLOGY 04hours Research article/ Review paper/ MOOC

Continuous Assessment Pattern					
Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks		
30	20	50	100		

Name of The Course	INDUSTRIAL MICROBIOLOGY				
Course Code	BSMB3005				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry and recognized Board in science stream with a minimum aggregate.	and Cher of 50	Bio nistr) % :	ology y froi marks	or n a s in
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

The students will learn to integrate the knowledge of microbial strains, fermentation processes used in microbial industry. Students will study biochemistry of the processes and their application to the biotechnological processes.

Course Outcome:

CO1	Describe the important microbial strain of industrial importance and their uses in microbial industry.
CO2	Explain different type of fermentation process, and factor effecting fermentation process
CO3	Explain principle of centrifugation and process of lyophilization
CO4	Explain method of production of Vitamin and pauster effect
CO5	Explain enzyme immobilization technique and it's advantages
CO6	Evaluate the recent advancement in Industrial Microbiology

Text Book (s)

- 1. Patel A.H. (1996). Industrial Microbiology. 1st edition, Macmillan India Limited
- 2. Okafor N. (2007). Modern Industrial Microbiology and Biotechnology. 1st edition. Bios Scientific Publishers Limited. USA
- 3. Waites M.J., Morgan N.L., Rockey J.S. and Higton G. (2001). Industrial Microbiology: An Introduction. 1st edition. Wiley – Blackwell

Reference Book (s)

1. Glaze A.N. and Nikaido H. (1995). Microbial Biotechnology: Fundamentals of Applied Microbiology. 1st edition. W.H. Freeman and Company

- 2. Casida LE. (1991). Industrial Microbiology. 1st edition. Wiley Eastern Limited.
- 3. Crueger W and Crueger A. (2000). Biotechnology: A textbook of Industrial Microbiology. 2nd edition. Panima Publishing Co. New Delhi.
- 4. Stanbury PF, Whitaker A and Hall SJ. (2006). Principles of Fermentation Technology. 2nd edition, Elsevier Science Ltd.
- 5.

Unit-4: INTRODUCTION TO INDUSTRIAL MICROBIOLOGY 07 hours

Brief history and developments in industrial microbiology, Isolation of industrially important microbial strains and fermentation media: Crude and synthetic media; molasses, corn steep liquor, sulphite waste liquor, whey, yeast extract and protein hydrolysates

Unit-2:TYPESOFFERMENTATIONPROCESSES,BIO-REACTORSANDMEASUREMENT OF FERMENTATION PARAMETERS10 hours

Types of fermentation processes - Solid-state and liquid-state (stationary and submerged)fermentations; batch, fed-batch (eg. baker's yeast) and continuous fermentations Components of a typical bio-reactor, Types of bioreactors-Laboratory, pilot- scale and production fermenters, constantly stirred tank and air-lift fermenters, Measurement and control of fermentation parameters - pH, temperature, dissolved oxygen, foaming and aeration

Unit -3: DOWN-STREAM PROCESSING

07 hours

Cell disruption, filtration, centrifugation, solvent extraction, precipitation, lyophilization and spray drying

Unit-4: MICROBIAL PRODUCTION OF INDUSTRIAL PRODUCTS 10 hours

Citric acid, ethanol, penicillin, glutamic acid, Vitamin B12, Enzymes (amylase, protease, lipase) Wine, beer

Unit-5: ENZYME IMMOBILIZATION

10 hours

Methods of immobilization, advantages and applications of immobilization, large scale applications of immobilized enzymes.

Unit-6 Recent Advancement in INDUSTRIAL MICROBIOLOGY 04hours Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	MICROBIOLOGY LAB-VI
Course Code	BSMB3010
Prerequisite	Higher Secondary Examination with Chemistry and Biology or
	Chemistry, Botany and Zoology or Biochemistry and Chemistry
	from a recognized Board in science stream with a minimum of 50
	% marks in aggregate.
Corequisite	Students should have understanding of general biology, including
1	a basic knowledge of the biological molecules, the cell, genetics,
	regulation, structure/function, interaction with the environment,
	and evolution.
Antirequisite	

L	Т	Р	С
0	0	6	3

Course Objectives:Students are able to understand the basic techniques of medical microbiology and immunology

Course Outcome :

CO1	Demonstration of micro flora on skin and mouth
CO2	Demonstration of antibacterial sensitivity
CO3	Preparation of different type of medias for identification of pathogenic bacteria
CO4	Demonstration of different disease photographs.
CO5	Demonstration of stages of parasite in RBCs using photomicrograph
CO6	Lab report

Text and Reference Book (s)

- 1. Aneja KR. Experiments in Microbiology, Plant pathology and Biotechnology. 4th Edition, New Age International Publishers, Chennai. 2005
- 2. Horold J Benson. Microbiological Applications. Laboratory Manual in General Microbiology. 7th International Edition, WCB McGraw – Hill, Boston. 1998
- 3. James G Cappuccino & Natalie Sherman Microbiology : A Laboratory manual. 6th Edition, Published by Pearson Education. 2004
- 4. 5. Dubey RC and Maheswari DK. Practical Microbiology 1st Edition, S. Chand & Company Ltd., New Delhi. 2004
- Myer's and Koshi's Manual of Diagnostic Procedures in Medical Microbiology and Immunology / Serology. Published by Department of Clinical Microbiology, CMC and Hospital, Vellore, Tamil Nadu. 2001

1.	Study of bacterial flora of skin by swab method.
2.	Study of bacterial flora of mouth by swab method.
3.	Perform antibacterial sensitivity by Kirby-Bauer method.
4.	Study of composition and use of important differential media for identification of pathogenic
	bacteria: EMB Agar, McConkey agar, Mannitol salt agar, Deoxycholate citrate agar, TCBS.
5.	Study symptoms of the diseases with the help of photographs: Polio, anthrax, herpes,
	chicken pox, HPV warts, AIDS (candidiasis), dermatomycoses (ring worms).
6.	Study of various stages of Malarial parasite in RBCs using permanent
	mounts/Photomicrographs

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	MICROBIOLOGY LAB-VII				
Course Code	BSMB3011				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	P	С
		0	0	6	3

Course Objectives:Students are able to understand the basic techniques of medical microbiology and immunology

Course Outcome :

CO1	Understand the preparation of master and replica plates.
CO2	Demonstrate the effect of chemicals and radiation on bacterial cells
CO3	Demonstration of conjugation and Ames test
CO4	Demonstration of different types of fermenters.
CO5	Visit report
CO6	Lab report

Text and Reference Book (s)

- 6. Aneja KR. Experiments in Microbiology, Plant pathology and Biotechnology. 4th Edition, New Age International Publishers, Chennai. 2005
- 7. Horold J Benson. Microbiological Applications. Laboratory Manual in General Microbiology. 7th International Edition, WCB McGraw – Hill, Boston. 1998
- 8. James G Cappuccino & Natalie Sherman Microbiology : A Laboratory manual. 6th Edition, Published by Pearson Education. 2004
- 9. 5. Dubey RC and Maheswari DK. Practical Microbiology 1st Edition, S. Chand & Company Ltd., New Delhi. 2004
- Myer's and Koshi's Manual of Diagnostic Procedures in Medical Microbiology and Immunology / Serology. Published by Department of Clinical Microbiology, CMC and Hospital, Vellore, Tamil Nadu. 2001

1.	Preparation of Master and Replica Plates.
2.	Study the effect of chemical (HNO2) and physical (UV) mutagens on bacterial cells
3.	Study survival curve of bacteria after exposure to ultraviolet (UV) light.
4.	Demonstration of Bacterial Conjugation.
5.	Demonstration of Ames test.
6.	Study different parts of fermenter.
7.	A visit to any educational institute/industry to see an industrial fermenter, and other downstream processing operations.

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total N	Iar k	S	
30	20	50	100			
ame of The Course	DISSERTATION					
Course Code	BSMB9997					
Prerequisite						
Corequisite						
Antirequisite						
			L	Т	Р	С
			0	0	0	12

Continuous Assessment Pattern

Course Objectives: To gain knowledge and understanding of research problems and related principles to manage projects in multidisciplinary research areas.

Course Outcome

CO1	Demonstrate the use of knowledge of basic and applied sciences in project based learning.
CO2	Organizes experiments and researches, perform analysis and interpret data for the designed project.
CO3	Cooperate effectively as an individual and as a member in the research team.
CO4	Systematize the articulated ideas, comprehend and write effective reports, documentation and to communicate effectively.
CO5	Demonstrate knowledge and understanding of research problems and related principles to manage projects in multidisciplinary research areas

COURSE CONTENTS:

Project work/Dissertation is considered as a special course involving application of knowledge in solving / analyzing /exploring a real life situation / difficult problem. The duration of the Project work/Dissertation is 6 months. A Project/Dissertation work may be given in lieu of a discipline specific elective paper/Biochemistry. This should be done in consultation with the faculty supervisor and agency supervisor under whom he / she is getting trained. The project report should be around 100 pages and chaptered as follows:

Chapter I: Introduction Chapter II: Review of Literature Chapter -3:: Methodology Chapter IV: Data Analysis and Results Chapter V: Discussion of Results Chapter VI: Summary and Conclusion

The research should be original and should be action oriented in that the results should be able to throw light on some of the important unexplored areas that would be of practical use to the forensic experts.

Students are expected to decide on the specific project area and title, and carry out substantial portion of the literature survey during the end of their 5thsemester.After the end of their 5thsemester ETEs, each student will be asked to make presentation about the project including literature available, objective sought and work plan including methodologiesto the Student Project Monitoring Committee constituted by the

HOD. The Project Work may be a work based on theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, etc. or a combination of these. The final project report will be evaluated by a panel of examiners consisting of HOD, Guide and Co-guide (wherever applicable) and an External Examiner. Viva-voce examination for the same will be conducted.

The following weightage is assigned at each stage of Student Project evaluation.

Reference Book (s)	Reference Book (s)	
Zeroth Review	Project scopes and Proposal	
Review I	Methods of project Implementation	
Review II	Technical Achievement	
Review -3:	Innovation and contribution	
Final Evaluation	Overall achievement	
(External evaluation)	Project Report Evaluation	

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50		50	100

Name of The Course	Web based course/seminar				
Course Code	BSDB3010				
Prerequisite	Candidate for admission to the first year of B.Sc. De	egree	Col	ırse i	n
	Biochemistry should passed the Higher Secondary Examination with				
	Chemistry and Biology or Chemistry, Botany and Zoology with a				
	minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biological	ogy.			
Antirequisite					
		L	Т	Р	С
		0	0	0	2

Course Objectives:

- **Students are** directly engage and learn particular subject of their interest. This strengthens the fundamentals of the student in the course.
- It gives the students the opportunities to explore new areas of interest. Also gives students the opportunity to learn in greater depth the subjects they wish to master.
- Promotes the self-learning initiative of the students where their own motivation is what drives them to complete the course. This fosters the habit of keeping oneself updated always by means of self-study.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	ЕТЕ	Total Marks
50		50	100

ELECTIVES

GROUP-I

Name of The Course	BIOINFORMATICS				
Course Code	BSDB2011				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate				
Corequisite	Students should have understanding of general bio a basic knowledge of the computer science.	olog	y, in	cludi	ing
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of bioinformatics. Course Outcomes

CO1	Describe the Introduction of Computer Fundamentals
CO2	It Interpret the Introduction of Bioinformatics and Biological Databases
CO3	Demonstrate Sequence Alignments, Phylogeny and Phylogenetic trees
CO4	Evaluate Genome organization and analysis
CO5	EvaluateProtein Structure Predictions
CO6	To elaborate the recent development in field of Bioinformatics

Text Book (s)

- 1. Saxena Sanjay (2003) A First Course in Computers, Vikas Publishing House
- 2. Pradeep and Sinha Preeti (2007) Foundations of Computing, 4th ed., BPB Publications
- 3. Lesk M.A.(2008) Introduction to Bioinformatics . Oxford Publication, 3rd International Student Edition
- **4. Rastogi S.C., Mendiratta N. and Rastogi P. (2007) Bioinformatics: methods and applications,** genomics, proteomics and drug discovery, 2nd ed. Prentice Hall India Publication
- 5. Primrose and Twyman (2003) Principles of Genome Analysis & Genomics. Blackwell

Reference Book (s)

- 1. Saxena Sanjay (2003) A First Course in Computers, Vikas Publishing House
- 2. Pradeep and Sinha Preeti (2007) Foundations of Computing, 4th ed., BPB Publications
- **3. Lesk M.A.(2008) Introduction to Bioinformatics . Oxford Publication, 3rd International Student** Edition
- **4.** Rastogi S.C., Mendiratta N. and Rastogi P. (2007) Bioinformatics: methods and applications, genomics, proteomics and drug discovery, 2nd ed. Prentice Hall India Publication
- 5. Primrose and Twyman (2003) Principles of Genome Analysis & Genomics. Blackwell

Unit-1 INTRODUCTION TO COMPUTER FUNDAMENTALS 12 hours

RDBMS - Definition of relational database, Mode of data transfer (FTP, SFTP, SCP), advantage of encrypted data transfer.

Unit-2 INTRODUCTION TO BIOINFORMATICS AND BIOLOGICAL DATABASES 10hours

Biological databases - nucleic acid, genome, protein sequence and structure, gene expression databases, Database of metabolic pathways, Mode of data storage - File formats - FASTA, Genbank and Uniprot, Data submission & retrieval from NCBI, EMBL, DDBJ, Uniprot, PDB.

Unit-3 SEQUENCE ALIGNMENTS, PHYLOGENY AND PHYLOGENETIC TREES 09hours

Local and Global Sequence alignment, pairwise and multiple sequence alignment. Scoring an alignment, scoring matrices, PAM & BLOSUM series of matrices. Types of phylogenetic trees, Different approaches of phylogenetic tree construction -UPGMA, Neighbour joining, Maximum Parsomony, Maximum likelihood.

Unit-4 GENOME ORGANIZATION AND ANALYSIS

Diversity of Genomes: Viral, prokaryotic & eukaryotic genomes; Genome, transcriptome, proteome, 2-D gel electrophoresis, Maldi Toff spectroscopy; Major features of completed genomes: *E.coli*, *S.cerevisiae*, *Arabidopsis*, Human.

Unit-5 PROTEIN STRUCTURE PREDICTIONS

08 hours

08 hours

Hierarchy of protein structure - primary, secondary and tertiary structures, modelling; Structural Classes, Motifs, Folds and Domains; Protein structure prediction in presence and absence of structure template; Energy minimizations and evaluation by Ramachandran plot Protein structure and rational drug design.

Unit-6 RECENT ADVANCEMENT IN Bioinformatics 04hours Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Continuous Assessment I	attern					
Internal Assessment	Mid Term Test	End Term Test	Total N	Aarl	KS	
(IA)	(MTE)	(ETE)				
30	20	50	100			
Name of The Course	BIOSTATISTICS					
Course Code	BSDB2012					
Prerequisite	Higher Secondary 1	Examination with Che	emistry and	d Bi	ology	v or
_	Chemistry, Botany	and Zoology or Bioche	emistry an	d Cl	hemis	stry
	from a recognized B	oard in science stream	with a mi	nimu	um of	f 50
	% marks in aggrega	ite.				
Corequisite	Students should hav	e understanding of gei	neral biolog	gy, i	nclud	ling
	a basic knowledge o	f the statistics.				
Antirequisite						
			L	Τ	Р	С
			4	0	0	4

Course Objectives: Students are able to understand the basic concept of biostatistics. Course Outcomes

Course Outcomes

CO1	Understand Measures of central tendency, Correlation and Regression	
CO2	Interpret Mean and Variance, namely Binomial, Poisson	
CO3	Demonstrate parametric and non-parametric statistics.	
CO4	Illustrate the Sampling Distributions, Standard Error, Testing of Hypothesis	
CO5	Illustrate the Large Sample Test based and Small sample test	
CO6	To elaborate the recent development in field of Biostatistics	

Text Book (s)

- 1. Edmondson and D. Druce : Advanced Biology Statistics, Oxford University Press; 1996.
- 2. W. Danial : Biostatistics : A foundation for Analysis in Health Sciences, John Wiley and Sons Inc; 2004

Reference Book (s)

Unit-1

- 1. Edmondson and D. Druce : Advanced Biology Statistics, Oxford University Press; 1996.
- 2. W. Danial : Biostatistics : A foundation for Analysis in Health Sciences, John Wiley and Sons Inc; 2004

Measures of central tendency, Measures of dispersion; skewness, kurtosis; Elementary Probability and basic laws; Discrete and Continuous Random variable, Mathematical Expectation; Curve Fitting; Correlation and Regression. Emphasis on examples from Biological Sciences. Unit-2 10hours Mean and Variance of Discrete and Continuous Distributions namely Binomial, Poisson, Geometric, Weibull, Logistic and Normal distribution. Fitting of Distributions. Unit-3 09 hours

Statistical methods: Scope of statistics: utility and misuse. Principles of statistical analysis of biological data. Sampling parameters. Difference between sample and Population, Sampling Errors, Censoring, difference between parametric and non-parametric statistics.

Unit-4

Sampling Distributions, Standard Error, Testing of Hypothesis, Level of Significance and Degree of Freedom.

Unit-5

Large Sample Test based on Normal Distribution, Small sample test based on t-test, Z- test and F test; Confidence Interval; Distribution-free test - Chi-square test. Basic introduction to Multivariate statistics, etc.

Unit-6 RECENT ADVANCEMENT IN Biostatistics 04hours Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

12 hours

08hours

Name of The Course	BIOPHYSICS	
Course Code	BSDB2013	
Prerequisite	Higher Secondary Examination with Chemistry and Biology or	
	Chemistry, Botany and Zoology or Biochemistry and Chemistry	
	from a recognized Board in science stream with a minimum of 50	
	% marks in aggregate.	
Corequisite	Students should have understanding of general biology, including	
	a basic knowledge of the physics.	
Antirequisite		
	L T P C	

Course Objectives: Students are able to understand the basic concept of biophysics.

Course	Outcomes
CO1	Understand numerical models with non-linear algebraic equations, numerical
	integration.
CO2	Describe the principle and working of crystallography.
CO3	Interpret the applications of numerical methods in biological systems.
CO4	Demonstrate the use of quantum biology.
CO5	Understand the theoretical modeling of biomolecules.
CO6	To elaborate the recent development in field of Biophysics

Text Book (s)

- 1. A Textbook of Biophysics: For Medical Science and Biological Science Students by RN Roy
- 2. Introduction to Biophysics by Pranab Kumar Banerjee
- 3. An Introduction to Biophysics by David Burns
- 4. Fundamentals and Techniques of Biophysics and Molecular Biology by Pranav Kumar
- 5. Biological Physics: Energy, Information, Life by Philip Nelson

Reference Book (s)

- 1. A Textbook of Biophysics: For Medical Science and Biological Science Students by RN Roy
- 2. Introduction to Biophysics by Pranab Kumar Banerjee
- 3. An Introduction to Biophysics by David Burns
- 4. Fundamentals and Techniques of Biophysics and Molecular Biology by Pranav Kumar
- 5. Biological Physics: Energy, Information, Life by Philip Nelson

Unit-1 NUMERICAL METHODS

Introduction to numerical methods, solutions to non-linear algebraic equations by the method of iteration and Newton aphson method, numerical integration by trapezoidal rule and simpson's rule, numerical solution of ordinary differential equations by picard's method of successive approximation, Euler's method and Runge-Kutta method.

12 hours

10 hours

Unit-2 ELEMENTARY CRYSTALLOGRAPHY

Introduction, symmetry in crystals, lattices and unit cells, crystal systems, Bravais lattices, elements of symmetry- rotation axis, mirror planes and center of inversion, point group symmetry- monoaxial point groups, polyaxial point groups, translational symmetry- screw axis and glide planes, space group, equivalent points, X-ray diffraction and Bragg equation.

Unit-3 MATHEMATICAL METHODS AND THEIR APPLICATIONS IN BIOLOGICAL SYSTEMS 09hours

Ordinary differential equations of the first degree and first order (variable separable method, linear equation), linear differential equations of the second order with constant coefficients, the Laplace Transform, Inverse Laplace transform, application of Laplace transform to solutions of differential equations, Fourier series and their applications.

Unit-4 QUANTUM BIOLOGY AND ITS USES

08hours

Classical mechanics, Newton, Lagrange and Hamilton's equations, Schrodinger's equation and its complete solution for S.H.O, central force and angular momentum.

Unit-5 THEORETICAL MODELING OF BIOMOLECULAR SYSTEMS 08hours

Basic principles of modeling, modeling by energy minimization technique, concept of rotation about bonds, energy minimization by basic technique for small molecules, Ramachandran plot, torsional space minimization, energy minimization in cartesian space, molecular mechanicsbasic principle, molecular dynamics basic principles.

Unit-6 RECENT ADVANCEMENT IN BIOPHYSICS 04hours Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	ORGANIC FARMING				
Course Code	BSDB2014				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a % marks in aggregate.	and and min	l Bid d Cł nimu	ology 1emis 1m of	or stry f 50
Corequisite	Students should have understanding of general bi a basic knowledge of the biological molecules, th regulation, structure/function, interaction with th and evolution.	iolog he c he e	gy, in ell, g nvir	nclud genet onmo	ling ics, ent,
Antirequisite					
		L	Τ	Р	С
		4	0	0	4

Course Objectives: To provide a broad foundation in organic farming. Course Outcomes

CO1	To understand the basic concept of organic farming.
CO2	To describe the concept of green manuring.
CO3	To identify the different methods of organic plant protection
CO4	To explain various types of organic crop production methods.
CO5	To understand the basic concept of farm economy.
CO6	To elaborate the recent development in field of Organic Farming

Text Book (s)

- 1. Dubey, R.C., 2005 A Text book of Biotechnology S.Chand & Co, New Delhi.
- 2. Kumaresan, V. 2005, Biotechnology, Saras Publications, New Delhi,
- 3. John Jothi Prakash, E. 2004. Outlines of Plant Biotechnology. Emkay -Publication, New Delhi.

Reference Book (s)

- 1. Sathe, T.V. 2004 Vermiculture and Organic Farming. Daya publishers.
- 2. Subha Rao, N.S. 2000, Soil Microbiology, Oxford & IBH Publishers, New _Delhi.
- 3. Vayas, S.C., Vayas, S. and Modi, H.A. 1998 Bio-fertilizers and organic _Farming Akta Prakashan, Nadiad

Unit-1 INTRODUCTION TO ORGANIC FARMING

Green manuring and organic fertilizers, Recycling of biodegradable municipal, agricultural and Industrial wastes – biocompost making methods, types and method of vermicomposting – field Application.

Unit-2 ORGANIC PLANT NUTRIENT MANAGEMENT

Organic farming systems, soil tillage, land preparation and mulching, Choice of varieties. Propagation-seed, planting materials and seed treatments, water management Green manuring, composting- principles, stages, types and factors, composting methods, Vermi composting, Bulky organic manures, concentrated organic manures, organic preparations, organic amendments and sludges

Unit-3 ORGANIC PLANT PROTECTION

Plant protection- cultural, mechanical, botanical pesticides, control agents, Weed management, Standards for organic inputs- plant protection.

Unit-4 ORGANIC CROP PRODUCTION PRACTICES

10 hours Organic crop production methods- rice, coconut. Organic crop production methodsvegetables- okra, amaranthus, cucurbits. Livestock component in organic farming. Sustainable Agriculture-Apiculture, Mushroom cultivation.

Unit-5ORGANIC CERTIFICATION

Farm economy: Basic concept of economics- demand & supply, economic viability of a farm. Basic production principles, reducing expenses, ways to increase returns, cost of production system. Benefit/ cost ratio, marketing, imports and exports. Policies and incentives of organic production. Farm inspection and certification. Terrace farming.

Unit-6 RECENT ADVANCEMENT IN ORGANIC FARMING 04hours Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks		
(IA)		(EIE)			
30	20	50	100		

08 hour

09 hours

08 hours

10 hour

Name of The Course	BIOFERTILIZERS AND PESTICIDES				
Course Code	BSDB2015				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or				
	Chemistry, Botany and Zoology or Biochemistry	and	l Cl	nemis	stry
	from a recognized Board in science stream with a	ı miı	nimu	ım of	f 50
	% marks in aggregate.				
Corequisite	Students should have understanding of general bi a basic knowledge of the biological molecules, th	iolog he c	gy, ii ell, g	nclud genet	ling tics,
	regulation, structure/function, interaction with the and evolution.	he e	nvir	onmo	ent,
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: To provide basic understanding of biofertilizer and pesticides.

Course Outcomes

CO1	To understand the basic concept of biofertilizer.
CO2	To identify the role of azospirillium as biofertilizer .
CO3	To explain the process of nitrogen fixation.
CO4	To explain various types of mycorrhizal association.
CO5	To elucidate the basic concept of pest and pest management .
CO6	To elaborate the recent development in field of Biofertilizers and Pesticides

Text Book (s)

1.Palaniappan SP & Anandurai K. 1999. Organic Farming–Theory and Practice. Scientific Publishers, Jodhpur

2. Joshi, M. 2014. New Vistas of Organic Farming 2nd Ed. Scientific Publishers, Jodhpur.

3. Farming system : Theory and Practice - S.A.Solaimalai

Reference Book (s)

- 1. Organic Farming: Theory and Practice- S.P.Palaniappan and K.A. Annadurai
- 2. A hand book of Organic Farming by A.K.Sharma

Unit-1 INTRODUCTION TO BIOFERTILIZERS

General account about the microbes used as biofertilizer – Rhizobium – isolation, identification, mass multiplication, carrier based inoculants, Actinorrhizal symbiosis.

Unit-2 AZOSPIRILLUM 10 hour

Azospirillum: isolation and mass multiplication – carrier based inoculant, associative effect of different microorganisms. Azotobacter: classification, characteristics – crop response to Azotobacter inoculum, maintenance and mass multiplication

Unit-3 CYANOBACTERIA

09 hours

08 hour

Cyanobacteria (blue green algae), Azolla and Anabaena azollae association, nitrogen fixation, factors affecting growth, blue green algae and Azolla in rice cultivation.

Unit-4 MYCORRHIZAL ASSOCIATION

10 hours

Mycorrhizal association, types of mycorrhizal association, taxonomy, occurrence and distribution, phosphorus nutrition, growth and yield – colonization of VAM – isolation and inoculum production of VAM, and its influence on growth and yield of crop plants.

Unit-5 PEST & PEST MANAGEMENT

Classification of pesticides on chemical nature and according to target species, mode of action, Methods of pest controls – Classification: Natural & applied control [Physical, mechanical, cultural, biological, genetic, regulatory, chemical controls] Integrated pest management..

08 hours

Unit-6 RECENT ADVANCEMENT IN BIOFERTILIZERS AND PESTICIDES 04hours Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	NANOBIOTECHNOLOGY				
Course Code	BSDB3011				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of nanotechnology. Course Outcomes

CO1	Understand the fundamentals of nanotechnology
CO2	Demonstrate the physical and chemical methods of synthesis of nanomaterials
CO3	Demonstrate the biological methods of synthesis of nanomaterials
CO4	Generalize the use of nanomaterials in biotechnology
CO5	Illustrate the applications of nanobiotechnology
CO6	To elaborate the recent development in field of Nanobiotechnology

Text Book (s)

- 1. Nanobiotechnology: Concepts, Applications and Perspectives (2004), ChristofM.Niemeyer (Editor), Chad A. Mirkin (Editor), Wiley VCH.
- 2. Nanobiotechnology II more concepts and applications. (2007) Chad A Mirkin and Christof M. Niemeyer (Eds), Wiley VCH.
- 3. Pradeep T., "A Textbook of Nanoscience and Nanotechnology", Tata McGraw Hill Education Pvt. Ltd., 2012.
- 4. Hari Singh Nalwa, "Nanostructured Materials and Nanotechnology", Academic Press, 2002.

Reference Book (s)

- 1. Nanobiotechnology: Concepts, Applications and Perspectives (2004), ChristofM.Niemeyer (Editor), Chad A. Mirkin (Editor), Wiley VCH.
- 2. Nanobiotechnology II more concepts and applications. (2007) Chad A Mirkin and Christof M. Niemeyer (Eds), Wiley VCH.
- 3. Pradeep T., "A Textbook of Nanoscience and Nanotechnology", Tata McGraw Hill Education Pvt. Ltd., 2012.
- 4. Hari Singh Nalwa, "Nanostructured Materials and Nanotechnology", Academic Press, 2002.

Unit-1 INTRODUCTION TO NANOTECHNOLOGY 10 hours

Historical perspectives, Existence of nanostructures in nature, Nanoscale Properties (Electrical, Optical, Chemical) Nanomaterials - Quantum Dots, Wells and Wires, nanotubes, graphene, nanogold, nanosilver and metal oxides, Nanopolymers.

Unit-2 SYNTHESIS OF NANOMATERIALS

10hours

Physical Methods: Ball Milling, Electrodeposition, DC/RF Magnetron Sputtering, Molecular Beam Epitaxy (MBE).Chemical Methods: Metal Nanocrystals by Reduction, Solvothermal Synthesis, Photochemical Synthesis, Chemical Vapor Deposition (CVD), Metal Oxide -Chemical Vapor Deposition (MOCVD).

Unit-3BIOLOGICAL SYNTHESIS OF NANOMATERIALS10 hours

Synthesis using Microorganisms, Synthesis using Biological templates, synthesis using plants and plant extracts.

Unit-4 NANOMATERIAL IN BIOTECHNOLOGY

08 hours

Biological nanomaterials and Biomimetic synthesis of nanomaterials – magnetosomes, spider milk, bone, shell. Device based on assemblies of nanoparticles and biomaterials – Bioelectronic devices, nanocircuitry, nanomechanical devices, computational devices.

Unit-5 APPLICATIONS OF NANOBIOTECHNOLOGY 08 hours

Nanobiosensors, molecular imaging using nanoparticles, targeted drug delivery. Applications in health and disease - infectious and chronic. Nanobiotechnological applications in Environment and food - detection and mitigation.

Unit-6 RECENT ADVANCEMENT IN NANOBIOTECHNOLOGY RIGHTS 04HOURS Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MIE)	(EIE)	
30	20	50	100

Name of The Course	BIORESOURCE MANAGEMENT
Course Code	BSDB3012
Prerequisite	Higher Secondary Examination with Chemistry and Biology or
	Chemistry, Botany and Zoology or Biochemistry and Chemistry
	from a recognized Board in science stream with a minimum of 50
	% marks in aggregate.
Corequisite	Students should have understanding of general biology, including
	a basic knowledge of the biological molecules, the cell, genetics,
	regulation, structure/function, interaction with the environment,
	and evolution.

Antirequisite				
	L	Т	Р	С
	4	0	0	4

Course Objectives: Students are able to understand the basic concept of bioresource management. **Course Outcomes**

CO1	Illustrate the different types of aquaculture
CO2	Summarize the purpose of culturing economically important organisms
CO3	Illustrate the importance of vermiculture
CO4	Describe the origin and importance of cultivated plants
CO5	Generalize the economic uses of various plant products

Text Book (s)

- 1. ManjuYadav, Economic Zoology- Discovery publishing house, New Delhi
- 2. Lee R E, Phycology 1999

Reference Book (s)

- 1. ManjuYadav, Economic Zoology- Discovery publishing house, New Delhi
- 2. Lee R E, Phycology 1999

Unit-1 AQUACULTURE

Introduction to aquaculture; Prawn culture, Methods of prawn fishing, Preservation and processing of prawn; Pearl culture and status of pearl culture in India; Economically important fishes of India. Setting up of a fish farm, Monoculture and composite fish culture, Bundh breeding, Induced breeding, methods of fishing, Fish preservation and processing; Identification of fish diseases and their control: Snakes and snake venoms.

Unit-2 ECONOMIC ZOOLOGY

Overview of Sericulture, Apiculture, Lac culture, Poultry culture, Dairy industry.

Unit-3 VERMICULTURE

Introduction and scope, Species of earthworm, Characteristics features ofearthworm. Overview of methods of vermicomposting, Role of earthworm in solid waste management. Vermiwash- its importance, Vermicompost as bio-fertilizer.

Unit-4CULTIVATED PLANTS 10 hours

Cultivated Plants: origin and importance with particular reference to the works of A. de Candolle and Vavilov (especially centers of diversity, primary and secondary centers, multiple origin); a brief account of Harlan and Hawkes theories; examples of major introductions; practices of floriculture, agroforestry, sericulture. BT crops (brief account).

Unit-5ECONOMIC USE OF PLANT PRODUCTS 10 hours

Definition, Classification, Names, Morphology and economic uses of important cereals, legumes (pulses and fodders), fruits and vegetables, spices and condiments, beverages, oils and fats, essential oils, medicinal plants, hallucinogens (psychotropic drugs), timber plants, fibre plants, natural rubber, resins, raw materials for paper. A brief account of crop improvement technologies, biosafety considerations, natural products.

Unit-6 Recent Advancement in mushroom technology

04hours

208

10 hours

08 hours

Research article/ Review paper/ MOOC

Continuous Assessment			
Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Continuous Assessment Pattern

Name of The Course	BIOSAFETY AND INTELLECTUAL PROPERTY RIGHTS					
Course Code	BSDB3013					
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.					
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.					
Antirequisite						
	L T P C					

Course Objectives: Students are able to understand the basic concept of biosafety and intellectual property rights

Course Outcomes

CO1	Understand the fundamentals of biosafety
CO2	Summarize the guidelines of biosafety
CO3	Understand the concepts of intellectual property
CO4	Describe the grant of patents, agreements and treaties

Text Book (s)

- 1. Bare Act, 2007.Indian Patent Act 1970 Acts & Rules, Universal Law Publishing Co. Pvt.Ltd., New Delhi.
- 2. Kankanala C (2007). Genetic Patent Law & Strategy, 1st Edition, Manupatra Information Solution Pvt. Ltd. New Delhi.
- 3. Mittal, D.P. (1999). Indian Patents Law, Taxmann, Allied Services (p) Ltd.
- 4. Singh K K (2015). Biotechnology and Intelectual Property Rights: Legal and Social Impliocations, Springer India.
- 5. Goel D & Prashar S (2013). IPR, Biosafety and Bioethics. Pearson
- 6. Senthil Kumar Sadhasivam and Mohammed Jaabir, M. S. 2008. IPR, Biosafety and biotechnology Management. Jasen Publications, Tiruchirappalli, India.

Reference Book (s)

- 1. Bare Act, 2007.Indian Patent Act 1970 Acts & Rules, Universal Law Publishing Co. Pvt.Ltd., New Delhi.
- 2. Kankanala C (2007). Genetic Patent Law & Strategy, 1st Edition, Manupatra Information Solution Pvt. Ltd. New Delhi.
- 3. Mittal, D.P. (1999). Indian Patents Law, Taxmann, Allied Services (p) Ltd.
- 4. Singh K K (2015). Biotechnology and Intelectual Property Rights: Legal and Social Impliocations, Springer India.
- 5. Goel D & Prashar S (2013). IPR, Biosafety and Bioethics. Pearson
- 6. Senthil Kumar Sadhasivam and Mohammed Jaabir, M. S. 2008. IPR, Biosafety and biotechnology Management. Jasen Publications, Tiruchirappalli, India.

Biosafety: Introduction; biosafety issues in biotechnology; Biological Safety Cabinets & their types; Primary Containment for Biohazards; Biosafety Levels of Specific Microorganisms.

Unit-2 BIOSAFETY GUIDELINES 10hours

Biosafety Guidelines: Biosafety guidelines and regulations (National and International);GMOs/LMOs- Concerns and Challenges; Role of Institutional Biosafety Committees (IBSC), RCGM, GEAC etc. for GMO applications in food and agriculture; Environmental release of GMOs; Risk Analysis; Risk Assessment; Risk management and communication; Overview of International Agreements - Cartagena Protocol. Guidelines for using radioisotopes in laboratories and precautions.

Unit-3INTRODUCTION TO INTELLECTUAL PROPERTY10hours

Introduction to Intellectual Property: Patents, Types, Trademarks, Copyright & Related Rights, Industrial Design and Rights, Traditional Knowledge, Geographical Indicationsimportance of IPR –patentable and non patentables – patenting life – legal protection of biotechnological inventions – World Intellectual Property Rights Organization (WIPO).

Unit-4GRANT OF PATENT, AGREEMENTS AND TREATIES10 hours

Grant of Patent and Patenting Authorities: Types of patent applications: Ordinary, PCT, Conventional,Divisional and Patent of Addition; An introduction to Patent Filing Procedures; Patent licensing andagreement; Patent infringement- meaning, scope, litigation, case studies, Rights and Duties of patentowner. Agreements and Treaties: GATT, TRIPS, WIPO, Budapest Treaty on international recognition of the deposit of microorganisms etc.

Continuous Assessment Pattern				
Internal Assessment	Mid Term Test	End Term Test	Total Marks	
(IA)	(MTE)	(ETE)		
30	20	50	100	

Name of The Course	MUSHROOM CULTIVATION TECHNOLOGY	7			
Course Code	BSDB3015				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or				
	Chemistry, Botany and Zoology or Biochemistry	and and	l Ch	iemis	try
	from a recognized Board in science stream with a	ı mir	imu	ım of	50
	% marks in aggregate.				
Corequisite	Students should have understanding of general biology, including				
	a basic knowledge of the biological molecules, the cell, genetics,				
	regulation, structure/function, interaction with t	he e	nvir	onme	ent,
	and evolution.				
Antirequisite					
		L	Τ	Р	С
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of mushroom cultivation technology.

Course Outcomes

CO1	Understand the values of mushroom.
CO2	Describe the technology used for cultivation of mushroom
CO3	Demonstrate the concepts of mushroom bed preparation.
CO4	Demonstrate the process of storage and its nutritional value.
CO5	Understand the concepts of types of foods prepared from mushroom.

Text Book (s)

- 1. Marimuthu, T. Krishnamoorthy, A.S. Sivaprakasam, K. and Jayarajan. R (1991) Oyster Mushrooms, Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore.
- 2. Swaminathan, M. (1990) Food and Nutrition. Bappeo, The Bangalore Printing and Publishing Co. Ltd., No. 88, Mysore Road, Bangalore 560018.
- 3. Tewari, Pankaj Kapoor, S.C., (1988). Mushroom cultivation, Mittal Publications, Delhi.
- 4. Nita Bahl (1984-1988) Hand book of Mushrooms, II Edition, Vol. I & Vol. II.

Reference Book (s)

- 1. Marimuthu, T. Krishnamoorthy, A.S. Sivaprakasam, K. and Jayarajan. R (1991) Oyster Mushrooms, Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore.
- 2. Swaminathan, M. (1990) Food and Nutrition. Bappeo, The Bangalore Printing and Publishing Co. Ltd., No. 88, Mysore Road, Bangalore 560018.
- 3. Tewari, Pankaj Kapoor, S.C., (1988). Mushroom cultivation, Mittal Publications, Delhi.
- 4. Nita Bahl (1984-1988) Hand book of Mushrooms, II Edition, Vol. I & Vol. II.

Unit-1 INTRODUCTION TO MUSHROOM CULTIVATION 06 hours

Introduction, history. Nutritional and medicinal value of edible mushrooms; Poisonous mushrooms. Types of edible mushrooms available in India - Volvariellavolvacea, Pleurotuscitrinopileatus, Agaricusbisporus.

Unit-2 CULTIVATION TECHNOLOGY - I 08 hours

Infrastructure: substrates (locally available) Polythene bag, vessels, Inoculation hook, inoculation loop, low cost stove, sieves, culture rack, mushroom unit (Thatched house) water sprayer, tray, small polythene bag. Pure culture: Medium, sterilization, preparation of spawn, multiplication.

Unit-3CULTIVATION TECHNOLOGY-II

08hours

Mushroom bed preparation - paddy straw, sugarcane trash, maize straw, banana leaves. Factors affecting the mushroom bed preparation - Low cost technology, Composting technology in mushroom production.

Unit-4 STORAGE AND NUTRITION

10 hours

Short-term storage (Refrigeration - upto 24 hours) Long term Storage (canning, pickels, papads), drying, storage in saltsolutions. Nutrition - Proteins - amino acids, mineral elements nutrition - Carbohydrates, Crude fibre content - Vitamins.

Unit-5FOOD PREPARATION

Types of foods prepared from mushroom. Research Centres - National level and Regional level. Cost benefit ratio - Marketing in India and abroad, Export Value.

Continuous	Assessment Pa	attern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	PARASITOLOGY				
Course Code	BSDB3016				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or				
_	Chemistry, Botany and Zoology or Biochemistry and Chemistry				
	from a recognized Board in science stream with a minimum of 50			50	
	% marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of parasitology Course Outcomes

CO1	Describe the basic concept Parasitology		
CO2	Interpret about the Parasitic Protists and disease caused by it		
CO3	Interpret Parasitic Platyhelminthes		
CO4	Elucidate Parasitic Nematodes		
CO5	Illustrate Parasitic Arthropoda and Parasitic Vertebrates		

Text Book (s)

- 1. Arora, D. R and Arora, B. (2001) Medical Parasitology. II Edition. CBS Publications and Distributors
- 2. E.R. Noble and G.A. Noble (1982) Parasitology: The biology of animal parasites. V Edition, Lea & Febiger
- 3. Ahmed, N., Dawson, M., Smith, C. and Wood, Ed. (2007) Biology of Disease. Taylor and Francis Group
- 4. Parija, S. C. Textbook of medical parasitology, protozoology & helminthology (Text and colour Atlas), II Edition, All India Publishers & Distributers, Medical Books Publishers, Chennai, Delhi
- 5. Rattan LalIchhpujani and Rajesh Bhatia. Medical Parasitology, III Edition, Jaypee Brothers Medical Publishers (P) Ltd., New Delhi
- 6. Meyer, Olsen & Schmidt's Essentials of Parasitology, Murray, D. Dailey, W.C. Brown Publishers
- 7. Thomas C. Cheng (1986). General Parasitology, II Edition, Academic Press Inc
- 8. K. D. Chatterjee (2009). Parasitology: Protozoology and Helminthology. XIII Edition, CBS Publishers & Distributors (P) Ltd. DSE

Reference Book (s)

- 1. Arora, D. R and Arora, B. (2001) Medical Parasitology. II Edition. CBS Publications and Distributors
- 2. E.R. Noble and G.A. Noble (1982) Parasitology: The biology of animal parasites. V Edition, Lea &Febiger
- 3. Ahmed, N., Dawson, M., Smith, C. and Wood, Ed. (2007) Biology of Disease. Taylor and Francis Group

- 4. Parija, S. C. Textbook of medical parasitology, protozoology & helminthology (Text and colour Atlas), II Edition, All India Publishers & Distributers, Medical Books Publishers, Chennai, Delhi
- 5. Rattan LalIchhpujani and Rajesh Bhatia. Medical Parasitology, III Edition, Jaypee Brothers Medical Publishers (P) Ltd., New Delhi
- 6. Meyer, Olsen & Schmidt's Essentials of Parasitology, Murray, D. Dailey, W.C. Brown Publishers
- 7. Thomas C. Cheng (1986). General Parasitology, II Edition, Academic Press Inc
- 8. K. D. Chatterjee (2009). Parasitology: Protozoology and Helminthology. XIII Edition, CBS Publishers & Distributors (P) Ltd. DSE

Unit-1 INTRODUCTION TO PARASITOLOGY

Brief introduction of Parasitism, Parasite, Parasitoid and Vectors (mechanical and biological vector) Host parasite relationship.

Unit-2 PARASITIC PROTISTS

12hours

04 hours

Study of Morphology, Life Cycle, Prevalence, Epidemiology, Pathogenicity, Diagnosis, Prophylaxis and Treatment of Entamoebahistolytica, Giardia intestinalis, Trypanosomagambiense, Leishmaniadonovani, Plasmodium vivax.

Unit-3PARASITIC PLATYHELMINTHES08hours

Study of Morphology, Life Cycle, Prevalence, Epidemiology, Pathogenicity, Diagnosis, Prophylaxis and Treatment of Fasciolopsisbuski, Schistosomahaematobium, Taeniasolium and Hymenolepis nana.

Unit-4PARASITIC NEMATODES

12 hours

Study of Morphology, Life Cycle, Prevalence, Epidemiology, Pathogenicity, Diagnosis, Prophylaxis and Treatment of Ascarislumbricoides, Ancylostomaduodenale, Wuchereriabancrofti and Trichinellaspiralis. Study of structure, life cycle and importance of Meloidogyne (root knot nematode), Pratylencus (lesion nematode).

Unit-5PARASITIC ARTHROPODA AND PARASITIC VERTEBRATES08 hours

Biology, importance and control of ticks, mites, Pediculushumanus (head and body louse), Xenopsyllacheopis and Cimexlectularius, A brief account of parasitic vertebrates; Cookicutter Shark, Candiru, Hood Mockingbird and Vampire bat.

Unit-6 RECENT ADVANCEMENT IN PARASITE BIOLOGY04hoursResearch article/ Review paper/ MOOC04hours

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

School of Basic and Applied Sciences Department of Life Sciences Division of Biochemistry

Programme: B.Sc. (Hons.) Biochemistry

Scheme: 2020 – 2023

Date of BOS: 22.04.2020

Galgotias University

Vision

"To be known globally for value-based education, research, creativity and innovation" Mission

- 5. Establish state-of-the-art facilities for world class education and research.
- 6. Collaborate with industry and society to align the curriculum,
- 7. Involve in societal outreach programs to identify concerns and provide sustainable ethical solutions.
- 8. Encourage life-long learning and team-based problem solving through an enabling environment.

School of Basic and Applied Sciences

Vision:

To be recognized globally as a center of excellence in imparting value-based education in Basic and Applied Sciences by creating innovation in fundamental and multidisciplinary research.

Mission

- M1: To excel in imparting contemporary knowledge and skills by developing an educational ecosystem with diverse interests and talents.
- M2: To perform cutting edge research leading to innovation in sciences through national and international collaborations.
- M3: To develop solutions for the emerging challenges in Basic and Applied Science to cater the needs of society.
- M4: To attract best quality faculty to facilitate knowledge and develop confidence in our graduates to succeed in the world.

PREAMBLE

Biochemistry is a central basic discipline to all branches of Biology/Life Sciences. It deals with the chemical nature, function, structure, energetic and pathways of synthesis and degradation of simple to complex biological and/or cellular molecules to understand the various aspects of cellular and molecular functions in development, health and disease with applications in Biotechnology and Medicine.

B.Sc Biochemistry course will provide the students a grounding in a subject that forms the basis of virtually all of the biological sciences. Many exciting discoveries made in this area have contributed to our understanding of life, the solving of medical problems, and to the discovery and production of safe and effective drugs. You will gain a broad introduction to biological sciences, covering key concepts such as – biochemistry, genetics, microbiology, molecular biology, immunology, etc.In addition, the students will study the aspects of chemistry that are relevant to biological systems.

The programme aims to impart a thorough knowledge of the principle and theories pertaining to the different areas of Biochemistry such as Molecular Biology, Genetic Engineering, Biotechnology, Bioinformatics, Cell signalling, Microbial Cellular Communication, Immunology, In addition, the programmes aim at imparting academic excellence, personality development, systematic and disciplined work and scientific temper among students to face the challanges in the field of Biosciences. Students are regularly encouraged to update their practical skills with hands on experience in the state-of-the-art laboratories.

ELIGIBILITY
Candidate for admission to the first year of B.Sc. Degree Course in Biochemistry shall be required to have passed the Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry with a minimum of 60 % marks in aggregate (55 % marks in case of SC/ST students).

SCOPE OF THE PROPOSED PROGRAMME

The B.Sc., programme of three years is designed to help all the students to get good quality education in the field of Biochemistry so that they can pursue Post Graduation or find employment. The ultimate aim is to enable the students to develop an integrated approach for understanding the various life science problems at the molecular level. In addition, the present curriculum gives scope for the students entering different modules to update their knowledge depending upon the employment opportunities in each area. Various practical courses have been designed not only to enable the students to appreciate scientific basis of various life processes but also to train them for self-employment. There is a greater demand globally for trained manpower in the area of Biochemists for Research and Development, in Multinational Companies, Public Sectors, Quality Control Labs, Biopharmaceuticals companies, Food industries as well as in Universities and the present curriculum will cater to that needs.

The course will provide solid foundation for all the students regardless of background and will gain a comprehensive understanding of the principles of Biochemistry and allied areas, including clinical and research aspects and with the special attention to current development in the discipline.

PROGRAMME OBJECTIVES

- To ignite young minds, from different backgrounds, to understand the world of biochemical reactions through application based learning. This learning would develop their reasoning power and train them for future career in research.
- To provide high quality teaching to the students through traditional classroom teaching as well as varied exposure to audio-visual aids and hands on training on various aspects of biotechnology and allied biological subjects. More emphasis is given on understanding the subject rather than rote learning.
- Develop skills as a self-directed learner, recognize continuing educational needs.
- To equip the students to occupy important positions in Research, Industries and related organizations.
- To inspire the students to apply their knowledge gained for the development of society in general.

Program Educational Objectives (PEO)

PEO1: The graduates shall be successful professionals in Academia, Industry, Government and Entrepreneurship.

PEO2: The graduates shall pursue higher education/research at institute of national and international repute.

PEO3: The graduate shall effectively address the challenges of the society and undertake the projects for bridging the gap between industry and societal needs. Programme Outcomes (POs)

	DASIC AND AT FLIED SCIENCES
PSOI	Igniting young minds, from different backgrounds to understand the world of
	biochemical reactions through application based learning.
PSO2	Equip students with analytical and technical skills to practice evidence based
	biochemistry for industrial applications.
PO1:	Apply the principles and conceptual knowledge of basic and applied science to
	understand and solve the complex biological problems.
PO2:	Employ critical thinking and the scientific knowledge to design, carry out,
	record and analyze the results of biological reactions.
PO3:	Create, select and apply appropriate techniques, resources and modern science and research tools within a defined specification that meet specified needs with appropriate consideration for public health and safety.
PO4:	Apply reasoning informed by the contextual knowledge to assess societal.
101	health safety legal issues and the consequent responsibilities relevant to the
	nrofessional biologist
	protessional biologist.
PO5:	Understand the impact of professional life sciences solutions in communal and
	environmental contexts and demonstrate knowledge and need for sustainable
	development.
PO6:	Articulate ideas, comprehend and write effective reports, documentation and to communicate effectively with the basic and applied sciences community and with society at large, professionally and ethically.
PO7:	Demonstrate knowledge and understanding of science and technical principles to manage projects in multidisciplinary research areas and function effectively as an individual, and as a member or leader in diverse resource teams.
PO8:	Seeking stimulation and to exploring numerous opportunities to engage in independent and life-long learning in the broadest context of technological
	cnange.
D	

Programme Specific Outcome (PSOs):

		Semes	ster I						
Sl.	Course	Name of the Course					A	ssess	ment
Ν	Code							Patte	ern
0			L	Т	Р	C	Ι	MT	ETE
							Α	Ε	
1	BSDB10	Chemistry	4	0	0	4	3	20	50
	01						0		
2	BSDB10	Fundamentals of Cell	4	0	0	4	3	20	50
	02	Biology					0		
3	BSBC10	Biological	4	0	0	4	3	20	50
	04	Macromolecules					0		
4	BSBC10	Enzymes	4	0	0	4	3	20	50
	05	-					0		
5	BSBA10	Hands on Workshop on	0	0	4	2	5		50
	61	Basic Analytical					0		
		Techniques and							
		Measurements							
6	BSBC10	Biochemistry Lab-I	0	0	6	3	5		50
	12	·					0		
7	XXXX	Liberal Art				0.5			
8	XXXX	Soft Skill				0			
9	XXXX	Environmental Science		-	-	0.5			
10	XXXX	AI and Machine				2			
		learning							
11	XXXX	BEC-B1				3			
12	XXXX	Computer awareness				0			
		•		Total		27			
		Semes	ter II	-			1	1	
Sl	Course	Name of the Course					A	ssessn	nent
Ν	Code							Patte	rn
0			L	Т	Р	C	Ι	MT	ETE
							Α	Ε	
1	BSBD10	Bioinstrumentation-I	4	0	0	4	30	20	50
	07								
2	BSBC10	Membrane Biology and	4	0	0	4	30	20	50
	08	Bioenergetics							
3	BSDB10	Hormones:	4	0	0	4	30	20	50
	09	Biochemistry and							
		Function							

Programme structure 2020-2023

4	BSDB10 11	Concept of Immunology	4	0	0	4	30	20		50
5	BSBC10 13	Biochemistry Lab-II	0	0	6	3	50			50
6	Xxxx	BEC-B2				3				
7	XXXX	***Two week social								
		internship (during								
		summer)								
		· · · · · · · · · · · · · · · · · · ·		Total		22				
		Semest	er II	[
Sl.	Course	Name of the Course					A	Asses	sm	ent
No	Code							Pat	ter	n
			L	Т	P	C	Ι	Μ]	ETE
							Α	TE		
1	BSDB20) Fundamentals of	4	0	0	4	30	20		50
	1	Molecular Biology								
2	BSDB20	Bioinstrumentation-II	4	0	0	4	30	20		50
	2									
3	BSDB20) Fundamentals of	4	0	0	4	30	20		50
	3	Microbiology		-	_					
4	BSDB20) Metabolism of	4	0	0	4	30	20		50
	4	Biomolecules-I		-	-					
5	BSBC201	Biochemistry Lab-III	0	0	6	3	50	-		50
	4		-	-						
6	BSBC20	Biochemistry Lab-IV	0	0	6	3	50	-		50
Ŭ	5		Ũ	Ũ	Ū	-				•••
7	BSDB200) Web based	0	0	0	2	50			50
-	6	Course/Seminar-I	Ŭ	Ū	Ŭ	_				20
				Total		24				
		Semest	er IV	7			1			
SI	Course	Name of the Course						Asse	ssn	nent
No	Code							Pa	ttei	rn
			L	Т	Р	C	T		M	ЕТ
				-				T	Ē	E
1	BCSE10	2 Programming in C	4	0	0	4	3	<u> </u>	20	50
-	1	and Python	-	Ŭ	v	-	C			
2	BSDB20	1 Biotechnology	4	0	0	4	3	10 7	20	50
_	0		•							
3	BSDR20	0 Medical	4	0	0	4	7	<u>so 7</u>	20	50
	9	Biochemistry	•							
4	BSBC20	0 Metabolism of	4	0	0	4	1	<u>io 7</u>	20	50
•	8	Biomolecules-II	•							~ ~
L	0				1	1				

5	BSDBxxx x	Elective (Group-I, GE)	4	0	0	4		30	20	50
6	BSBC201 7	Biochemistry Lab -V	0	0	6	3	4	50		50
7	BCSE103 1	Programming in C and Python Laboratory	0	0	6	3	4	50		50
8	Xxxx	IPR				0.5	5			
9	XXXX	Foreign Language				0.5	5			
10	XXXX	Waste Management			2	1	4	50		50
11	BBSO9P2	Research	2			2		30	20	50
	411	methodology and								
		Statistics								
				Total		30)			
		Semes	ter V							
Sl No	Course Code	Name of the Course					1	Asse Pa	essm atter	ent n
			L	Τ	Р	С	I A	M I	IT E	ETE
1	BSBC300 1	Minor Project*	0	0	0	3	50			50
2	BSDB300 3	Inheritance Biology	4	0	0	4	30	2	0	50
3	BSBC300 4	Plant Biochemistry	4	0	0	4	30	2	0	50
4	BSBC300 5	Food and Nutrition	4	0	0	4	30	2	0	50
5	BSDBxxx x	Elective (Group-II, DSE)	4	0	0	4	30	2	0	50
6	BSBC301 0	Biochemistry Lab-VI	0	0	6	3	50		-	50
7	BSBC301 1	Biochemistry Lab- VII	0	0	6	3	50		-	50
8	XXXX	Campus to corporate				2				
				Total		27				
		Semes	ter VI							
Sl No	Course Code	Name of the Course						As	sessr Patte	nent rn
			L	T	Р	(С	IA	M TH	E E E
1	BSBC9997	Dissertation	0	0	0	1	2	50		50

2	BSDB3010	Web based Course/Seminar-II	0	0	0	2	50	50
					Total	14		
				Total		144		

List of Electives

Group I (Semester IV)

Sl	Course	Name of the Electives	Assessment						
No	Code		Pattern						
			L	Т	Р	С	IA	MTE	ETE
1	BSDB2011	Bioinformatics	4	0	0	4	30	20	50
2	BSDB2012	Biostatistics	4	0	0	4	30	20	50
3	BSDB2013	Biophysics	4	0	0	4	30	20	50
4	BSDB2014	Organic Farming	4	0	0	4	30	20	50
5	BSDB2015	Biofertilizers and	4	•	0	1	30	20	50
		Pesticides	4	U	U	+			

Group II (Semester V)

Sl	Course	Name of the Elective					Assessment			
No	Code						Pattern			
			L	Т	P	С	IA	MTE	ETE	
1	BSDB3011	Nanobiotechnology	4	0	0	4	30	20	50	
2	BSDB3012	Bioresource Management	4	0	0	4	30	20	50	
3	BSDB3013	Biosafety and IPR	4	0	0	4	30	20	50	
4	BSDB3015	Mushroom Culture Technology	4	0	0	4	30	20	50	
5	BSDB3016	Parasitology	4	0	0	4	30	20	50	

Name of The Course	CHEMISTRY				
Course Code	BSDB1001				
Prerequisite	Higher Secondary Examination with Chemistry and Biology				
_	or Chemistry, Botany and Zoology or Biochemistry and				
	Chemistry from a recognized Board in science stream with a				
	minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of ge	ener	al k	oiolo	gy,
	including a basic knowledge of the biological molecules, the				
	cell, genetics, regulation, structure/function, interaction with				
	the environment, and evolution.				
Antirequisite					
		L	Τ	P	C
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of atomic structure, thermodynamics, chemical bonding, stereochemistry and ionic equilibria.

Course Outcomes

CO1	Understand atomic structure with various Bohrs, Aufbau, Pauli's principles.
CO2	Describe chemical thermodynamics, law of thermodynamics.
CO3	Identify chemical bonding and molecular forces.
CO4	Express the knowledge stereochemistry.
CO5	Interpret the ionic equilibria.
CO6	Evaluate the recent advancement in chemistry.

Text Book (s)

- 3. J.D. Lee : A New Concise Inorganic Chemistry, E.L.B.S.
- 4. P.W. Atkins : Physical Chemistry, Oxford University Press
- 5. R.T. Morrison & R.N. Boyd : Organic Chemistry, Prentice Hall

Reference Book (s)

- 1. P.W. Atkins : Physical Chemistry, Oxford University Press
- 2. R.T. Morrison & R.N. Boyd : Organic Chemistry, Prentice Hall
- 3. J.E. Huheeyetl.: Inorganic Chemistry : Principles of Structure and reactivity

Unit-1 ATOMIC STRUCTURE12 hour

Recapitulation of Bohr's theory and its limitations, dual behaviour of matter and radiation, de-Broglie's relation, Heisenberg Uncertainty principle. Quantum numbers and their significance. Shapes of s, p, d and f orbitals. Discovery of spin, spin quantum number (s) and magnetic spin quantum number (ms). Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Pauli's exclusion principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations, Variation of orbital energy with atomic number.

Unit-2 CHEMICAL THERMODYNAMICS

10 hour

Introduction of thermodynamics, state of system, state variables, thermodynamic equilibrium, thermodynamic properties, various types of systems and processes.Laws of Thermodynamics.

Unit-3CHEMICAL BONDING AND MOLECULAR FORCES 09 hours

Introduction to ionic interactions and covalent bond, inter-molecular and intramolecular forces, types of intermolecular forces and their characteristics: ion-dipole, dipole-dipole, dipole-induced dipole and dispersion (London) forces, hydrogen bond (intra-molecular and inter-molecular), effect of inter/intra-molecular forces on structure of different biomolecules.

Unit-4 STEREOCHEMISTRY

08 hours

Optical isomerism: Optical activity, specific rotation, enantiomerism, D and L designation, racemic modification, R and S sequence rules, diasteroisomers. Conformational isomers: conformation of ethane and butane, interconversion of projection formula, cyclohexane (mono- and di-substituted), resolution, optical purity, Walden inversion, enantiotopic and diastereotopichydrogens and prochiralcenters. Geometrical isomerism: Definition, nomenclature– E and Z.

Unit-5IONIC EQUILIBRIA

08 hours

Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionizationconstant and ionic product of water. Ionization of weak acids and base, pH scale, common ion effect, Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts.Buffer solutions. Qualitative treatment of acid base titration curves. Theory of acid – base indicators.

Unit-6 Recent Advancement in Chemistry04hoursResearch article/ Review paper/ MOOC04hours

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	FUNDAMENTAL OF CELL BIOLOGY					
Course Code	BSDB1002					
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50.94 more in accreate					
Corequisite	Students should have understanding of general bio including a basic knowledge of the biological mole cell, genetics, regulation, structure/function, intera with the environment, and evolution.	olog ecul acti	gy, es, tl on	he		
Antirequisite						
	L	Τ	Р	С		
	4	0	0	4		

Course Objectives: Students are able to understand the basic concept of cell types, membranes, cellular communication, cellular transport, aging and their death.

Course Outcomes

CO1	Identify cell types, structure, functions and differentiate between various cell
	organelles.
CO2	Interpret the membrane biochemistry and transport of ions across the
	membrane.
CO3	Summarize the different types Cell-Cell Interaction and cellular
	communication.
CO4	Demonstrate protein sorting and transport.
CO5	Express the knowledge cell aging and death.
CO6	Evaluate the significance of Cytology.

Text Book (s)

- 3. The Cell: A Molecular Approach (2009) 5th ed., Cooper, G.M. and Hausman, R.E., ASM Press & Sunderland (Washington DC), Sinauer Associates, MA, ISBN: 978-0-87893-300-6.
- Molecular Cell Biology (2012) 7th ed., Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell. J., W.H. Freeman & Company (New York), ISBN: 13:978-1-4641-0981-2 / ISBN:10: 1-4641-0981-8.
- Molecular Biology of the Cell (2008) 5th ed., Alberts, B., Johnson, A., Lewis, J., and Enlarge, M., Garland Science (Princeton), ISBN:0-8153-1619-4 / ISBN:0-8153-1620-8.

Reference Book (s)

- 1. The Cell: A Molecular Approach (2009) 5th ed., Cooper, G.M. and Hausman, R.E., ASM Press & Sunderland (Washington DC), Sinauer Associates, MA, ISBN: 978-0-87893-300-6.
- Molecular Cell Biology (2012) 7th ed., Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell. J., W.H. Freeman & Company (New York), ISBN: 13:978-1-4641-0981-2 / ISBN:10: 1-4641-0981-8.
- 3. Molecular Biology of the Cell (2008) 5th ed., Alberts, B., Johnson, A., Lewis, J., and Enlarge, M., Garland Science (Princeton), ISBN:0-8153-1619-4 / ISBN:0-8153-1620-8.

Unit-1 STRUCTURE OF CELL 07 hours

Introduction to the cell, its chemical composition, Cell types - organization of prokaryotic and eukaryotic cells, Plant and animal cells: variation in structure and function, cell theory. Structure and functions of cell organelles – Nucleus, mitochondria, chloroplast, ribosome, lysosomes.

Unit-2 MEMBRANE BIOCHEMISTRY

07 hours

Membrane: chemical composition and its structural plan; molecular model of cell membrane - fluid mosaic model and membrane fluidity; Overview of types of transport systems and macromolecule transport: Exocytosis; Endocytosis; Pinocytosis and phagocytosis.

Unit-3CELLULAR COMMUNICATION

10 hours

Cell Wall: Eukaryotic cell wall, Extracellular matrix and cell matrix interactions, Cell-Cell Interactions - adhesion junctions, tight junctions, gap junctions, and plasmodesmata. Cytoskeleton: Structure and organization of actin filaments,

association of actin filaments with plasma membrane, cell surface protrusions, intermediate filaments, microtubules.

Unit-4PROTEIN SORTING AND TRANSPORT

12 hours

Endoplasmic Reticulum – Structure, targeting and insertion of proteins in the ER, protein folding, processing and quality control in ER, smooth ER and lipid synthesis, export of proteins and lipids Golgi Apparatus – Organization, protein glycosylation, protein sorting and export from Golgi Apparatus.

Unit-5CELL CYCLE AND CELL DEATH

10 hours

04hours

Cell cycle - phases of cell cycle; cell division - mitosis and meiosis; Cell cycle regulation; Cell aging and death - necrosis and apoptosis; Stem cells. Types: Embryonic stem cell, induced pluripotent stem cells.

Unit-6 Recent Advancement in cytology Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
30	20	50	100

Name of The Course	BIOLOGICAL MACROMOLECULES					
Course Code	BSBC1004					
Prerequisite	Candidate for admission to the first year of B.Sc. Degree Course in Biochemistry should passed the Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology with a minimum of 50 % marks in aggregate.					
Corequisite	Students should have the basic knowledge of biochemistry.					
Antirequisite						
	L T P C					

Course Objectives: Students are able to express the knowledge about structure and function of biological macromolecules.

CO1	Elucidate the importance of water in biological system
CO2	Describe various classes of carbohydrates.
CO3	Explain the crucial role of lipids in biological system
CO4	Explain the different types Aminoacids and their properties.
CO5	Deduce the structure and classification of DNA and RNA .
CO6	Evaluate the recent development in the field of biological
	macromolecules.

Text Book (s)

- 6. The Cell: A Molecular Approach (2009) 5th ed., Cooper, G.M. and Hausman, R.E., ASM Press & Sunderland (Washington DC), Sinauer Associates, MA, ISBN:978-0-87893-300-6.
- 7. Molecular Cell Biology (2012) 7th ed., Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell. J., W.H. Freeman & Company (New York), ISBN:13:978-1-4641-0981-2 / ISBN:10: 1-4641-0981-8.

Reference Book

1. Molecular Biology of the Cell (2008) 5th ed., Alberts, B., Johnson, A., Lewis, J., and Enlarge, M., Garland Science (Princeton), ISBN:0-8153-1619-4 / ISBN:0-8153-1620-8

Unit-1: I The foundations of biochemistry(08 hours)
Cellular and chemical foundations of life, Unique properties of water, weak
interactions in aqueous systems, ionization of water, water as a reactant and fitness of
the aqueous environment.
Unit-2 Carbohydrates and glycobiology (12 lectures)
Monosaccharides - structure of aldoses and ketoses, ring structure of sugars,
conformations of sugars, mutarotation, anomers, epimers and enantiomers, structure
of biologically important sugar derivatives, oxidation of sugars. Formation of
disaccharides, reducing and nonreducing disaccharides. Polysaccharides - homo- and
heteropolysaccharides, structural and storage polysaccharides. Structure and role of
proteoglycans, glycoproteins and glycolipids (gangliosides and lipopolysaccharides).
Carbohydrates as informational molecules, working with
Unit-3 Lipid(10 hours)
Building blocks of lipids - fatty acids, glycerol, ceramide. Storage lipids - triacyl
glycerol and waxes. Structural lipids in membranes – glycerophospholipids,
galactolipids and sulpholipids, sphingolipids and sterols, structure, distribution and
role of membrane lipids. Plant steroids. Lipids as signals, cofactors and pigments
Unit-4 : Amino acids (10
hours)
Structure and classification, physical, chemical and optical properties of amino acids.
Organization of protein structure into primary, secondary, tertiary and quaternary
structures. Nterminal and C-terminal amino acid analysis
Unit-5 : Nucleic acids(12 hours)
Nucleotides - structure and properties. Nucleic acid structure – Watson-Crick model
of DNA. Structure of major species of RNA - mRNA, tRNA and rRNA. Nucleic acid
chemistry - UV absorption, effect of acid and alkali on DNA. Other functions of
nucleotides - source of energy, component of coenzymes, second messengers.
Unit-6 Recent Advancement in biological macromolecule
04hours
Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course Enzyme

Course Code	BSBC1005				
Prerequisite	Candidate for admission to the first year of B.Sc. Degree				
	Course in Biochemistry should passed the Higher				
	Secondary Examination with Chemistry and Biology or				
	Chemistry, Botany and Zoology with a minimum of 50 %				
	marks in aggregate.				
Corequisite	Students should have the basic knowledge of enzymology				
Antirequisite					
	L T P C				

Course Objectives: Students are able to express the knowledge about structure, function and working mechanism of enzyme.

CO1	Elucidate the basic concept of enzymology.
CO2	Illustrate the different parameters of enzyme kinetics.
CO3	Discuss about the various types of enzyme inhibition mechanism.
CO4	Explain the different mode of enzyme activity regulation
CO5	Describe the application of enzyme in diagnostics
CO6	Evaluate recent development in field of enzyme biology.

Text Book (s)

1. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W.H. Freeman and Company (New York), ISBN:13: 978-1-4641-0962-1 / ISBN:10:1-4292- 3414-8. 2. Fundamentals of Enzymology (1999) 3rd ed., Nicholas C.P. and Lewis S., Oxford University Press Inc. (New York), ISBN:0 19 850229 X

Reference Book

1. Biochemistry (2011) 4th ed., Donald, V. and Judith G.V., John Wiley & Sons Asia Pvt. Ltd. (New Jersey), ISBN:978-1180-25024.

Unit-1 : Introduction to enzymes	(08 hours)			
Nature of enzymes - protein and non-protein (ribozyme). Cofactor and prosthetic				
group, apoenzyme, holoenzyme. IUBMB classification of enzymes	. Factors affecting			
the rate of chemical reactions, collision theory, activation energy a	and transition state			
theory, catalysis, Catalytic power and specificity of enzymes (conc	ept of active site),			
Fischer's lock and key hypothesis, Koshland's induced fit hypothe	esis.			
Unit-2 Enzyme kinetics and Bisubstrate reaction	(12 hours)			
Relationship between initial velocity and substrate concentration,	steady state			
kinetics, equilibrium constant - monosubstrate reactions. Michael	is-Menten equation,			
LineweaverBurk plot, Eadie-Hofstee and Hanes plot. Km and Vmax, Kcat and				
turnover number. Effect of pH, temperature and metal ions on the activity of enzyme.				
Types of bi bi reactions (sequential – ordered and random, ping pong reactions).				
Differentiating bi substrate mechanisms (diagnostic plots, isotope exchange).				
Unit-3 Mechanism of action of enzymes and Enzyme inhibition	(10 hours)			
General features - proximity and orientation, strain and distortion	n, acid base and			
covalent catalysis (chymotrypsin, lysozyme). Metal activated enzymes and				
metalloenzymes, transition state analogues. Reversible inhibition (competitive,				

uncompetitive, non-competitive, mixed and substrate) Mechanism based in	nhibitors -
antibiotics as inhibitors	
Unit-4 : Regulation of enzyme activity	(12 hours)
Control of activities of single enzymes (end product inhibition) and metabolic	olic
pathways, feedback inhibition (aspartate transcarbomoylase), reversible co	ovalent
modification phosphorylation (glycogen phosphorylase). Proteolytic cleava	ige-
zymogen. Multienzyme complex as regulatory enzymes. Occurrence and is	solation,
phylogenetic distribution and properties (pyruvate dehydrogenase).	
Unit-5 : Applications of enzymes	(08 hours)
Application of enzymes in diagnostics (SGPT, SGOT, creatine kinase, alka	line and
acid phosphatases), enzyme immunoassay (HRPO), enzyme therapy (Strep	otokinase).
Immobilized enzymes.	
Unit-6 Recent Advancement in Enzyme	04hours
Research article/ Review paper/ MOOC	
Continuous Assessment Pattern	

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	Hands on Workshop on Basic Analytical Techniques and Measurements				
Course Code	BSBA1061				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	P	С
		0	0	4	2

Course Objectives:

- To provide the knowledge of the scientific instruments in life sciences and biotechnology along with the applications.
- This will enable the students to understand all the subjects of biological sciences as these tools and techniques will be used therein.
- Also acquire the basic knowledge of the microbiological techniques to be applied in the laboratory.
- To know the general microbiological techniques for isolation of pure cultures of microorganisms.

Course Outcomes

CO1 Demonstration of principle and application of different types of microscope

CO2	Analysis of explosive and preparation of nano-particles
CO3	Preparation of solution and calculation of molarity, normality and surface tension of given solution
CO4	Soldering and assembling of electric circuits
CO5	Demonstration of measurement with Vernier calipers, Screw, spherometer and oscilloscope
CO6	Lab report

Referred Books:

- 5. Georg Stehli ,The Microscope And How to Use It, English edition, 1970.
- 6. M.Sayer and A. Mansingh, PHI Learning. Measurement, Instrumentation and Experiment Design in Physics & Engineering, 2005.
- 7. Aliofkhazraei, Mahmood, Handbook of Nanoparticles, Springer, 2016
- 8. Huheey, J.E., Keiter, E.A., Keiter, R.L. & Medhi, O.K. Inorganic Chemistry: Principles of Structure and Reactivity, Pearson Education India, 2006.

11 Different types of microscopes and its applications
11. Different types of interoscopes and its applications.
12. Direct analysis of nanoparticles
13. Preparation of nano- particles.
14. Preparation of solution and molarity and normality calculation.
15. Measurement of surface tension and viscosity of given liquid.
16. Soldering of electrical circuits
17. Measurement with Vernier calipers, Screw gauge and spherometer
18. Operation of oscilloscope
19. Familiarization with linear, logarithmic and polar graphs for plotting of experimental data
20. Assembling of elementary electric circuits using breadboard.

Continuous Assessment Pattern

Internal Assessment	Mid Term Lab	End Term Lab	Total Marks
Lab (IA)	(MTE)	(ETE)	
50		50	100

Name of The Course	BIOCHEMISTRY LAB I				
Course Code	BSBC1012				
Prerequisite	Higher Secondary Examination with Chemistr or Chemistry, Botany and Zoology or Bioc Chemistry from a recognized Board in science minimum of 50 % marks in aggregate.	ry a cher str	nd 1 nist ean	Biolo Try a n wit	ogy ind h a
Corequisite	Students should have understanding of ger including a basic knowledge of the biological cell, genetics, regulation, structure/function, in the environment, and evolution.	nera mol itera	al l lecu acti	biolo des, 1 on w	gy, the ith
Antirequisite					
]	L	Т	Р	С
		0	0	6	3

Course Objectives:

- Supporting or strengthening theoretical knowledge.
- Experiencing the pleasure of discovery and development of their psycho-motor skills.
- Teaching how scientific knowledge may be used in daily life.
- Increasing creative thinking skills.
- Gains in scientific working methods and higher order thinking skills.
- Developing manual dexterity by using tools and equipment and allowing students to apply skills instead of memorizing.

Course Outcomes

CO1	Demonstrate the basic principle and applications of important instruments
CO2	Handle and maintenance of glassware
CO3	Preparation of microbiological media
CO4	Qualitative analysis of biomolecules
CO5	Demonstration of different cell cycle
CO6	Lab report

Text Books

- 4. Cappucino J and Sherman N. (2010). Microbiology: A Laboratory Manual. 9th edition. Pearson
- 5. Wiley JM, Sherwood LM and Woolverton CJ. (2013) Prescott's Microbiology. 9th Edition. McGrawHill International.
- 6. Atlas RM. (1997). Principles of Microbiology. 2nd edition. M.T.BrownPublishers.Education Limited.

S.N.	Name of Practicals

1.	Study of the life history of the following scientists and their contributions
	with the help of their photographs: Anton von Leeuwenhoek, Linus
	Pauling, KaryMullis, Robert Hooke and Alexander Fleming.
2.	To study the principle and applications of important instruments
	(Microscope, Spectrophotometer, autoclave, Centrifuge) used in the
	microbiology laboratory.
3.	Qualitative analysis of carbohydrates present in the given solution.
4.	Qualitative analysis of amino acid and protein present in the given
	solution.
5.	Qualitative analysis of lipid present in the given solution.
6.	To understand the principle of Osmosis and Diffusion
7.	Demonstration of different stages of mitosis.
8.	Demonstration the different stages of meiosis.

Continuous Assessment Pattern

Internal Assessment	Mid Term Lab	End Term Lab	Total Marks
Lab (IA)	(MTE)	(ETE)	
50		50	100

<u>SEMESTER – II</u>

Name of The Course	BIOINSTRUMENTATION-I				
Course Code	BSDB1007				
Prerequisite	Candidate for admission to the first year of B.	.Sc.	Deg	ree	
	Course in Biochemistry should passed the Hig	gher			
	Secondary Examination with Chemistry and I	Biol	ogy	or	
	Chemistry, Botany and Zoology with a minimum of 50 %				
	marks in aggregate.				
Corequisite	Students should have the basic knowledge of chemistry and				
	environmental science.				
Antirequisite					
		L	Τ	P	С
		4	0	0	4

Course Objectives:

The objective of the course is to introduce various techniques to the students, which are used in biological research as well as to provide them with an understanding of the underlying principles of these techniques and experimental skills in the form of practical exercises so that students can apply this knowledge to improve their understanding of the subject and better execution of these techniques.

S.No	Course Outcome

CO1	Describe various mode of protein precipitation and principle of Lyophilization
	and dialysis.
CO2	Explain different methods of sterilization and basic requirement for cell culture
	like types of media.
CO3	Describe different types of microscopes for the study of cell, identification of
	cellular changes within organs
CO4	Explain various kind centrifugation techniques for study of separation of
	different cells and cellular organs
CO5	Explains absorbance based techniques like Visible and UV spectroscopy.

Text Book (s)

- 3. Principles and Techniques of Practical Biochemistry Wilson, K., Walker, J. (eds.); Cambridge University Press, Cambridge, 2000, 784 pp., ISBN 0-521-65873.
- 4. An Introduction to Practical Biochemistry (1998) 3rd ed., Plummer D. T., Tata McGraw Hill Education Pvt. Ltd. (New Delhi), ISBN:13: 978-0-07-099487-4 / ISBN:10: 0-07-099487-0.

Reference Book

- 2. Physical Biochemistry: Principles and Applications (2010) 2nd ed., Sheehan, D., Wiley Blackwell (West Sussex), ISBN:978-0-470-85602-4 / ISBN:978-0-470-85603-1.
- 2. Physical Biochemistry: Applications to Biochemistry and Molecular Biology (1982) 2nd ed., Freifelder, D., W.H. Freeman and Company (New York), ISBN:0-7167-1315-2 / ISBN:0-7167-1444-2.

Unit-1 : Separation techniques	(08hours)
Different methods of protein precipitation:	Precipitation using inorganic salts (salting
out) and organic solvents, isoelectric	precipitation, Dialysis, Ultrafilteration,
Lyophilization	
Unit-2 MICROBIAL TECHNIQUES	(8 hours)
Buffer, Principle and working of pH me	eter, Laminar-air flow. Decontamination,
sterilisation and disinfection techniques,	media preparation technique, Culture of
Human, Plant & Animal cells. Preparation	of microbial, animal and plant samples for
microscopy.	
Unit-3 MICROSCOPY	(10 hours)
Basic principles and applications of -	Light microscopy, Bright & Dark Field
microscopy, Fluorescence microscopy, P	hase Contrast microscopy, TEM, SEM,
Confocal Laser microscopy, Radio Microsc	copy.
Unit-4 : CENTRIFUGATION	(10 hours)
Basic Principle of Centrifugation, Types	of centrifuge machines, preparative and
analytical centrifuges, differential centri	fugation, sedimentation velocity, Factors
affecting Sedimentation velocity, Standard	Sedimentation Coefficient, Centrifugation
of associating systems, Rate-Zonal ce	entrifugation, sedimentation equilibrium
Centrifugation, density gradient methods a	nd their applications
Unit-5 : COLORIMETRY AND SPECTR	COSCOPY (10 hours)

Simple theory of the absorption of light by molecules, Beer-Lambert law, Principle and										
use	of	study	of	absorption	spectra	of	biomolecules	s.Visible	and	UV
spectroscopy.Colorimetry, turbidometry, Spectrofluorimetry, nephelometry							and			
IuIIII	lome	ury.								

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	MEMBRANE BIOLOGY AND BIOENERGETICS					
Course Code	BSBC1008					
Prerequisite	Candidate for admission to the first year of B.Sc. Degree Course in Biochemistry should passed the Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology with a minimum of 50 %					
Corequisite	Students should have the basic knowledge of membrane biology					
Antirequisite						
		L	Т	P	С	
		4	0	0	4	

Course Objectives: Students are able to understand the fundamental aspects of composition, structure and functioning of biological membranes and energy transformation in living organisms.

CO1	Describe the composition of prokaryotic and eukaryotic biomembrane
CO2	Explain the characterstics of different membrane form.
CO3	Describe the techniques used to detect the change in membrane dynamics.
CO4	Discuss about the different mode of membrane transport.
CO5	Explain the concept of energy production in cell.
CO6	Evaluate the recent development in membrane biochemistry and bioenergetics.

Text Book (s)

Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M. W.H. Freeman & Company (NewYork), ISBN:13: 978-1-4641-0962-1 / ISBN:10-14641-0962-1.

2. Vander's Human Physiology (2008) 11th ed., Widmaier, E.P., Raff, H. and Strang, K.T. McGraw Hill International Publications, ISBN: 978-0-07-128366-3.

3. Endocrinology (2007) 6th ed., Hadley, M.C. and Levine, J.E. Pearson Education (New Delhi), Inc. ISBN: 978-81-317-2610-5. Reference Book

1. The Cell: A Molecular Approach (2009) 5th Ed. Cooper, G.M. and Hausman, R.E. ASM Press & Sunderland, (Washington DC), Sinauer Associates. (MA). ISBN:978-0-87893-300-6.

Unit-1 : Introduction to Biomembranes	(08 hours)
Composition of biomembranes - prokaryotic, eukaryotic, neurona	al and subcellular
membranes. Study of membrane proteins. Fluid mosaic mode	el with experimental
proof.	
Monolayer, planer bilayer and liposomes as model membrane sys	tems.
Unit-2 Membrane structures	(10 hours)
Polymorphic structures of amphiphilic molecules in aqueous solution	tions - micelles and
bilayers. CMC, critical packing parameter. Membrane asymmetr	y. Macro and micro
domains in membranes. Membrane skeleton, lipid rafts, caveolae	e and tight junctions.
RBC	
membrane architecture	
Unit-3 Membrane dynamics (1	0 hours)
Lateral, transverse and rotational motion of lipids and proteins	. Techniques used to
study	
membrane dynamics - FRAP, TNBS labeling etc. Transition stud	ies of lipid bilayer,
transition temperature. Membrane fluidity, factors affecting mem	ibrane fluidity.
Unit-4 : Membrane transport	(12 hours)
Thermodynamics of transport. Simple diffusion and facilitate	d diffusion. Passive
transport -glucose transporter, anion transporter and pori	ins. Primary active
transporters - P type	
ATPases, V type ATPases, F type ATPases. Secondary active tran	sporters - lactose
permease, Na+-glucose symporter. ABC family of transporters - I	MDR, CFTR. Group
translocation. Ion channels - voltage-gated ion channels (Na+/K+	
voltage-gated channel), ligand-gated ion channels (acetyl	choline receptor),
aquaporins, bacteriorhodopsin. Ionophores - valinomycin, gramic	idin. Types of vesicle
transport and their function - clathrin, COP I and COP II coated	vesicles.
Molecular mechanism of vesicular transport. Membrane fusion.	Receptor mediated
endocytosis of transferring	
Unit-5 : Introduction to bioenergetics	(10 hours)
Laws of thermodynamics, state functions, equilibrium constant	t, coupled reactions,
energy	4
charge, ATP cycle, phosphorylation potential, phosphoryl gr	oup transfers. High
energy compounds: PEP, Iniol esters, Chemical basis of high	standard energy of
nydrolysis of ATP, other phosphorylated compounds and thoest	ers. Redox reactions,
standard redox potentials and Nernst equation. Universal electron	a carriers.
Ont-o Recent Auvancement in memorane biochemistry and bloc	mergeucs
V4110118 Decearch anticle/ Deview paper/ MOOC	
Continuous Assessment Dottom	
Conunuous Assessment Pattern	

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	

Γ	20	
	JU	

20

100

Name of The Course	HORMONE : BIOCHEMISTRY AND FUNCTION						
Course Code	BSDB1009						
Prerequisite	Candidate for admission to the first year of B.Sc. Degree Course in Biochemistry should passed the Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology with a minimum of 50 %						
Corequisite	Students should have the basic knowledge of types of hormones and its function.						
Antirequisite							
	L T P C						

50

Course Objectives: Students are able to determine the function of various hormones and their mode of action.

CO1	Explain the concept of endocrinology.
CO2	Illustrate the basic concepts of hormones and their mechanism of action.
CO3	Explain the importance of pituitary gland hormone.
CO4	Demonstrate the role of thyroid and parathyroid gland in body metabolism.
CO5	Discuss about the importance of pancreatic, adrenal gland hormone.
CO6	Evaluate the recent development in endrocrinology.

Text Book (s)

Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M. W.H. Freeman & Company (NewYork), ISBN:13: 978-1-4641-0962-1 / ISBN:10-14641-0962-1.

2. Vander's Human Physiology (2008) 11th ed., Widmaier, E.P., Raff, H. and Strang, K.T. McGraw Hill International Publications, ISBN: 978-0-07-128366-3.

3. Endocrinology (2007) 6th ed., Hadley, M.C. and Levine, J.E. Pearson Education (New Delhi), Inc. ISBN: 978-81-317-2610-5. Reference Book

1. The Cell: A Molecular Approach (2009) 5th Ed. Cooper, G.M. and Hausman, R.E. ASM Press & Sunderland, (Washington DC), Sinauer Associates. (MA). ISBN:978-0-87893-300-6.

Unit-1: Introduction to endocrinology(08 hours)Functions of hormones and their regulation. Chemical signaling - endocrine,
paracrine,
autocrine, intracrine and neuroendocrine mechanisms. Chemical classification of
hormones, transport of hormones in the circulation and their half-lives. Hormone
therapy. General introduction to Endocrine methodology.

Unit-2 Hormone media	ated signaling and Gro	owth Factors	(12
Lecture)			
Hormone receptors - ex	tracellular and intrac	ellular. Receptor - ho	rmone binding,
Scatchard			
analysis. G protein coup	oled receptors, G prot	eins, second messenge	ers - cAMP, cGMP,
DAG, Ca2+, NO. Effect	or systems - adenyl cy	clase, guanyl cyclase,	PDE, PLC.
Protein kinases (PKA, F	YKB, PKC, PKG). Red	eptor tyrosine kinase	s - EGF, insulin,
erythropoleun receptor	; ras -MAP kinase cas	caue, JAK - SIAI pe	unway. Steroid
and areas talk DDCE	one receptor mediated	i gene regulation. Ket	ceptor regulation
and cross talk. PDGF,	EGF, IGF-II, and ery	nropoletin.	
Unit-3 Hypothalamic	nituitary and Reprodu	uctive hormones	(10 hours)
Hypothalamic - nituitar	v axis Study the nhys	iological and biochen	nical actions of
hypothalamic - pituitai	s nituitary hormones	GH prolactin TSH	LH FSH POMC
neptide family ovytocin	and vasonressin feed	hack regulation cycle	- Endocrine
disorders - gigantism, a	cromegaly, dwarfs, nig	mies and diabetes in	sinidus. Male and
female sex hormones. Ir	terplay of hormones	during reproductive of	vcle, pregnancy,
parturition and lactatio	n. Hormone based cor	traception	jere, pregnancj,
Unit-4 : Thyroid and Pa	arathyroid hormone		(10 hours)
Thyroid gland. Biosyntl	hesis of thyroid hormo	ne and its regulation	; its physiological
and			
biochemical action. Patl	hophysiology - Goiter,	Graves disease, creti	nism, myxedema,
Hashimato's disease. PT	FH , Vitamin D and cal	citonin. Mechanism o	of Ca2+ regulation
and pathways involving	bone, skin, liver, gut	and kidneys. Pathoph	ysiology - rickets,
osteomalacia, osteoporo	sis.		
Unit-5 : Pancreatic, Ac	drenal and GI tract ho	rmones	(10 hours)
Regulation of release of	insulin, glucagon, gas	trin, secretin, CCK, (GIP, adipolectin,
leptin and ghrelin. Sum	mary of hormone met	abolite control of GI	function.
Physiological and bioch	emical action. Pathop	hysiology - diabetes ty	ype I and type II.
Aldosterone, renin angi	otensin system, cortiso	ol, epinephrine and no	orepinephrine.
Fight or flight response,	, stress response. Path	ophysiology – Addiso	n's disease, Conn's
syndrome, Cushing			
Syndrome			
Unit-6 Recent Advance	ment in membrane bi	ochemistry and bioen	ergetics
04hours			
Research article/ Review	w paper/ MOOC		
Continuous Assessment	Pattern		1
Internal Assessment	Mid Term Test	End Term Test	Total Marks

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	CONCEPTS OF IMMUNOLOGY				
Course Code	BSDB1011				
Prerequisite	Higher Secondary Examination with Chemist	ry a	ind	Biolo	ogy
	or Chemistry, Botany and Zoology or Bio	chei	mist	try a	nd
	Chemistry from a recognized Board in science	e str	ean	ı wit	h a
	minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology,				
	including a basic knowledge of the biological molecules, the				
	cell, genetics, regulation, structure/function, interaction with				
	the environment, and evolution.				
Antirequisite					
		L	Τ	Р	С
		4	0	0	4

Course Objectives:

- To provide students with a foundation in immunological processes
- To provide students with knowledge on how the immune system works building on their previous knowledge from biochemistry, genetics, cell biology and microbiolog

Course Outcome:

CO1	Describe the basic concept of immunology
CO2	It describeshow immuneresponse work in our body and explain defense mechanisms by CTL and NK cells
CO3	Demonstrate complementary system, organ transplantation, Antigen processing and presentation by MHC complex
CO4	Elucidate immunological disorders autoimmunity, hypersensitivity and immunodeficiency.
CO5	Evaluate vaccine production, Immunization, immunotherapy
CO6	Evaluation of latest research and application of immunology against various diseases

Text Book (s)

- 4. Immunology, 6th edition, (2006), J. Kuby et al, W.H. Freeman and Company, New York. ISBN-13: 978-1429202114.
- 5. Roitt"s Essential Immunology, 12th edition, (2011), Wiley-Blackwell Science. ISBN-13: 978-1405196833.
- 6. Cellular and Molecular Immunology, 7th edition, (2011). Abul K. Abbas, Andrew H. Lichtman, Shiv Pillai. Saunders. ISBN-13: 978-1437715286.

Reference Book (s):

- 5. Murphy K, Travers P, Walport M. (2008). Janeway'sImmunobiology. 7th edition Garland Science Publishers, New York.
- 6. Peakman M, and Vergani D. (2009). Basic and Clinical Immunology. 2nd edition Churchill
- 7. Livingstone Publishers, Edinberg.

8. Richard C and Geiffrey S. (2009). Immunology. 6th edition. Wiley Blackwell Publication.

Unit -1: INTRODUCTION TO IMMUNE SYSTEM

Types of immunity; organs and cells involved in immune system; Antigen, haptens, adjuvants, antigenicity, antigenic determinants and epitopes; Antibody structure and functions; Theories of antibody formation; Antibody diversity.

Unit -2: IMMUNE RESPONSE

Primary and Secondary Immune Response; Generation of Humoral Immune Response (Plasma and Memory cells); Generation of Cell Mediated Immune Response (Self MHC restriction, T cell activation, Co- stimulatory signals); Killing Mechanisms by CTL and NK cells, Introduction to tolerance.

Unit -3: COMPLEMENT SYSTEM AND MAJOR HISTOCOMPATIBILITY COMPLEX10 hours

Components of the Complement system; Activation pathways (Classical, Alternative and Lectin pathways); Biological consequences of complement Activation. MHC -Organization of MHC locus (Mice & Human); Structure and Functions of MHC I & II Antigen processing and presentation (Cytosolic molecules; and Endocytic pathways). Transplantation - types, genetics of transplantation, graft versus host reactions.

Unit -4: IMMUNOLOGICAL DISORDERS

12 hours

Types of AutoimmUnity and Hypersensitivity with examples; Immunodeficiencies -Animal models (Nude and SCID mice), SCID, DiGeorge syndrome, Chediak- Higashi syndrome, Leukocyte adhesion deficiency, CGD; Types of tumors, tumor Antigens, causes and therapy for cancers.

Unit -5: VACCINES AND IMMUNOLOGICAL TECHNIQUES. 10 hours

Vaccines - Types and their characteristics; Immunization practices-immunoprophylaxis and immunotherapy.Immunological techniques -Principles **Precipitation**, of Agglutination, Immunodiffusion, Immunoelectrophoresis, ELISA, Western blotting, Immunofluoresence, Flow cytometry, Immunoelectron microscopy.

Unit-6 Recent Advancement in immunology

04hours

Research article/ Review paper/ MOOC

Continuous Assessment Pattern					
Internal Assessment	Mid Term Test	End Term Test	Total Marks		
(IA)	(MTE)	(ETE)			
30	20	50	100		

Continuous Assessment Pottorn

Name of The Course	BIOCHEMISTRY LAB II
Course Code	BSBC1013

10 hours

8 hours

Prerequisite	Higher Secondary Examination with Chemistry or Chemistry, Botany and Zoology or Biocl Chemistry from a recognized Board in science minimum of 50 % marks in aggregate.	y a her str	nd] nist eam	Biolo ry a wit	nd nd ha
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Τ	P	С
)	0	6	3

Course Objectives: Students are able to prepare the microbial medium, describe the principle of pH meter, centrifugation and microscopy.

CO1	Construct the different type of media for bacterial culture useful in bacterial
	research in laboratory
CO2	Illustrate Isolation of microorganisms by various methods, like streak plate
	method, spread plate method and serial dilution technique
CO3	Understand principle of light microscope and prepare of onion cell slide to
	evaluate cell morphology
CO4	Determine the pH of 0.1 M NaOH and tap water using pH meter
CO5	Explain the principle of centrifugation.

Text Books

- 5. Brown TA. (2010). Gene Cloning and DNA Analysis. 6th edition. Blackwell Publishing, Oxford, U.K.
- 6. Sambrook J and Russell D. (2001). Molecular Cloning-A Laboratory Manual. 3rd edition. Cold Spring Harbor Laboratory Press.
- 7. Agrios GN. (2006). Plant Pathology. 5th edition. Academic press, San Diego,
- 8. Lucas JA. (1998). Plant Pathology and Plant Pathogens. 3rd edition. BlackwellScience, Oxford.

Reference Book (s)

- 5. Clark DP and Pazdernik NJ. (2009). Biotechnology: Applying the Genetic Revolution. Elsevier Academic Press, USA.
- 6. Primrose SB and Twyman RM. (2006). Principles of Gene Manipulation and Genomics, 7th edition. Blackwell Publishing, Oxford, U.K.
- 7. Mehrotra RS. (1994). Plant Pathology. Tata McGraw-Hill Limited.
- 8. Rangaswami G. (2005). Diseases of Crop Plants in India. 4th edition. Prentice Hallof India Pvt. Ltd., New Delhi.

S.N.	Name of Practicals
1.	Preparation of nutrient broth for the routine cultivation of bacteria.
2.	Preparation of nutrient agar for the routine cultivation of bacteria.
3.	Isolation of microorganisms by streak plate method.
4.	To isolate the microorganisms by spread plate method.
5.	To isolate the microorganisms by serial dilution technique (or viable plate
	count method).

6.	Understanding the different components and working principle of light
	microscope using pre-prepared slide.
7.	Preparation of onion cell slide to study cell morphology using light
	microscope.
8.	To perform the isoelectric precipitation of casein present in milk.
9.	To determine the pH of 0.1 M NaOH and tap water using pH meter.
10.	Demonstrating the basic principle of centrifugation and calculating the
	relation tween RCF and RPM during centrifugation.

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50		50	100

SEMESTER-III

Name of The Course	FUNDAMENTALS OF MOLECULAR BIOL	.0 G	Y		
Course Code	BSDB2001				
Prerequisite	Candidate for admission to the first year of B.Sc. Degree				
	Course in Biochemistry should passed the Hig	gher	•		
	Secondary Examination with Chemistry and H	Biol	ogy	or	
	Chemistry, Botany and Zoology with a minim	um	of 5	50 %	
	marks in aggregate.				
Corequisite	Students should have the basic knowledge abo	out s	stru	cture	e
	and function of nuclei acids.				
Antirequisite					
		L	Т	P	С
		4	0	0	4

Course Objectives: Students are able to determine the process and regulation of replication, translation and transcription.

CO1	Explain the functional and structural organization of genetic material
CO2	Illustrate the different stages of DNA replication and type of DNA repair
CO3	Explain detail process of transcription and its regulation
CO4	Elucidate the mechanism of translation and posttranslational modification
CO5	Summarize the basic concept of gene regulation in pro and eukaryotes
CO6	Evaluate the application of Molecular biology

Text Book (s)

- 5. Molecular Biology of the Gene (2008) 6th ed., Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M. and Losick, R., Cold Spring Harbor Laboratory Press, Cold spring Harbor (New York), ISBN:0-321-50781 / ISBN:978-0-321-50781-5.
- 6. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W. H. Freeman & Company (New York), ISBN:13: 978-1-4292-3414-6 / ISBN:10-14641-0962-1. Reference Book

2. The Cell: A Molecular Approach (2009) 5th Ed. Cooper, G.M. and Hausman, R.E. ASM Press & Sunderland, (Washington DC), Sinauer Associates. (MA). ISBN:978-0-87893-300-6.

Unit-1: NUCLEIC ACID hours)DNA and RNA as genetic r nucleic acids, supercoiling DNA organization into chroUnit-2: DNA REPLICAT	STRUCTURE ANI naterial, chemical st of DNA, DNA reas omatin, bacterial an	OORGANIZATION tructure, base composition kinetics (c	(08	
hours) DNA and RNA as genetic r nucleic acids, supercoiling DNA organization into chro Unit-2 : DNA REPLICAT	naterial, chemical st of DNA, DNA reas omatin, bacterial an	tructure, base composition kinetics (c	sition and types of	
DNA and RNA as genetic r nucleic acids, supercoiling DNA organization into chro Unit-2 : DNA REPLICAT	naterial, chemical st of DNA, DNA reas omatin, bacterial an	tructure, base composition kinetics (c	sition and types of	
nucleic acids, supercoiling DNA organization into chro Unit-2 : DNA REPLICAT	of DNA, DNA reas omatin, bacterial an	ssociation kinetics (c	isition and types of	
DNA organization into chro Unit-2 : DNA REPLICAT	omatin, bacterial an		ot curve analysis),	
Unit-2 : DNA REPLICAT		d eukarvotic genomi	c organization.	
Unit-2 : DNA REPLICAT		,		
	TION AND REPAIR		(8	
hours)				
Enzymes and proteins of	DNA replication, p	orokaryotic and euk	aryotic replication	
mechanism, replication in	phages and retrovi	ruses, Mutagenesis,	DNA damage and	
repair mechanisms.			C	
Unit-3 TRANSCRIPTION	N		(10	
hours)				
Transcription in prokaryo	tes and eukaryotes	.Mechanism of tran	scription, enzymes	
and transcription factors	s. Post-transcription	nal modifications	in mRNA, rRNA	
andtRNA.	_			
Unit-4 : TRANSLATION (12 hours)				
Genetic code - properti	ies of the genetic	c code, deciphering	g of the genetic	
code.Translation in prokaryotes and eukaryotes; Translational mechanism in				
prokaryotes and eukaryote	s, post translational	modification and tra	insport of proteins.	
Unit-5 : REGULATION (OF GENE EXPRES	SION	(10	
Unit-5 : REGULATION (hours)	OF GENE EXPRES	SION	(10	
Unit-5 : REGULATION (hours) Regulation of gene expre	OF GENE EXPRES	SION es - The operon c	(10 oncept, lac &tryp	
Unit-5 : REGULATION (hours) Regulation of gene expre operons.Transcriptional co	OF GENE EXPRES ession in prokaryot ontrol. Post translatio	SION es - The operon c onal control. Regulat	(10 oncept, lac &tryp tion in eukaryotes -	
Unit-5 : REGULATION (hours) Regulation of gene expre operons.Transcriptional co Control by promoter, enha	OF GENE EXPRES ession in prokaryot entrol. Post translation encer and silencers.	SION es - The operon c onal control. Regulat Cis-trans elements.D	(10 oncept, lac &tryp tion in eukaryotes - NA methylation &	
Unit-5 : REGULATION (hours) Regulation of gene expre operons.Transcriptional co Control by promoter, enha gene expression.	OF GENE EXPRES ession in prokaryot ontrol. Post translation oncer and silencers.	SION es - The operon c onal control. Regulat Cis-trans elements.D	(10 oncept, lac &tryp tion in eukaryotes - NA methylation &	
Unit-5: REGULATION (hours)Regulation of gene expre operons.Transcriptional co Control by promoter, enha gene expression.Unit-6 Recent Advancement	OF GENE EXPRES ession in prokaryot ontrol. Post translation ancer and silencers. Int in Molecular biol	SION es - The operon c onal control. Regulat Cis-trans elements.D ogy	(10 oncept, lac &tryp tion in eukaryotes - NA methylation & 04hours	
Unit-5 : REGULATION (hours) Regulation of gene expre operons.Transcriptional co Control by promoter, enha gene expression. Unit-6 Recent Advancemen Research article/ Review pa	OF GENE EXPRES ession in prokaryot ontrol. Post translation oncer and silencers. Int in Molecular biologaper/ MOOC	SION es - The operon c onal control. Regular Cis-trans elements.D ogy	(10 oncept, lac &tryp tion in eukaryotes - NA methylation & 04hours	
Unit-5 : REGULATION (hours) Regulation of gene expre operons.Transcriptional co Control by promoter, enha gene expression. Unit-6 Recent Advancemen Research article/ Review pa Continuous Assessment Patt	OF GENE EXPRES ession in prokaryot ontrol. Post translation ancer and silencers. Int in Molecular biological aper/ MOOC	SION es - The operon c onal control. Regulat Cis-trans elements.D ogy	(10 oncept, lac &tryp tion in eukaryotes - NA methylation & 04hours	
Unit-5: REGULATION (hours)Regulation of gene expresore operons.Transcriptional co Control by promoter, enha gene expression.Unit-6 Recent Advancement Research article/ Review path Continuous Assessment PathInternal AssessmentM	OF GENE EXPRES ession in prokaryot ontrol. Post translation oncer and silencers. Int in Molecular biology aper/ MOOC tern id Term Test	SION es - The operon c onal control. Regulat Cis-trans elements.D ogy End Term Test	(10 oncept, lac &tryp tion in eukaryotes - NA methylation & 04hours Total Marks	

Name of The Course	BIOINSTRUMENTATION-II
Course Code	BSDB2002
Prerequisite	Candidate for admission to the first year of B.Sc. Degree
	Course in Biochemistry should passed the Higher
	Secondary Examination with Chemistry and Biology or
	Chemistry, Botany and Zoology with a minimum of 50 %
	marks in aggregate.
Corequisite	Students should have understanding of general biology,
_	including a basic knowledge of the biological molecules, the

	cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: : Students are able to determine the principle of advanced spectroscopy, chromatographic techniques

CO1	Describe different types of electrophoretic techniques for separation and isolation of biomolecules.
CO2	Explain various kinds of Spectroscopic techniques to characterize and detect structural changes in biomolecules.
CO3	Describe the principle and applications of various chromatographic techniques.
CO4	Explain the different types of radioactive detection techniques.
CO5	Demonstrate the principle of Sanger and Maxam Gilbert method of Nucleotide sequencing.
CO6	Evaluate recent advancement in bio analytical techniques.

Text Book (s)

- 7. Molecular Biology of the Gene (2008) 6th ed., Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M. and Losick, R., Cold Spring Harbor Laboratory Press, Cold spring Harbor (New York), ISBN:0-321-50781 / ISBN:978-0-321-50781-5.
- 8. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W. H. Freeman & Company (New York), ISBN:13: 978-1-4292-3414-6 / ISBN:10-14641-0962-1.

Reference Book

3. The Cell: A Molecular Approach (2009) 5th Ed. Cooper, G.M. and Hausman, R.E. ASM Press & Sunderland, (Washington DC), Sinauer Associates. (MA). ISBN:978-0-87893-300-6.

Unit-1 : ELECTROPHORESIS	(10
hours)	
Principle and applications of native polyacrylamide gel electrophoresis, SDS	-
polyacrylamide gel electrophoresis, 2D gel electrophoresis Isoelectric focusin	g ,
Zymogram preparation and Agarose gel electrophoresis	
Unit-2 : ADVANCED SPECTROSCOPY	
(10 hours)	
Basic concepts - Circular Dichroism (CD) and Optical Rotatory Dispersion ((ORD),
Fluorescence spectroscopy, Infrared spectroscopy, FTIR, NMR spectroscopy	. Mass
spectroscopy- MALDI-TOF, Nano-SIMS (10L)	
Unit-3 CHROMATOGRAPHY	(10
hours)	
Dringinlag and applications of non-on-share strong to graphy (in sluding Dessending	J ()

Principles and applications of paper chromatography (including Descending and 2-D), Thin layer chromatography. Column packing and fraction collection. Gel filtration chromatography, ionexchange chromatography and affinity chromatography, GLC, HPLC.

Unit-4: RADIOGRAPHY (1	0 hours)
Use of radioisotopes in life sciences, radioactive labeling, principle and applica	ation of
tracer techniques, detection and measurement of radioactivity using ionization	n
chamber, proportional chamber, Autoradiography, FISH-MAR, Pulse chase	
experiment, Liquid scintillation counting, Phosphor imaging, IRMA, Dosimet	ry
	-

(08

Unit-5 : ADVANCED TECHNIQUES hours) Chemical synthesis of nucleotides and peptides, Sequencing of proteins and nucleic

acids, Enzyme purification and assay techniques.

Unit-6 Recent Advancement in Bio analytical techniques **04hours**

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	FUNDAMENTALS OF MICROBIOLOG	Y		
Course Code	BSDB2003			
Prerequisite	Candidate for admission to the first year of B.Sc. Degree Course in Biochemistry should passed the Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology with a minimum of 50 %			
Corequisite	marks in aggregate.Students should have the basic knowledge about m	nicr	obes	3
-	and their structure.			
Antirequisite				
	L	T	P	С
	4	0	0	4

Course Objectives:

- Students are able to describe history, scope and application of microbiology. •
- Students are able to explain microbial growth curve, microbial pathogenecity. •

CO1	Discuss abouthistory, diversity and scope of microbiology.
CO2	Explain microbial nutrition, growth and control of microorganism.
CO3	Describemicrobial molecular biology and genetics.
CO4	Demonstrate viruses and microbial pathogenicity.
CO5	Interpret various applications of food and industrial microbiology.
CO6	Evaluate recent development in area of microbiology.

Text Book (s)

- 9. Molecular Biology of the Gene (2008) 6th ed., Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M. and Losick, R., Cold Spring Harbor Laboratory Press, Cold spring Harbor (New York), ISBN:0-321-50781 / ISBN:978-0-321-50781-5.
- 10. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W. H. Freeman & Company (New York), ISBN:13: 978-1-4292-3414-6 / ISBN:10-14641-0962-1. Reference Book
 - 4. The Cell: A Molecular Approach (2009) 5th Ed. Cooper, G.M. and Hausman, R.E. ASM Press & Sunderland, (Washington DC), Sinauer Associates. (MA). ISBN:978-0-87893-300-6.

Unit-1 : History, Diversity And Scope Of Microbiology

(10 hours)				
Discovery of microorganisms, spontaneous generation, germ theory of disease,				
members of the microbial world, scope and relevance of microbiology, Microbial				
taxonomy and phylogeny, Archaea, Bacteria, fungi, slime molds, water molds, algae,				
protozoa, helminths, the future of microbiology.				
Unit-2 : Bacteria (10 hours)				
An account of typical eubacteria, chlamydiae & rickettsiae (obligate intracellular				
parasites),				
mycoplasma, and Archaea. Applications of bacteria and Archaea in industry,				
environment and				
food.				
Unit-3 Viruses, viroids and prions				
(10 hours)				
An introduction to viruses with special reference to the structure and replication of the				
following:				
Poxvirus, Poliovirus, HIV, T4 and λ phage, lytic and lysogenic cycles.				
Unit-4 : Algae (10 hours)				
History of phycology; General characteristics of algae including occurrence, thallus				
organization,				
algae cell ultra structure, pigments, flagella, eyespot food reserves and vegetative,				
asexual and				
sexual reproduction. Applications of Algae in agriculture, industry, environment and				
food.				
Unit-5: 5 Fungi and Protozoan(12 hours)				
Historical developments in the field of Mycology, significant contributions of eminent				
mycologists. General characteristics of fungi including habitat, distribution, nutritional				
requirements, fungal cell ultra- structure, thallus organization and aggregation, fungal				
wall				
structure and synthesis, asexual reproduction, sexual reproduction, heterokaryosis,				
heterothallism				
and parasexual mechanism. Economic Importance of Fungi in Agriculture,				
environment,				
Industry, medicine, food, biodeterioration, mycotoxins, General characteristics with				
special				
Unit-6 Recent Advancement in Microbiology 04hours				
Research article/ Review paper/ MOOC				

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Continuous Assessment Pattern

Name of The Course	METABOLISM OF BIOMOLECULES-I				
Course Code	BSBC2004				
Prerequisite	Candidate for admission to the first year of B	.Sc.	Deg	ree	
	Course in Biochemistry should passed the Hig	gher			
	Secondary Examination with Chemistry and	Biol	ogy	or	
	Chemistry, Botany and Zoology with a minimum of 50 %				
	marks in aggregate.				
Corequisite	Students should have the basic knowledge ab	out			
	biomolecules				
Antirequisite					
		L	Т	P	С
		4	0	0	4

Course Objectives: Students are able to explain the metabolism of biomolecules particularly carbohydrates and lipid.

CO1	Analyze the concept of energy production in the living cell.
CO2	Explain the fundamentals of carbohydrate metabolism.
CO3	Discuss about TCA cycle and its regulation.
CO4	Explain the process of synthesis and degradation of lipids.Demonstrate the
	metabolism of essential and non-essential aminoacids.
CO5	Illustrate strave-fed cycle. the metabolism of nucleotides.

Text Book (s)

1. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W.H. Freeman and Company (New York), ISBN:13: 978-1-4641-0962-1 / ISBN:10:1-4292-3414-8.

Reference Book

1. Textbook of Biochemistry with Clinical Correlations (2011) 7th ed., Devlin, T.M., John Wiley & Sons, Inc. (New York), ISBN:978-0-470-28173-4.

Unit-1 : Basic design of metabolism	(10
hours)	
Autotrophs, heterotrophs, metabolic pathways, catabolism, anabolism	
Unit-2 : Carbohydate Metabolism	
(10 hours)	
Glycolysis - a universal pathway, reactions of glycolysis, fermentati pyruvate, feeder pathways for glycolysis, galactosemia, Synthesis of gluco	on, fates of se from non-

pyruvate, feeder pathways for glycolysis, galactosemia, Synthesis of glucose from noncarbohydrate sources, reciprocal regulation of glycolysis and gluconeogenesis, pentose phosphate pathway and its importance, Glycogen metabolism Unit-3 Citric acid cycle hours)

Production of acetyl CoA, reactions of citric acid cycle, anaplerotic reactions, amphibolic role, regulation of citric acid cycle, glyoxalate pathway, coordinated regulation of glyoxalate and citric acid pathways.

Unit-4 : Lipid metabolism

(10 hours)

(12

(10

Synthesis and degradation of triacylglycerols, phospholipids, glycolipids, eicosanoids; Biosynthesis of fatty acids; Oxidation of fatty acids; Ketone bodies; Metabolism of cholesterol - biosynthesis, catabolism and regulation; general metabolism of lipoproteins.

Unit-5 : 5 Starve-feed cycle hours)

Well-fed state, early fasting state, fasting state, early re-fed state, energy requirements, reserves and caloric homeostasis, five phases of glucose homeostasis.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOCHEMISTRY LAB-III
Course Code	BSBC2014
Prerequisite	Candidate for admission to the first year of B.Sc. Degree Course in Biochemistry should passed the Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology with a minimum of 50 %
Corequisite	Students should have the basic knowledge about lab instruments.
Antirequisite	
	L T P C
	0 0 6 3

Course Objectives:

Students are able to describe the procedure to isolate, estimate the amount of DNA and RNA, perform planar chromatography.

CO1	Isolate DNA and RNA for research and development
CO2	Demonstrate the recording brain temperature through thermocouple wire and
	perform further research in thermoregulatory area

CO3 Demonstrate the principle of paper chromatography.

CO4 Demonstrate the principle of Thin layer Chromatography.

Text Books

- 9. Brown TA. (2010). Gene Cloning and DNA Analysis. 6th edition. Blackwell Publishing, Oxford, U.K.
- 10. Sambrook J and Russell D. (2001). Molecular Cloning-A Laboratory Manual. 3rd edition. Cold Spring Harbor Laboratory Press.
- 11. Agrios GN. (2006). Plant Pathology. 5th edition. Academic press, San Diego,
- 12. Lucas JA. (1998). Plant Pathology and Plant Pathogens. 3rd edition. BlackwellScience, Oxford.

Reference Book (s)

- 9. Clark DP and Pazdernik NJ. (2009). Biotechnology: Applying the Genetic Revolution. Elsevier Academic Press, USA.
- 10. Primrose SB and Twyman RM. (2006). Principles of Gene Manipulation and Genomics, 7th edition. Blackwell Publishing, Oxford, U.K.
- 11. Mehrotra RS. (1994). Plant Pathology. Tata McGraw-Hill Limited.
- 12. Rangaswami G. (2005). Diseases of Crop Plants in India. 4th edition. Prentice Hallof India Pvt. Ltd., New Delhi.

S.N.	Name of Practicals
1.	Isolation of DNA.
2.	Estimation of DNA.
3.	Isolation of RNA
4.	Estimation of RNA.
5.	Demonstrate the different modes of qualitative and quantitative
	measurement of RNA and DNA.
6.	. Demonstrate the different modes of qualitative and quantitative measurement
	of protein.
7.	Demonstration of brain temperature through thermocouple wire.
8.	Understand the working principle and application of Paper
	chromatography
9.	Understand the working principle and application of Thin layer
	chromatography.
10.	Estimation of RNA.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50		50	100

Name of The Course	BIOCHEMISTRY LAB-IV				
Course Code	BSBC2015				
Prerequisite	Candidate for admission to the first year of B.	Sc.	Deg	ree	
	Course in Biochemistry should passed the Hig	gher			
	Secondary Examination with Chemistry and I	Biol	ogy	or	
	Chemistry, Botany and Zoology with a minim	um	of 5	0 %	
	marks in aggregate.				
Corequisite	Students should have the basic knowledge abo	out l	ab		
	instruments.				
Antirequisite					
		L	Τ	P	С
		0	0	6	3

Course Objectives:

Students are able to describe the procedure to isolate, estimate the amount of DNA and RNA, perform planar chromatography.

CO1	Demonstrate the principle of blood glucose and Cholesterol estimation
CO2	Illustrate the procedure of assay of Salivary amylase
CO3	Demonstrate the principle of Cholesterol estimation
CO4	Demonstrate the principle and application of Thin layer Chromatography.

Text Books

- 13. Brown TA. (2010). Gene Cloning and DNA Analysis. 6th edition. Blackwell Publishing, Oxford, U.K.
- 14. Sambrook J and Russell D. (2001). Molecular Cloning-A Laboratory Manual. 3rd edition. Cold Spring Harbor Laboratory Press.
- 15. Agrios GN. (2006). Plant Pathology. 5th edition. Academic press, San Diego,
- 16. Lucas JA. (1998). Plant Pathology and Plant Pathogens. 3rd edition. BlackwellScience, Oxford.

Reference Book (s)

- 13. Clark DP and Pazdernik NJ. (2009). Biotechnology: Applying the Genetic Revolution. Elsevier Academic Press, USA.
- 14. Primrose SB and Twyman RM. (2006). Principles of Gene Manipulation and Genomics, 7th edition. Blackwell Publishing, Oxford, U.K.
- 15. Mehrotra RS. (1994). Plant Pathology. Tata McGraw-Hill Limited.
- 16. Rangaswami G. (2005). Diseases of Crop Plants in India. 4th edition. Prentice Hallof India Pvt. Ltd., New Delhi.

S.N.	Name of Practicals
1.	Estimation of blood glucose.
2.	Sugar fermentation by microorganisms.
3.	Assay of salivary amylase.
4.	Isolation of lipids from egg yolk and separation by TLC.
5.	Cholesterol estimation.

Continuous Assessment Pattern			
Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50		50	100

Name of The Course	Web based course/seminar				
Course Code	BSDB2006				
Prerequisite	Candidate for admission to the first year of B.Sc. Degree Course in Biochemistry should passed the Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of genera	al bi	olog	gy.	
Antirequisite					
		L	Τ	P	С
		0	0	0	2

Course Objectives:

- **Students are** directly engage and learn particular subject of their interest. This strengthens the fundamentals of the student in the course.
- It gives the students the opportunities to explore new areas of interest. Also gives students the opportunity to learn in greater depth the subjects they wish to master.
- Promotes the self-learning initiative of the students where their own motivation is what drives them to complete the course. This fosters the habit of keeping oneself updated always by means of self-study.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	ETE	Total Marks
50		50	100

SEMESTER – IV

Name of The Course	Programming in C and Python
Course Code	BCSE1021
Prerequisite	Candidate for admission to the first year of B.Sc. Degree Course in Biochemistry should passed the Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology with a minimum of 50 % marks in aggregate.

Corequisite	Students should have the basic knowledge about computer science				
Antirequisite					
		L	Τ	Р	С
		4	0	0	4

Course Objectives:

This course explores concepts underlying the definition, implementation, and use of programming languages. The goal is to provide you with an understanding of (and a vocabulary for) common language features, including how they are implemented, how other language-design choices affect them, and how they can be used effectively in program development.

CO1	Understand and explain the basics of computer and its components-
CO2	Explain the data input and out put, control systems and function-
CO3	Explain the arrays, structure and union-
CO4	Explain the use of pointer and interpret the file
CO5	Apply the Classes in C++
CO6	Evaluate the recent development in programming languages.

Text Book (s)

15. P Kanetkar Yashvant, Let us C, BPB Publications, New Delhi, Seventh Edition.

16. E. Balagurusami, Programming in ANSI C, Tata McGraw Hill, Fourth Edition.

17. Schaum Outline Series, Programming in C.

Reference book:

- 1. Herbtz Schildt, "C++: The Complete Reference", Fourth Edition, McGraw Hill.
- 2. John R. Hubbard, "Programming with C++", Schaum's Series, 2nd Edition, 2000.

Unit-1 INTRODUCTION TO COMPUTERS

10 hours

Introduction to computers: Units of computers, Block Diagram, Generation of Computers, Characteristics of Computers, Phases of Computers, Different types of Memory, Input and Output Devices.

Logic Development and Program Development Tools: Data Representation, Flowcharts, Problem Analysis, Decision Trees/Tables, Pseudo Code and Algorithms, Program Debugging, Compilation and Execution.

Fundamentals: Character Set, Identifiers and Key Words, Data Types, Constants, Variables, Expressions, Statements, Symbolic Constants.

Operations and Expressions: Arithmetic Operators, Unary Operators, Relational Operators, Logical Operators, Assignment and Conditional Operators, Library functions.

Unit-2 DATA INPUT AND OUTPUT

10 hours

Data Input and Output: Single Character Input, Single Character Output, Entering Input Data, More About Scan Functions, Writing Output Data, More About Print Functions, Gets and Puts Functions, Interactive Programming.

Control Structures: Introduction, Decision Making with If – Statement, If Else and Nested If, While And Do-While, For Loop. Jump Statements: Break, Continue, Goto, Switch Statement.

Functions: Introduction To Functions, Function Declaration, Function Categories, Standard Functions, Parameters And Parameter Passing, Pass – By Value/Reference, Recursion, Global and Local Variables, Storage Classes.

Unit-3ARRAYS 10 hours

Arrays: Introduction to Arrays, Array Declaration, Single and Multidimensional, Array, Memory Representation, Matrices, Strings, String Handling Functions.

Structure and Union: Declaration of Structure, Accessing Structure Members, Structure Initialization, Arrays of Structure, Nested Structures, Unions.

Unit-4POINTERS

10 hours

Pointers: Introduction To Pointers, Address Operator And Pointers, Declaring and Initializing Pointers, Assignment through Pointers, Pointers and Arrays. **Files:** Introduction, Creating a Data File, Opening and Closing a Data File, Processing a Data

File.

Unit-5USING CLASSES IN C++

10 hours

Principles of Object-Oriented Programming, Defining & Using Classes, Class Constructors, Constructor Overloading, Function overloading in classes, Class Variables &Functions, Objects as parameters, Specifying the Protected and Private Access, Copy Constructors, Overview of Template classes and their use. Introduction to Inheritance and Polymorphism **Unit-6 Recent Advancement in in programming languages. 04hours Research article/ Review paper/ MOOC**

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOTECHNOLOGY			
Course Code	BSDB2010			
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.			
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.			
Antirequisite				
---------------	---	---	---	---
	L	Т	Р	С
	4	0	0	4

Course Objective:

Students will understand the molecular methods and applications of recombinant DNA technology and gene transfer techniques.

Course Outcome:

CO1	Brief account of plant tissue culture and advantages of somatic hybridization
CO2	Explain the basic techniques of cell culture
CO3	Describe the different methods of DNA sequencing
CO4	Describe the type and process of genetic exchange
CO5	Explain the various categories of transposable element
CO6	Evaluate the application of Biotechnology in research and deployment

Text Book (s)

- 5. Principles of Gene Manipulations 1994 by Old and Primrose Blackwell Scientific Publications.
- 6. DNA Cloning: A Practical Approach by D.M. Glower and B.D. Hames, IRL Press, Oxford. 1995.
- 7. Molecular Biotechnology 2nd Edition by S.B. Primrose. Blackwell Scientific Publishers, Oxford. 1994.
- 8. Genetic Engineering and Introduction to Gene Analysis and Exploitation in Eukaryotes by S.M. Kingsman and A.J. Kingsman, Blackwell Scientific Publications, Oxford 1998.

References Book (s)

- 5. PCR Technology Principles and Applications for DNA Amplification by Henry A. Erlich (Ed.) Stockton Press. 1989.
- 6. Biotechnology: A Guide to Genetic Engineering by Peters.
- 7. Genetic Engineering 2000 by Nicholl.
- 8. Recombinant DNA and Biotechnology: Guide for Teachers. 2nd Edition by Helen Kreuz. 2001. ASM Publications.

Unit -1: INTRODUCTION TO PLANT BIOTECHNOLOGY8 hoursBasic introduction to animal and plant biotechnology; types of plant tissue culture,
Somatic hybridization8 hours

Unit -2: INTRODUCTION TO ANIMAL BIOTECHNOLOGY 8 hours

Animal Biotechnology - organ culture; cell culture and initiation of cell culture; evolution of continuous cell lines.

Unit -3: CONSTRUCTION OF DNA LIBRARIES

Isolation and purification of nucleic acid (genomic/plasmid DNA and RNA), Quantification and storage of nucleic acids, Construction of cDNA library, Construction of Genomic library, Screening and preservation of DNA libraries, DNA Sequencing and cloning strategies.

Unit -4: GENE TRANSFER TECHNIQUES

Gene transfer techniques: biological methods; chemical methods; physical or mechanical methods.

Unit -5: TRANSGENICS

Plant Genetic Engineering: Restriction enzymes; Transformation of plant cells; different type of vectors including viral vectors and their benefits; Screening and selection of transformants, PCR and hybridization methods; Application of transgenic science in plant and animal improvement.

Unit-6 Recent Advancement in biotechnology Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	MEDICAL BIOCHEMISTRY	
Course Code	BSDB2009	
Prerequisite	Higher Secondary Examination with Chemistry and Biol or Chemistry, Botany and Zoology or Biochemistry Chemistry from a recognized Board in science stream wi minimum of 50 % marks in aggregate.	ogy and th a
Corequisite	Students should have understanding of general biolo including a basic knowledge of the biological molecules their disorder	ogy, and
Antirequisite		
	L T P	С
	4 0 0	4

Course Objectives: Students are able to understand the metabolism of biomolecules and their related disorders.

Course Outcomes

CO1	Illustrate the various disorders of Metabolism.
CO2	Interpret the Distribution of enzymes and diagnostic significance

10 hours

10 hours

04hours

40.1

10 hours

CO3	Evaluate the significance of vitamins and hormones as well as disease associated
	with it.
CO4	Evaluate the biochemistry of cancer.
CO5	Analyze the molecular diagnostics.
CO6	Evaluate the recent development in medical biochemistry

Text Book (s)

- 1. Textbook of Biochemistry with Clinical Correlations (2011) 7th ed., Devlin, T.M., John Wiley & Sons, Inc. (New York), ISBN:978-0-470-28173-4.
- 2. Textbook of Biochemistry for Medical Students. D.M. Vasudevan, Sreekumari. S, Kannan Vaidyanathan. JPB.

REFERENCES Books:

- 1. Textbook of Medical Biochemistry, 7thedition (2007), Chatterjea&Shinde, Jaypee Publications, ISBN: 81-8448-134-9.
- 2. Tietz Fundamentals of Clinical Chemistry, 6th edition (2007), Carl A. Burtis, Edward R. Ashwood, and David E. Bruns; WB Saunders Co, ISBN-13: 978-0721638652

Unit-1 DISORDERS OF METABOLISM

12 hours

Disorders of Carbohydrate Metabolism; Lipids, Lipoproteins and Apolipoproteins; Inborn Errors of Metabolism; Disorders of Electrolytes, Blood Gases and Acid Base Balance; Disorders of Mineral Metabolism; Hormonal Disorders - Adrenocortical steroids, Reproductive endocrinology, Thyroid function; Biochemical Aspects of Hematology - Disorders of erythrocyte metabolism, hemoglobinopathies, thalassemia, and anemias. Prostaglandins- classification, biosynthesis, role of COX-1, COX-2, NSAIDS in synthesis;

Unit 2: Enzymes: Distribution and diagnostic significance 10 hrs

Properties of enzymes used in diagnosis of metabolic disorders, clinical significance of diagnostically important enzymes: creatine kinase, lactate dehydrogenase, alanine- and aspartate aminotransferases, A detailed account on: isoenzymes, their tissue distribution and clinical significance.

Unit-3 VITAMIN AND HORMONES

10 hours

Vitamins and classification, requirement and recommended allowances, resource of vitamins, Diseases due to deficiency of water-soluble and fat-soluble vitamins. Role of leptin, ghrelin and other hormones in regulation of Obesity, Classification with special reference to epinephrine and thyroid hormones (T3 and T4); functions.

Unit-4 BIOCHEMISTRY OF CANCER

10 hours

Etiology - Chemical carcinogens, Oncogenic viruses; Molecular basis of cancer - Oncogenes, Antioncogenes, Oncosuppressor genes, Apoptosis, Growth factors; Tumour

kinetics - Doubling time, Contact inhibition, Anchorage dependence; Oncofetal antigens; Tumor markers; Cancer therapy - Anticancer drugs, Drug resistance.

Unit-5 MOLECULAR DIAGNOSTICS

10 hours

Hybridization and blotting techniques; DNA finger printing; Restriction fragment length polymorphism (RFLP); Polymerase chain reaction (PCR); Hybridoma technology;Transgenesis; DNA sequencing; Mutation detection techniques – single strand conformation polymorphism, heteroduplex analysis, conformation sensitive gel electrophoresis, protein truncation test, denaturation high performance liquid chromatography.

Unit-6 Recent Advancement in medical biochemistry 04hours Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	METABOLISM OF BIOMOLECULES-II	
Course Code	BSBC2008	
Prerequisite	Higher Secondary Examination with Chemistry and Biolog or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with minimum of 50 % marks in aggregate.	gy nd 1 a
Corequisite	Students should have understanding of general biolog including a basic knowledge of the biological molecules an their disorder	gy, nd
Antirequisite		
-		С
	4 0 0	4

Course Objectives: Students are able to understand the metabolism of biomolecule. Course Outcomes

CO1	Illustrate the basic component and inhibitors of electron transport chain.
CO2	Explain the fundamentals of aminoacid metabolism.
CO3	Explain the denovo pathway of nucleotide metabolism.
CO4	Discuss the metabolism of heme.
CO5	Illustrate the process of metabolism integration.
CO6	Evaluate the recent advancement in biochemistry of basic metabolic pathway.

Text Book (s)

1. Textbook of Biochemistry with Clinical Correlations (2011) 7th ed., Devlin, T.M., John Wiley & Sons, Inc. (New York), ISBN:978-0-470-28173-4.

2. Textbook of Biochemistry for Medical Students. D.M. Vasudevan, Sreekumari. S, Kannan Vaidyanathan. JPB.

TEXT & REFERENCES:

- 1. Textbook of Medical Biochemistry, 7thedition (2007), Chatterjea&Shinde, Jaypee Publications, ISBN: 81-8448-134-9.
- 2. Tietz Fundamentals of Clinical Chemistry, 6th edition (2007), Carl A. Burtis, Edward R. Ashwood, and David E. Bruns; WB Saunders Co, ISBN-13: 978-0721638652

Unit-1 ELECTRON TRANSPORT CHAIN AND OXIDATIVE PHOSPHORYLATION 12 hours

Electron transport chain - Components, organization and inhibitors of electron transport chain; Oxidative phosphorylation – mechanism, Chemi-osmotic theory, ATP synthase, Inhibitors of oxidative phosphorylation.;

Unit 2: AMINO ACID METABOLISM

10 hrs

Properties of enzymes used in diagnosis of metabolic disorders, clinical significance of diagnostically important enzymes: creatine kinase, lactate dehydrogenase, alanine- and aspartate aminotransferases, A detailed account on: isoenzymes, their tissue distribution and clinical significance.

Unit-3 NUCLEOTIDE METABOLISM

10 hours

Purine metabolism – biosynthesis (de novo and salvage pathways), degradation, regulation and disorders of purine metabolism; Pyrimidine metabolism - biosynthesis (de novo and salvage pathways), degradation, regulation and disorders of pyrimidine metabolism.

Unit-4 HEME SYNTHESIS AND DEGRADATION

10 hours

Porphyrins – structure and functions; Biosynthesis of heme – steps and regulation; Porphyrias – hepatic and erythropoieticporphyrias; degradation of heme – bilirubin metabolism and its disorders.

Unit-5 Integration Of Metabolism

10 hours

04hours

Integration of metabolic pathways (carbohydrate, lipid and amino acid metabolic pathways), tissue specific metabolism (brain, muscle, and liver).

Unit-6 Recent Advancement in basic metabolic pathways Research article/ Review paper/ MOOC

Continuous Assessment Pattern				
Internal Assessment	Mid Term Test	End Term Test	Total Marks	
(IA)	(MTE)	(ETE)		
30	20	50	100	

Name of The	Research Methodology and Statistics				
Course					
Course Code	BBS09T2411				
Prerequisite	Students should qualify 10+2 or equivale	nt			
	examination in Science stream				
Corequisite	Students should have fundamental knowledge of				
	subjects like mathematics, physics and cl	ıeı	mis	stry	
Antirequisite	-				
	I		T	Р	C
	2		-	-	2

Course Objective: The objective of the course is to impart research based knowledge to the students. They would be taught the various ways of data collection, research methodologies adopted in different settings, and statistical methods.

Course Outcome:

CO1	Students will get separately familiar with terms research and methodology, respectively.
CO2	Identifying different type of research sampling and research design.
CO2	Students will understand raw data, primary data, secondary data and their different methods of collection.
CO4	Students will appraise the application of sampling through statistics.
CO5	Students will get familiar with different descriptors of statistics to analyse data both quantitatively and qualitatively.
CO6	Students will develop the statistical analysis indulges in modern research for drug designing.

Course Contents:

Module	I:	Introduction	to	Research	Methodology
6-Lectures					

Definition, c	oncept and	research	in science	; Introductio	on to Research		
Methodology, Research methodology in science.							
Module I	I: Researce	ch in	Scientific	and Se	ocial Settings		
5-Lectures							
Research Des	ign: Researc	h Sampling	g, rationale f	or using a pa	rticular		
sampling pro	cedure, Prob	ability.					
Module	III:	Tools	of	Data	Collection		
5-Lectures							
Data and it	s types, Me	thods for	Collecting	Data, Obser	rvation method,		
Questionnair	e, Other Met	hods					
Module	IV:	Intr	oduction	to	Statistics		
4-Lectures							
Introduction	Introduction to statistics (Biostatistics); Sample and Population, parametric						
and non para	metric statist	tics.					
Module	V:		Descri	ptive	Statistics		
5-Lectures							
Measures of o	entral tender	ncy; Measu	ires of dispe	rsion and dev	iation; graphical		
representatio	n of the data	Correlatio	on and Regr	ession			
Unit 6: Recei	nt research a	dvances			3 hrs		
Descriptors, Quantitative structure-activity relationship							
(QSAR), Quantitative structure-property relationship(QSPR), Drug							
designing.							

Text & References:

- Broota, K. D., Experimental designs in psychological research, Wiley eastern, New York, 1992.
- Guilford, Statistics in Psychology and Education, McGraw Hill, New York, 1986.
- J T Walker, Statistics in Criminology and Criminal Justice analysis and Interpretation
- Leo, A., & Hoekman, D. H. (1995). *Exploring QSAR*. American Chemical Society.
- Chanin Nantasenamat, Chartchalerm Isarankura-Na-Ayudhya, Thanakorn Naenna, Virapong Prachayasittikul, A Practical Overview of Quantitative Structure- Activity Relationship. EXCLI Journal 2009;8:74-88.
- Wiktor Pronobis, Alexandre Tkatchenko, and Klaus-Robert Muller, J. Chem. Theory Comput. 2018, 14, 2991–3003

Internal	Mid Term Test	End Term Test	Total Marks
Assessment (IA)	(MTE)	(ETE)	
30	20	50	100

Continuous Assessment Pattern

Name of The Course	BIOCHEMISTRY LAB-V			
Course Code	BSBC2017			
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.			
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.			
Antirequisite				
	L T P	С		
	0 0 6	3		

Course Objectives: Students are able to explain the principle and application of gel electrophoresis, procedure of Southern Blotting, Northern Blotting and Western Blotting techniques.

CO1	Demonstrate and perform of agarose gel electrophoresis
CO2	Illustrate principle and applications of SDS PAGEwhich is useful for research
CO3	Demonstrate activity of restriction endonuclease enzyme
CO4	Evaluate qualitative analysis ethanol production through microorganism
CO5	Understand the Southern Blotting, Northern Blotting and Western Blotting
	techniques

Text Books

- 17. Brown TA. (2010). Gene Cloning and DNA Analysis. 6th edition. Blackwell Publishing, Oxford, U.K.
- 18. Sambrook J and Russell D. (2001). Molecular Cloning-A Laboratory Manual. 3rd edition. Cold Spring Harbor Laboratory Press.
- 19. Agrios GN. (2006). Plant Pathology. 5th edition. Academic press, San Diego,
- 20. Lucas JA. (1998). Plant Pathology and Plant Pathogens. 3rd edition. BlackwellScience, Oxford.

Reference Book (s)

- 17. Clark DP and Pazdernik NJ. (2009). Biotechnology: Applying the Genetic Revolution. Elsevier Academic Press, USA.
- 18. Primrose SB and Twyman RM. (2006). Principles of Gene Manipulation and Genomics, 7th edition. Blackwell Publishing, Oxford, U.K.
- 19. Mehrotra RS. (1994). Plant Pathology. Tata McGraw-Hill Limited.
- 20. Rangaswami G. (2005). Diseases of Crop Plants in India. 4th edition. Prentice Hallof India Pvt. Ltd., New Delhi.

S.N.	Name of Practicals
1.	Demonstration of agarose gel electrophoresis

2.	Demonstration of SDS PAGE.
3.	Demonstration of native PAGE.
4.	Demonstration of activity of restriction endonuclease enzyme.
5.	Demonstration of ethanol production through microorganism.
6.	To study following techniques through photographs a. Southern Blotting
	b. Northern Blotting c. Western Blotting
7.	Demonstration of agarose gel electrophoresis
8.	Demonstration of SDS PAGE.
9.	Demonstration of native PAGE.
10.	Demonstration of activity of restriction endonuclease enzyme.

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50		50	100

Name of The Course	PROGRAMMING IN C AND PYTHON LABOR	RAT	OR	Y	
Course Code	BCSE1031				
Prerequisite	Higher Secondary Examination with Chemistry a Chemistry, Botany and Zoology or Biochemistry a from a recognized Board in science stream with 50 % marks in aggregate.	and and a m	Bio Ch inii	ology emis num	or try of
Corequisite	Students should have understanding and a basic knowledge of the computing				
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objective:

Students are able to understand the basic data structures used in programming (such as arrays and array lists).

Text / References Books:

- 5. E Balaguruswamy, "Object Oriented Programming with C++", Tata McGraw-Hill Education, 2008.
- 6. Paul Deitel, Harvey Deitel, "C++ How to Program", 8th Edition, Prentice Hall, 2011.
- 7. John R. Hubbard, "Programming with C++", Schaum's Series, 2nd Edition, 2000.
- 8. Harry, H. Chaudhary, "Head First C++ Programming: The Definitive Beginner's Guide", First Create space Inc, O-D Publishing, LLC USA.

10. Write a program to find greatest of three numbers.
11. Write a program to find gross salary of a person
12. Write a program to find grade of a student given his marks.

14. Write a program to print first ten natural numbers.

15. Write a program to print first ten even and odd numbers.

16. Write a program to find grade of a list of students given their marks.

17. Create Matrix class. Write a menu-driven program to perform following Matrix operations (2-D array implementation):

18. Sum b) Difference c) Product d) Transpose

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50		50	100

SEMESTER-V

Name of The Course	Summer Training					
Course Code	BSBC3001					
Prerequisite	Higher Secondary Examination with Chemistry and Biology					
_	or Chemistry, Botany and Zoology or Biochemistry and					
	Chemistry from a recognized Board in science	Chemistry from a recognized Board in science stream with				
	a minimum of 50 % marks in aggregate.					
Corequisite	Students should have understanding of general biology,					
	including a basic knowledge of the biological molecules, the					
	cell, genetics, regulation, structure/function, interaction					
	with the environment, and evolution.					
Antirequisite						
		L	Τ	Р	С	
		0	0	0	3	

Course Objectives:

- By taking summer internships students will be able to:
- Get hands-on experience about real world problems in a field relevant to their major of studies.
- Acquire confidence for employment after graduation.
- Acquire skills important for time management, discipline, self-learning, effective communication and so on.
- Learn practically about team-work, collaboration, and leadership.

CO1	Demonstrate the use of knowledge of basic and applied sciences in project
	based learning.
CO2	Organizes experiments and researches, perform analysis and interpret data
	for the designed project.
CO3	Cooperate effectively as an individual and as a member in the research team.

CO4	Systematize the articulated ideas, comprehend and write effective reports,
	documentation and to communicate effectively.
CO5	Demonstrate knowledge and understanding of research problems and related
	principles to manage projects in multidisciplinary research areas.

COURSE CONTENTS:

Summer Training is considered as a special course involving application of knowledge in solving / analysing /exploring a real life situation / difficult problem. Summer training work may be given in lieu of a discipline specific elective paper/Biochemistry.This should be done in consultation with the faculty supervisor and agency supervisor under whom he / she is getting trained. The project report should be around 40 pages and chaptered as follows:

Chapter I: Introduction Chapter II: Review of Literature Chapter III: Methodology Chapter IV: Results Chapter V: Discussion Chapter VI: Summary and Conclusion

The following weightage is assigned at each stage of Student Project evaluation.

Activity	Remarks		
Zeroth Review	Project scopes and Proposal		
1 st Review	Methods of project Implementation		
2 nd Review	Technical Achievement		
3 rd Review (Final)	Innovation and contribution		
Submission of Project	Two weeks before the viva-voce exam		
Report to the Department			

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Tota	al M	[arks	5		
(IA)	(MTE)	(ETE)						
50		50		100)			
Name of The Course	INHERITANCE BIO	INHERITANCE BIOLOGY						
Course Code	BSDB3003							
Prerequisite	Higher Secondary Ex	xamination with Che	mistry a	and	Biolo	ogy		
_	or Chemistry, Bota	or Chemistry, Botany and Zoology or Biochemistry and						
	Chemistry from a recognized Board in science stream with a							
	minimum of 50 % marks in aggregate.							
Corequisite	Students should have understanding of general biology,							
_	including a basic knowledge of the biological molecules, the							
	cell, genetics, regulat	ion, structure/function	on, inter	acti	on w	vith		
	the environment, and evolution.							
Antirequisite								
			L	Τ	Р	С		
			4	0	0	4		

Course Objectives:

The aim of the course is to provide an understanding of both classical and modern concepts in the areas of transmission, molecular and population Genetics. Practicals are well correlated with the theory topics and designed to support skill• oriented learning outcomes.

Course Outcomes

CO1	Understand Introduction of genetics and Mendelian principles
CO2	Interpret extensions of Mendelian principles
CO3	Demonstrate Extra chromosomal inheritance
CO4	Illustratethe Microbial genetics
CO5	Illustrate the Mutation.
CO6	Evaluate the application of Genetics in improvement of animal, plant and
	human races development and treatment of various disease

Text Book (s)

- Snustad, D.P. and Simmons, M.J. (2009). Principles of Genetics. V Edition, John Wiley and Sons Inc.
- Gardner, E.J., Simmons, M.J., Snustad, D.P. (2008). Principles of Genetics. VIII Edition. Wiley India.
- Benjamin A. Pierce. 2003. Genetics: A Conceptual Approach. W.H, Freeman and Company, New York.

Reference Book (s)

- Klug, W.S., Cummings, M.R., Spencer, C.A. (2012). Concepts of Genetics. X Edition. Benjamin Cummings.
- Russell, P. J. (2009). Genetics- A Molecular Approach. III Edition. Benjamin Cummings.
- Griffiths, A.J.F., Wessler, S.R., Lewontin, R.C. and Carroll, S.B. Introduction to Genetic Analysis. IX Edition. W. H. Freeman and Co.

Unit-1 INTRODUCTION OF GENETICS AND MENDELIAN PRINCIPLES 08 hours

Concept of gene: Allele, multiple alleles, pseudoallele, complementation tests, genotype, phenotype. Mendelian principles; Dominance, segregation, independent assortment.

Unit-2 EXTENSIONS OF MENDELIAN PRINCIPLES 08 hours

Codominance, incomplete dominance, gene interactions, pleiotropy, genomic imprinting, penetrance and expressivity, phenocopy, linkage and crossing over, sex linkage, sex limited and sex influenced characters.

Unit-3EXTRA CHROMOSOMAL INHERITANCE 08hours

Inheritance of Mitochondrial and chloroplast genes, maternal inheritance. Quantitative genetics: Polygenic inheritance, heritability and its measurements, QTL mapping.

Unit-4MICROBIAL GENETICS

Methods of genetic transfers – transformation, conjugation, transduction and sexduction, mapping genes by interrupted mating, fine structure analysis of genes.

10 hours

Unit-5MUTATION

12hours

Types, causes and detection, mutant types – lethal, conditional, biochemical, loss of function, gain of function, germinal verses somatic mutants, insertional mutagenesis. Structural and numerical alterations of chromosomes: Deletion, duplication, inversion, translocation, ploidy and their genetic implications. Recombination: Homologous and non-homologous recombination.

Unit-6 Recent Advancement in inheritance biology04hoursResearch article/ Review paper/ MOOC04hours

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	PLANT BIOCHEMISTRY						
Course Code	BSBC3004						
Prerequisite	Higher Secondary Examination with Chemistry and Biology						
	or Chemistry, Botany and Zoology or Bioche	or Chemistry, Botany and Zoology or Biochemistry and					
	Chemistry from a recognized Board in science st	Chemistry from a recognized Board in science stream with a					
	minimum of 50 % marks in aggregate.						
Corequisite	Students should have understanding of general biology,						
	including a basic knowledge of the plant physiology and their						
	interaction with the environment, and evolution.						
Antirequisite							
	L	Τ	Р	C			
	0	0	0	12			

Course Objectives: Students are able to understand the basic concept of plant biochemistry Course Outcomes

CO1	Describe the structure and cell organelle of plant cell.
CO2	Explain the mechanism of photophospholyration.
CO3	Discuss about the mitochondrial shuttle system.
CO4	Explain the significance of nitrogen metabolism.
CO5	Describe the effect of plant hormone and plant growth.
CO6	Evaluate the recent advancement in plant biochemistry

Text Book (s)

- 1) Textbook of Biochemistry with Clinical Correlations (2011) Devlin, T.M. John Wiley & Sons, Inc. (New York), ISBN: 978-0-4710-28173-4.
- 2) Nutrition for health, fitness and sport (2013) ; Williams.M.H,Anderson,D.E, Rawson,E.S. McGraw Hill international edition. ISBN-978-0-07-131816-7.

Reference Book (s)

- 1) Krause's Food and Nutrition Care process.(2012); Mahan, L.K Strings, S.E, Raymond, J. Elsevier's Publications. ISBN- 978-1-4377-2233-8.
- 2) The vitamins, Fundamental aspects in Nutrition and Health (2008); G.F. Coombs Jr. Elsevier's Publications. ISBN-13- 978-0-12- 183493-7.

Unit-11 Introduction to Plant cell structure	10 hours					
Plasma membrane, Vacuole and tonoplast membrane, peroxisomes.	cell wall, plastids and					
Unit-2 Photosynthesis and Carbon assimilation	10 hours					
Pigments of photosynthesis; Role of carotenoids; Photosysten Photosynthetic electron transport and generation of NADPH cyclic photophosphorylations; Complexes associated with thy harvesting complexes; Path of carbon in photosynthesis – C3 a reduction and its regulation; Photorespiration	Pigments of photosynthesis; Role of carotenoids; Photosystems I and II; Hill reaction; Photosynthetic electron transport and generation of NADPH & ATP; Cyclic and non- cyclic photophosphorylations; Complexes associated with thylakoid membranes; Light harvesting complexes; Path of carbon in photosynthesis – C3 and C4 pathway of carbon reduction and its regulation; Photorespiration					
Unit- 3 Respiration 10 hours Overview of glycolysis, Alternative reactions of glycolysis glycolysis, Translocation of metabolites across mitochondrial membrane NAD(P)H oxidative pathways; Cyanide resistant respiration.	sis, Regulation of plant e, TCA cycle, Alternative					
Unit- Nitrogen metabolism hours	10					
Biological Nitrogen fixation by free living and in symbiotic as function of enzyme Nitrogenase. Nitrate assimilation: Nitra Primary and secondary ammonia assimilation in plants; ammonia assi synthetase-glutamine oxoglutarate amino transferase (GS- storage proteins in legumes and cereals.	ssociation, structure and te and Nitrite reductase. imilation by Glutamine GOGAT) pathway. Seed					
Unit-5 Regulation of plant growth and secondary Metabolites	s 05hours					
Introduction to plant hormones and their effect on plant g	rowth and development					

Introduction to plant hormones and their effect on plant growth and development, Regulation

of plant morphogenetic processes by light. Representatives alkaloid group and their amino acid precursors, function of alkaloids, Examples of major phenolic groups; simple phenylpropanoids, Coumarins, Benzoic acidderivatives, flavonoids, tannins and lignin, biological role of plant phenolics, Classification of terpenoids and representative examples from each class, biological functions of terpenoids Unit-6 Recent Advancement in plant biochemistry 04hours

Unit-6 Recent Advancement in plant biochemistry Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	FOOD AND NUTRITION					
Course Code	BSBC3005					
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.					
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.					
Antirequisite						
		L	Τ	Р	С	
		4	0	0	4	

Course Objectives: Students are able to understand the basic concept of food and nutrition. Course Outcomes

CO1	Illustrate the basic concepts of energy metabolism.
CO2	Interpret the function of carbohydrate in living system.
CO3	Evaluate the classification, source and function of lipid.
CO4	Evaluate the role of protein in body.
CO5	Analyze the structure and functions of vitamins and minerals.
CO6	Evaluate the recent development in field of food and nutrition

Text Book (s)

- 1) Textbook of Biochemistry with Clinical Correlations (2011) Devlin, T.M. John Wiley & Sons, Inc. (New York), ISBN: 978-0-4710-28173-4.
- 2) Nutrition for health, fitness and sport (2013) ; Williams.M.H,Anderson,D.E, Rawson,E.S. McGraw Hill international edition. ISBN-978-0-07-131816-7.
- 3) Krause's Food and Nutrition Care process.(2012); Mahan, L.K Strings, S.E, Raymond, J. Elsevier's Publications. ISBN- 978-1-4377-2233-8.

Reference Book (s)

1. The vitamins, Fundamental aspects in Nutrition and Health (2008); G.F. Coombs Jr. Elsevier's Publications. ISBN-13-978-0-12-183493-7

Unit-1 Introduction to Nutrition and Energy Metabolism(15 hours)

Defining Nutrition, role of nutrients. Unit of energy, Biological oxidation of foodstuff., Physiological energy value of foods, SDA. Measurement of energy expenditure. Direct and Indirect Calorimetry, factors affecting thermogenesis, energy utilization by cells, energy output – Basal and Resting metabolism, physical activity, factors affecting energy input - hunger, appetite, energy balance Energy expenditure in man. Estimating energy requirements, BMR factors Recommended Nutrient Intakes (RNI) and Recommended Dietary Allowances for different age groups. Anthropometric measurements; Z scores, BMI, skinfold, circumference ratios. Biochemical assessment; Basal metabolic panel, Comprehensive metabolic panel, CBC, Urine Analysis, Assessment of Anemia, ROS assessment, GTT and glycosylated Hb, Differential diagnosis of B12 and folate.

Unit-2 Dietary carbohydrates and health

Review functions of carbohydrates. Digestion, absorption ,utilization and storage, hormonal regulation of blood glucose. Dietary requirements and source of carbohydrates, Dietary fiber, role of fibre in lipid metabolism, colon function, blood glucose level and GI tract functions.

Unit- 3 Dietary lipid and health

Review of classification, sources, functions, digestion, absorption, utilization and storage. Essential Fatty Acids; Functions of EFA, RDA, – excess and deficiency of EFA. Lipotropic factors, role of saturated fat, cholesterol, lipoprotein and triglycerides. Importance of the following: a) Omega – fatty acids. Omega 3/ omega 6 ratio b) Phospholipids c) Cholesterol in the body d) Mono, Polyunsaturated and Saturated Fatty Acids. Dietary implications of fats and oils, Combination ratios of n6 and n3, MUFA, PUFA and SFA.

Unit-4 Dietary Proteins and health hours)

Review of functions of proteins in the body, Digestion and absorption. Essential and Nonessential amino acids. Amino Acid Availability Antagonism, Toxicity and Imbalance, Amino acid Supplementation. Effects of deficiency. Food source and Recommended Dietary Allowances for different age group. Amino acid pool. NPU, Biological Value, Nitrogen balance. PEM and Kwashiorkor

Unit-5 Vitamins and Minerals

(15 hours)

Classification and nutritional aspects of the vitamins and minerals, Vitamin A, C, E,K and D Dietary sources, RDA, Adsorption, Distribution, Metabolism and

(10 hours)

(**05 hours**)

(05

excretion(ADME), Deficiency. Role of Vitamin A as an antioxidant, in Visual cycle, dermatology and immunity. Role of Vitamin K in Gamma carboxylation. Role of Vitamin E as an antioxidant. Extra-skeletal role of Vitamin D and its effect on bone physiology. Hypervitaminosis. Vitamin C role as cofactor in amino acid modifications. Niacin- Metabolic interrelation between tryptophan, Niacin and NAD/ NADP. Vitamin B6-Dietary source, RDA, conversion to Pyridoxal Phosphate. Role in metabolism, Biochemical basis for deficiency symptoms. Vitamin B12 and folate; Dietary source, RDA, absorption, metabolic role Biochemical basis for deficiency symptoms.

and extinction.	
Unit-6 Recent Advancement in food and nutrition	04hours
Research article/ Review paper/ MOOC	

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOCHEMISTRY LAB-VI				
Course Code	BSBC3010				
Prerequisite	Higher Secondary Examination with Chemist or Chemistry, Botany and Zoology or Bio Chemistry from a recognized Board in science minimum of 50 % marks in aggregate.	ry a chei e str	nd 1 mist ream	Biol ry a 1 wit	ogy and h a
Corequisite	Students should have understanding of instruments.	ge	ener	al	lab
Antirequisite					
		L	Τ	Р	С
		0	0	6	3

Course Objectives: Students are able to understand the basic concept and working principle of colorimetry, different chromatographic techniques. .

CO1	Understand the Principles of Colorimetry
CO2	Illustrate principle and applications of of Beer-Lambert's law
CO3	Determination of molar extinction coefficient of NADH
CO4	Separate of Plant pigments/lipids/sugars by different chromatographic techniques
CO5	Separation and amplify DNA using electrophoresis and chromatography

S.N.	Name of Practicals
1.	Principles of Colorimetry
2.	Verification of Beer-Lambert's law – Protein quantification by Biuret's method.

3.	Determination of molar extinction coefficient of NADH.
4.	Demonstrate the principle of HPLC
5.	Separation of Plant pigments/lipids/sugars by Thin layer chromatography.
6.	Gel Electrophoresis of DNA.
7.	Gas chromatography
8	To amplify DNA using PCR.
9	Restriction digestion of DNA
10	Western blotting of proteins from SDS-PAGE.
11	Separation of proteins by isoelectric focusing.
12	To perform immuno-diffusion by Ouchterlony/ Mancini method.
13	To perform ELISA experiment.
14	Grouping of blood and Rh typing.
15	To perform Agglutination inhibition Assay

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50		50	100

Name of The Course	BIOCHEMISTRY LAB-VII	
Course Code	BSBC3011	
Prerequisite	Higher Secondary Examination with Chemistry and Biolog or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with minimum of 50 % marks in aggregate.	gy nd 1 a
Corequisite	Students should have understanding of general la instruments.	ab
Antirequisite		
	L T P	С
	0 0 6	3

Course Objectives:

The students will be able to apply the principles of transmission and inheritance in real life situations.

CO1	Explain the characteristic features of polytene chromosome.
CO2	Illustrate concept of chromosomal abbreviations
CO3	Elucidate the concept of autosomal and sex linked inheritance.
CO4	To calculate the allelic and genotype frequencies in population.
CO5	Illustrate the concept of pedigree analysis.

S.N.	Name of Practicals
1.	Squash preparation of salivary glands of Dipteran larva to observe
	polytene chromosome
2.	Induction of polyploidy in onion roots.
3.	Smear technique to demonstrate sex chromatin in buccal epithelial cells.

4.	Monohybrid crosses in Drosophila for studying autosomal and sex linked
	inheritance.
5.	PTC testing in a population and calculation of allelic and genotype
	frequencies.
6.	Study of abnormal human karyotype and pedigrees (dry lab)

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50		50	100

SEMESTER VI

Name of The Course	Dissertation					
Course Code	BSBC9997					
Prerequisite	Higher Secondary Examination with Chemistry and Biology					
	or Chemistry, Botany and Zoology or Bio	oche	mis	try	and	
	Chemistry from a recognized Board in science	e sti	rean	n wi	th a	
	minimum of 50 % marks in aggregate.					
Corequisite	Students should have understanding of general biology,					
	including a basic knowledge of the biological molecules, the					
	cell, genetics, regulation, structure/function, interaction with					
	the environment, and evolution.					
Antirequisite	irequisite					
		L	Τ	Р	C	
		0	0	0	12	

Course Objectives:

The aim is to develop an understanding of the processes and skills required to undertake a supervised research project at masters level of study. The objectives are

- To develop research skills commensurate with the accomplishment of a masters degree.
- To develop skills in independent inquiry.
- To produce a coherent and logically argued piece of writing that demonstrates competence in research and the ability to operate independently.
- To address issues of research design, methodology, ethics and theoretical arguments, and apply these to your own research.

CO1	Demonstrate the use of knowledge of basic and applied sciences in project
	based learning.
CO2	Organizes experiments and researches, perform analysis and interpret data
	for the designed project.
CO3	Cooperate effectively as an individual and as a member in the research team.
CO4	Systematize the articulated ideas, comprehend and write effective reports,
	documentation and to communicate effectively.
CO5	Demonstrate knowledge and understanding of research problems and related
	principles to manage projects in multidisciplinary research areas.

Project work/Dissertation is considered as a special course involving application of knowledge in solving / analyzing /exploring a real life situation / difficult problem. A Project/Dissertation work may be given in lieu of a discipline specific elective paper/Biochemistry. This should be done in consultation with the faculty supervisor and agency supervisor under whom he / she is getting trained. The project report should be around 100 pages and chaptered as follows:

Chapter I: Introduction Chapter II: Review of Literature Chapter III: Methodology Chapter IV: Results Chapter V: Discussion Chapter VI: Summary and Conclusion

The research should be original and should be action oriented in that the results should be able to throw light on some of the important unexplored areas that would be of practical use to the forensic experts.

Students are expected to decide on the specific project area and title, and carry out substantial portion of the literature survey during the end of their 3rd semester.After the end of their 3rdsemester ETEs, each student will be asked to make presentation about the project including literature available, objective sought and work plan including methodologiesto the Student Project Monitoring Committee constituted by the Division Chair. The Project Work may be a work based on theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, etc. or a combination of these. The final project report will be evaluated by a panel of examiners consisting of Dean,DC, PC,supervisor and Co-supervisor (wherever applicable) and an External Examiner. Viva-voce examination for the same will be conducted.

The following weightage is assigned at each stage of Student Project evaluation.

Activity	Remarks
Zeroth Review	Project scopes and Proposal
1 st Review	Methods of project Implementation
2 nd Review	Technical Achievement
3 rd Review (Final)	Innovation and contribution
Submission of Project	Two weeks before the viva-voce exam
Report to the Department	

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50		50	100

Name of The Course	Web based course/seminar				
Course Code	BSDB3010				
Prerequisite	Candidate for admission to the first year of B.Sc. Degree Course in Biochemistry should passed the Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology with a minimum of 50 % marks in aggregate				
Corequisite	Students should have understanding of general	bio	log	gy.	
Antirequisite					
	L	,	Г	P	С
	0		0	0	2

Course Objectives:

- **Students are** directly engage and learn particular subject of their interest. This strengthens the fundamentals of the student in the course.
- It gives the students the opportunities to explore new areas of interest. Also gives students the opportunity to learn in greater depth the subjects they wish to master.
- Promotes the self-learning initiative of the students where their own motivation is what drives them to complete the course. This fosters the habit of keeping oneself updated always by means of self-study.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	ETE	Total Marks
50		50	100

ELECTIVES GROUP-I

Name of The Course	BIOINFORMATICS				
Course Code	BSDB2011				
Prerequisite	Higher Secondary Examination with Chemistry or Chemistry, Botany and Zoology or Bioch Chemistry from a recognized Board in science s minimum of 50 % marks in aggregate.	y a her str	nd 1 nist ean	Biolo ry a n wit	ogy and h a
Corequisite	Students should have understanding of general biology, including a basic knowledge of the computer science.				
Antirequisite					
	I		Τ	Р	С
	4	I.	0	0	4

Course Objectives: Students are able to understand the basic concept of bioinformatics. Course Outcomes

CO1	Describe the Introduction of Computer Fundamentals
CO2	It Interpret the Introduction of Bioinformatics and Biological Databases

CO3	Demonstrate Sequence Alignments, Phylogeny and Phylogenetic trees
CO4	Evaluate Genome organization and analysis
CO5	Evaluate Protein Structure Predictions
CO6	Eloborate the recent advancement in bioinformatics.

Text Book (s)

1. Saxena Sanjay (2003) A First Course in Computers, Vikas Publishing House

2. Pradeep and Sinha Preeti (2007) Foundations of Computing, 4th ed., BPB Publications

3. Lesk M.A.(2008) Introduction to Bioinformatics . Oxford Publication, 3rd International Student

Edition

4. Rastogi S.C., Mendiratta N. and Rastogi P. (2007) Bioinformatics: methods and applications,

genomics, proteomics and drug discovery, 2nd ed. Prentice Hall India Publication

5. Primrose and Twyman (2003) Principles of Genome Analysis & Genomics. Blackwell

Reference Book (s)

1. Saxena Sanjay (2003) A First Course in Computers, Vikas Publishing House

2. Pradeep and Sinha Preeti (2007) Foundations of Computing, 4th ed., BPB Publications

3. Lesk M.A.(2008) Introduction to Bioinformatics . Oxford Publication, 3rd International Student

Edition

4. Rastogi S.C., Mendiratta N. and Rastogi P. (2007) Bioinformatics: methods and applications,

genomics, proteomics and drug discovery, 2nd ed. Prentice Hall India Publication

5. Primrose and Twyman (2003) Principles of Genome Analysis & Genomics. Blackwell

Unit-1 INTRODUCTION TO COMPUTER FUNDAMENTALS12 hours

RDBMS - Definition of relational database, Mode of data transfer (FTP, SFTP, SCP), advantage of encrypted data transfer.

Unit-2 INTRODUCTION TO BIOINFORMATICS AND BIOLOGICAL DATABASES 10hours

Biological databases - nucleic acid, genome, protein sequence and structure, gene expression databases, Database of metabolic pathways, Mode of data storage - File formats - FASTA, Genbank and Uniprot, Data submission & retrieval from NCBI, EMBL, DDBJ, Uniprot, PDB.

Unit-3SEQUENCE ALIGNMENTS, PHYLOGENY AND PHYLOGENETIC TREES09hours

Local and Global Sequence alignment, pairwise and multiple sequence alignment. Scoring an alignment, scoring matrices, PAM & BLOSUM series of matrices. Types of phylogenetic trees, Different approaches of phylogenetic tree construction -UPGMA, Neighbour joining, Maximum Parsomony, Maximum likelihood.

Unit-4GENOME ORGANIZATION AND ANALYSIS

08 hours

Diversity of Genomes: Viral, prokaryotic & eukaryotic genomes; Genome, transcriptome, proteome, 2-D gel electrophoresis, Maldi Toff spectroscopy; Major features of completed genomes: *E.coli*, *S.cerevisiae*, *Arabidopsis*, Human.

Unit-5PROTEIN STRUCTURE PREDICTIONS

08 hours

Hierarchy of protein structure - primary, secondary and tertiary structures, modelling; Structural Classes, Motifs, Folds and Domains; Protein structure prediction in presence and absence of structure template; Energy minimizations and evaluation by Ramachandran plot

Protein structure and rational drug design.

Unit-6 RECENT ADVANCEMENT IN BIOINFORMATICS

04hours

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOSTATISTICS				
Course Code	BSDB2012				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the statistics.				
Antirequisite					
_	I	. '	T	Р	С
	4	(0	0	4

Course Objectives: Students are able to understand the basic concept of biostatistics. Course Outcomes

CO1	Understand Measures of central tendency, Correlation and Regression
CO2	Interpret Mean and Variance, namely Binomial, Poisson
CO3	Demonstrate parametric and non-parametric statistics.
CO4	Illustrate the Sampling Distributions, Standard Error, Testing of Hypothesis
CO5	Illustratethe Large Sample Test based and Small sample test
CO6	Eloborate the recent development in field of biostatistics

Text Book (s)

- 3. Edmondson and D. Druce : Advanced Biology Statistics, Oxford University Press; 1996.
- 4. W. Danial : Biostatistics : A foundation for Analysis in Health Sciences, John Wiley and Sons Inc; 2004

Reference Book (s)

3. Edmondson and D. Druce : Advanced Biology Statistics, Oxford University Press; 1996.

4. W. Danial : Biostatistics : A foundation for Analysis in Health Sciences, John Wiley and Sons Inc; 2004

Unit-1 INTRODUCTION TO COMPUTER FUNDAMENTALS

12 hours

Measures of central tendency, Measures of dispersion; skewness, kurtosis; Elementary Probability and basic laws; Discrete and Continuous Random variable, Mathematical Expectation; Curve Fitting; Correlation and Regression. Emphasis on examples from Biological Sciences.

Unit-2 INTRODUCTION TO BIOINFORMATICS AND BIOLOGICAL DATABASES 10 hours

Mean and Variance of Discrete and Continuous Distributions namely Binomial, Poisson, Geometric, Weibull, Logistic and Normal distribution. Fitting of Distributions.

Unit-3SEQUENCE ALIGNMENTS, PHYLOGENY AND PHYLOGENETIC TREES09 hours

Statistical methods: Scope of statistics: utility and misuse. Principles of statistical analysis of biological data. Sampling parameters. Difference between sample and Population, Sampling Errors, Censoring, difference between parametric and non-parametric statistics.

Unit-4GENOME ORGANIZATION AND ANALYSIS 08hours

Sampling Distributions, Standard Error, Testing of Hypothesis, Level of Significance and Degree of Freedom.

Unit-5PROTEIN STRUCTURE PREDICTIONS

08hours

Large Sample Test based on Normal Distribution, Small sample test based on t-test, Z- test and F test; Confidence Interval; Distribution-free test - Chi-square test. Basic introduction to Multivariate statistics, etc.

Unit-6 RECENT ADVANCEMENT IN BIOSTATICS 04hours

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOPHYSICS		
Course Code	BSDB2013		
Prerequisite	Higher Secondary Examination with Chemistry and	Biolo	gy
	or Chemistry, Botany and Zoology or Biochemist	try a	nd
	Chemistry from a recognized Board in science stream	n witl	h a
	minimum of 50 % marks in aggregate.		
Corequisite	Students should have understanding of general	biolog	gy,
	including a basic knowledge of the physics.		
Antirequisite			
		P	C
	4 0	0	4

Course Objectives: Students are able to understand the basic concept of biophysics. Course Outcomes

CO1	Understand numerical models with non-linear algebraic equations, numerical
	integration.
CO2	Describe the principle and working of crystallography.
CO3	Interpret the applications of numerical methods in biological systems.
CO4	Demonstrate the use of quantum biology.
CO5	understand the theoretical modeling of biomolecules.
CO6	Elucidate the recent advancement in field of biophysics.

Text Book (s)

- 6. A Textbook of Biophysics: For Medical Science and Biological Science Students by RN Roy
- 7. Introduction to Biophysics by Pranab Kumar Banerjee
- 8. An Introduction to Biophysics by David Burns
- 9. Fundamentals and Techniques of Biophysics and Molecular Biology by Pranav Kumar
- 10. Biological Physics: Energy, Information, Life by Philip Nelson

Reference Book (s)

- 6. A Textbook of Biophysics: For Medical Science and Biological Science Students by RN Roy
- 7. Introduction to Biophysics by Pranab Kumar Banerjee
- 8. An Introduction to Biophysics by David Burns
- 9. Fundamentals and Techniques of Biophysics and Molecular Biology by Pranav Kumar
- 10. Biological Physics: Energy, Information, Life by Philip Nelson

Unit-1 NUMERICAL METHODS

Introduction to numerical methods, solutions to non-linear algebraic equations by the method of iteration and Newton aphson method, numerical integration by trapezoidal rule and simpson's rule, numerical solution of ordinary differential equations by picard's method of successive approximation, Euler's method and Runge-Kutta method.

Unit-2 ELEMENTARY CRYSTALLOGRAPHY

10 hours

12 hours

Introduction, symmetry in crystals, lattices and unit cells, crystal systems, Bravais lattices, elements of symmetry- rotation axis, mirror planes and center of inversion, point group symmetry- monoaxial point groups, polyaxial point groups, translational symmetry- screw axis and glide planes, space group, equivalent points, X-ray diffraction and Bragg equation.

Unit-3MATHEMATICAL METHODS AND THEIR APPLICATIONS IN BIOLOGICAL SYSTEMS 09hours

Ordinary differential equations of the first degree and first order (variable separable method, linear equation), linear differential equations of the second order with constant coefficients, the Laplace Transform, Inverse Laplace transform, application of Laplace transform to solutions of differential equations, Fourier series and their applications.

Unit-4QUANTUM BIOLOGY AND ITS USES

08hours

Classical mechanics, Newton, Lagrange and Hamilton's equations, Schrodinger's equation and its complete solution for S.H.O, central force and angular momentum.

Unit-5THEORETICAL MODELING OF BIOMOLECULAR SYSTEMS 08hours

Basic principles of modeling, modeling by energy minimization technique, concept of rotation about bonds, energy minimization by basic technique for small molecules, Ramachandran plot, torsional space minimization, energy minimization in cartesian space, molecular mechanics-basic principle, molecular dynamics basic principles.

Unit-6 RECENT ADVANCEMENT IN BIOPHYSICS 04hours

Research article/ Review paper/ MOOC

Continuous As	sessment Pattern
----------------------	------------------

Internal Assessment	Mid Term Test	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	ORGANIC FARMING				
Course Code	BSDB2014				
Prerequisite	Higher Secondary Examination with Chemistr	ry a	nd	Biol	ogy
_	or Chemistry, Botany and Zoology or Bioc	cher	nist	try a	and
	Chemistry from a recognized Board in science	str	ean	a wit	h a
	minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of gen including a basic knowledge of the biological cell, genetics, regulation, structure/function, in the environment, and evolution.	ner mo ter	al lecu acti	biolo ıles, on w	gy, the /ith
Antirequisite					
]	L	Τ	Р	С
		4	0	0	4

Course Objectives: To provide a broad foundation in organic farming.

Course	Outcomes
CO1	To understand the basic concept of organic farming.
CO2	To describe the concept of green manuring.
CO3	To identify the different methods of organic plant protection
CO4	To explain various types of organic crop production methods.
CO5	To understand the basic concept of farm economy.
C06	To evaluate the recent development if field of organic farming.

Text Book (s)

- 4. Dubey, R.C., 2005 A Text book of Biotechnology S.Chand & Co, New Delhi.
- 5. Kumaresan, V. 2005, Biotechnology, Saras Publications, New Delhi.
- 6. John Jothi Prakash, E. 2004. Outlines of Plant Biotechnology. Emkay -Publication, New Delhi.

Reference Book (s)

- 4. Sathe, T.V. 2004 Vermiculture and Organic Farming. Daya publishers.
- 5. Subha Rao, N.S. 2000, Soil Microbiology, Oxford & IBH Publishers, New _Delhi.
- 6. Vayas, S.C., Vayas, S. and Modi, H.A. 1998 Bio-fertilizers and organic Farming Akta Prakashan, Nadiad

Unit-1 INTRODUCTION TO ORGANIC FARMING 08 hour Green manuring and organic fertilizers, Recycling of biodegradable municipal, agricultural and Industrial wastes - biocompost making methods, types and method of vermicomposting – field Application.

Unit-2 ORGANIC PLANT NUTRIENT MANAGEMENT

10 hour Organic farming systems, soil tillage, land preparation and mulching, Choice of Propagation-seed, planting materials and seed treatments, water varieties. management Green manuring, composting- principles, stages, types and factors, composting methods, Vermi composting, Bulky organic manures, concentrated organic manures, organic preparations, organic amendments and sludges

Unit-3 ORGANIC PLANT PROTECTION

09 hours Plant protection- cultural, mechanical, botanical pesticides, control agents, Weed management, Standards for organic inputs- plant protection.

Unit-4 ORGANIC CROP PRODUCTION PRACTICES

10 hours

Organic crop production methods- rice, coconut. Organic crop production methodsvegetables- okra, amaranthus, cucurbits. Livestock component in organic farming. Sustainable Agriculture-Apiculture, Mushroom cultivation.

Unit-5 ORGANIC CERTIFICATION

08 hours

Farm economy: Basic concept of economics- demand & supply, economic viability of a farm. Basic production principles, reducing expenses, ways to increase returns, cost of production system. Benefit/ cost ratio, marketing, imports and exports. Policies and incentives of organic production. Farm inspection and certification. Terrace farming. **Unit-6 RECENT ADVANCEMENT IN ORGANIC FARMIMG** 04hours

Research article/ Review paper/ MOOC

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Continuous Assessment Pattern

Name of The Course	BIOFERTILIZERS AND PESTICIDES				
Course Code	BSDB2015				
Prerequisite	Higher Secondary Examination with Chemist	try a	nd	Biol	ogy
	or Chemistry, Botany and Zoology or Biochemistry and				
	Chemistry from a recognized Board in scienc	e str	ean	n wit	h a
	minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology,				
	including a basic knowledge of the biological molecules, the				
	cell, genetics, regulation, structure/function, interaction with				
	the environment, and evolution.				
Antirequisite					
		L	Τ	P	C
		4	0	0	4

Course Objectives: To provide basic understanding of biofertilizer and pesticides.Course Outcomes

CO1	To understand the basic concept of biofertilizer.
CO2	To identify the role of azospirillium as biofertilizer .
CO3	To explain the process of nitrogen fixation.
CO4	To explain various types of mycorrhizal association.
CO5	To elucidate the basic concept of pest and pest management.
CO6	To elaborate the recent development in field of biofertilizers and pesticides

Text Book (s)

1.Palaniappan SP & Anandurai K. 1999. Organic Farming–Theory and Practice. Scientific Publishers, Jodhpur

2. Joshi, M. 2014. New Vistas of Organic Farming 2nd Ed. Scientific Publishers, Jodhpur.3. Farming system : Theory and Practice - S.A.Solaimalai

Reference Book (s)

- 3. Organic Farming: Theory and Practice- S.P.Palaniappan and K.A. Annadurai
- 4. A hand book of Organic Farming by A.K.Sharma

Unit-1 INTRODUCTION TO BIOFERTILIZERS

hour

General account about the microbes used as biofertilizer – Rhizobium – isolation, identification, mass multiplication, carrier based inoculants, Actinorrhizal symbiosis.

Unit-2 AZOSPIRILLUM

10 hour

08

Azospirillum: isolation and mass multiplication – carrier based inoculant, associative effect of different microorganisms. Azotobacter: classification, characteristics – crop response to Azotobacter inoculum, maintenance and mass multiplication

Unit-3 CYANOBACTERIA

09 hours

Cyanobacteria (blue green algae), Azolla and Anabaena azollae association, nitrogen fixation, factors affecting growth, blue green algae and Azolla in rice cultivation.

Unit-4 MYCORRHIZAL ASSOCIATION

10 hours

Mycorrhizal association, types of mycorrhizal association, taxonomy, occurrence and distribution, phosphorus nutrition, growth and yield – colonization of VAM – isolation and inoculum production of VAM, and its influence on growth and yield of crop plants.

Unit-5 PEST & PEST MANAGEMENT

08 hours

Classification of pesticides on chemical nature and according to target species, mode of action, Methods of pest controls – Classification: Natural & applied control [Physical, mechanical, cultural, biological, genetic, regulatory, chemical controls] Integrated pest management..

Unit-6 RECENT ADVANCEMENT IN BIOFERTILIZERS AND PESTICIDES 04hours

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

GROUP-II

Name of The Course	NANOBIOTECHNOLOGY							
Course Code	BSDB3011							
Prerequisite	Higher Secondary Examination with Chemistry and Biology							
-	or Chemistry, Botany and Zoology or Biochemistry and							
	Chemistry from a recognized Board in science stream with a							
	minimum of 50 % marks in aggregate.							
Corequisite	Students should have understanding of g	ener	al I	oiolo	gy,			
_	including a basic knowledge of the biological molecules, the							
	cell, genetics, regulation, structure/function, interaction with							
	the environment, and evolution.							
Antirequisite								
		L	Τ	Р	С			
		4	0	0	4			

Course Objectives: Students are able to understand the basic concept of nanotechnology. Course Outcomes

CO1	Understand the fundamentals of nanotechnology
CO2	Demonstrate the physical and chemical methods of synthesis of nanomaterials

C O3	Dem	onstra	ate th	e biologica	l metł	hods	s of	f sy	yntl	hesis	s of	nanomaterials	
	0	11	41	0	4	• •	•		• •	1			

- CO4 Generalize the use of nanomaterials in biotechnology
- CO5 Illustrate the applications of nanobiotechnology

CO6 Evaluate the recent advancement in field of nanotechnology.

Text Book (s)

- 5. 1. Nanobiotechnology: Concepts, Applications and Perspectives (2004), ChristofM.Niemeyer (Editor), Chad A. Mirkin (Editor), Wiley VCH.
- 6. Nanobiotechnology II more concepts and applications. (2007) Chad A Mirkin and Christof M. Niemeyer (Eds), Wiley VCH.
- 7. Pradeep T., "A Textbook of Nanoscience and Nanotechnology", Tata McGraw Hill Education Pvt. Ltd., 2012.
- 8. Hari Singh Nalwa, "Nanostructured Materials and Nanotechnology", Academic Press, 2002.

Reference Book (s)

- 5. 1. Nanobiotechnology: Concepts, Applications and Perspectives (2004), ChristofM.Niemeyer (Editor), Chad A. Mirkin (Editor), Wiley VCH.
- 6. Nanobiotechnology II more concepts and applications. (2007) Chad A Mirkin and Christof M. Niemeyer (Eds), Wiley VCH.
- 7. Pradeep T., "A Textbook of Nanoscience and Nanotechnology", Tata McGraw Hill Education Pvt. Ltd., 2012.
- 8. Hari Singh Nalwa, "Nanostructured Materials and Nanotechnology", Academic Press, 2002.

Unit-1 INTRODUCTION TO NANOTECHNOLOGY 10 hours

Historical perspectives, Existence of nanostructures in nature, Nanoscale Properties (Electrical, Optical, Chemical) Nanomaterials - Quantum Dots, Wells and Wires, nanotubes, graphene, nanogold, nanosilver and metal oxides, Nanopolymers.

Unit-2 SYNTHESIS OF NANOMATERIALS

10hours

Physical Methods: Ball Milling, Electrodeposition, DC/RF Magnetron Sputtering, Molecular Beam Epitaxy (MBE).Chemical Methods: Metal Nanocrystals by Reduction, Solvothermal Synthesis, Photochemical Synthesis, Chemical Vapor Deposition (CVD), Metal Oxide - Chemical Vapor Deposition (MOCVD).

Unit-3BIOLOGICAL SYNTHESIS OF NANOMATERIALS10 hours

Synthesis using Microorganisms, Synthesis using Biological templates, synthesis using plants and plant extracts.

Unit-4 NANOMATERIAL IN BIOTECHNOLOGY

08 hours

Biological nanomaterials and Biomimetic synthesis of nanomaterials – magnetosomes, spider milk, bone, shell. Device based on assemblies of nanoparticles and biomaterials – Bioelectronic devices, nanocircuitry, nanomechanical devices, computational devices.

Unit-5 APPLICATIONS OF NANOBIOTECHNOLOGY 08 hours

Nanobiosensors, molecular imaging using nanoparticles, targeted drug delivery. Applications in health and disease - infectious and chronic. Nanobiotechnological applications in Environment and food - detection and mitigation.

Unit-6 RECENT ADVANCEMENT IN NANOTECHNOLOGY04hoursResearch article/ Review paper/ MOOC04hours

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIORESOURCE MANAGEMENT						
Course Code	BSDB3012						
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate						
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment and evolution						
Antirequisite							
	L		T	P	С		
	4		0	0	4		

Course Objectives: Students are able to understand the basic concept of bioresource management.

Course Outcomes

CO1	Illustrate the different types of aquaculture
CO2	Summarize the purpose of culturing economically important organisms
CO3	Illustrate the importance of vermiculture
CO4	Describe the origin and importance of cultivated plants
CO5	Generalize the economic uses of various plant products
CO6	Evaluate the recent development in field of bio resource management.

Text Book (s)

- 3. ManjuYadav, Economic Zoology- Discovery publishing house, New Delhi
- 4. Lee R E, Phycology 1999

Reference Book (s)

- 3. ManjuYadav, Economic Zoology- Discovery publishing house, New Delhi
- 4. Lee R E, Phycology 1999

Unit-1 AQUACULTURE

10 hours

Introduction to aquaculture; Prawn culture, Methods of prawn fishing, Preservation and processing of prawn; Pearl culture and status of pearl culture in India; Economically important fishes of India. Setting up of a fish farm, Monoculture and composite fish culture, Bundh breeding, Induced breeding, methods of fishing, Fish preservation and processing; Identification of fish diseases and their control; Snakes and snake venoms.

Unit-2 ECONOMIC ZOOLOGY

08 hours

Overview of Sericulture, Apiculture, Lac culture, Poultry culture, Dairy industry.

Unit-3 VERMICULTURE

08hours

Introduction and scope, Species of earthworm, Characteristics features ofearthworm. Overview of methods of vermicomposting, Role of earthworm in solid waste management. Vermiwash- its importance, Vermicompost as bio-fertilizer.

Unit-4CULTIVATED PLANTS 10 hours

Cultivated Plants: origin and importance with particular reference to the works of A. de Candolle and Vavilov (especially centers of diversity, primary and secondary centers, multiple origin); a brief account of Harlan and Hawkes theories; examples of major introductions; practices of floriculture, agroforestry, sericulture. BT crops (brief account).

Unit-5ECONOMIC USE OF PLANT PRODUCTS 10 hours

Definition, Classification, Names, Morphology and economic uses of important cereals, legumes (pulses and fodders), fruits and vegetables, spices and condiments, beverages, oils and fats, essential oils, medicinal plants, hallucinogens (psychotropic drugs), timber plants, fibre plants, natural rubber, resins, raw materials for paper. A brief account of crop improvement technologies, biosafety considerations, natural products.

Unit-6 RECENT ADVANCEMENT IN BIO RESOURCE MANAGEMENT 04hours

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOSAFETY AND INTELLECTUAL PROPERTY						
	RIGHTS						
Course Code	BSDB3013						
Prerequisite	Higher Secondary Examination with Chemistry and Biology						
	or Chemistry, Botany and Zoology or Biochemistry and						
	Chemistry from a recognized Board in science stream with a						
	minimum of 50 % marks in aggregate.						
Corequisite	Students should have understanding of general biology,						
	including a basic knowledge of the biological molecules, the						
	cell, genetics, regulation, structure/function, interaction with						
	the environment, and evolution.						
Antirequisite							
	L T P C						

Course Objectives: Students are able to understand the basic concept of biosafety and intellectual property rights

Course	e Outcomes
CO1	Understand the fundamentals of biosafety
CO2	Summarize the guidelines of biosafety
CO3	Understand the concepts of intellectual property
CO4	Describe the grant of patents, agreements and treaties
CO5	Evaluate the recent advancement in field of biosafety and intellectual property
	rights

Text Book (s)

- 1. Bare Act, 2007.Indian Patent Act 1970 Acts & Rules, Universal Law Publishing Co. Pvt.Ltd., New Delhi.
- 2. Kankanala C (2007). Genetic Patent Law & Strategy, 1st Edition, Manupatra Information Solution Pvt. Ltd. New Delhi.
- 3. Mittal, D.P. (1999). Indian Patents Law, Taxmann, Allied Services (p) Ltd.
- 4. Singh K K (2015). Biotechnology and Intelectual Property Rights: Legal and Social Impliocations, Springer India.
- 5. Goel D & Prashar S (2013). IPR, Biosafety and Bioethics. Pearson
- 6. Senthil Kumar Sadhasivam and Mohammed Jaabir, M. S. 2008. IPR, Biosafety and biotechnology Management. Jasen Publications, Tiruchirappalli, India.

Reference Book (s)

- 1. Bare Act, 2007.Indian Patent Act 1970 Acts & Rules, Universal Law Publishing Co. Pvt.Ltd., New Delhi.
- 2. Kankanala C (2007). Genetic Patent Law & Strategy, 1st Edition, Manupatra Information Solution Pvt. Ltd. New Delhi.
- 3. Mittal, D.P. (1999). Indian Patents Law, Taxmann, Allied Services (p) Ltd.
- 4. Singh K K (2015). Biotechnology and Intelectual Property Rights: Legal and Social Impliocations, Springer India.
- 5. Goel D & Prashar S (2013). IPR, Biosafety and Bioethics. Pearson
- 6. Senthil Kumar Sadhasivam and Mohammed Jaabir, M. S. 2008. IPR, Biosafety and biotechnology Management. Jasen Publications, Tiruchirappalli, India.

Biosafety: Introduction; biosafety issues in biotechnology; Biological Safety Cabinets & their types; Primary Containment for Biohazards; Biosafety Levels of Specific Microorganisms.

Unit-2 BIOSAFETY GUIDELINES 10hours

Biosafety Guidelines: Biosafety guidelines and regulations (National and International);GMOs/LMOs- Concerns and Challenges; Role of Institutional Biosafety Committees (IBSC), RCGM, GEAC etc. for GMO applications in food and agriculture; Environmental release of GMOs; Risk Analysis; Risk Assessment; Risk management and communication; Overview of International Agreements - Cartagena Protocol. Guidelines for using radioisotopes in laboratories and precautions.

Unit-3INTRODUCTION TO INTELLECTUAL PROPERTY10hours

Introduction to Intellectual Property: Patents, Types, Trademarks, Copyright & Related Rights, Industrial Design and Rights, Traditional Knowledge, Geographical Indications- importance of IPR –patentable and non patentables – patenting life – legal protection of biotechnological inventions – World Intellectual Property Rights Organization (WIPO).

Unit-4GRANT OF PATENT, AGREEMENTS AND TREATIES10 hours

Grant of Patent and Patenting Authorities: Types of patent applications: Ordinary, PCT, Conventional, Divisional and Patent of Addition; An introduction to Patent Filing Procedures; Patent licensing and agreement; Patent infringement- meaning, scope, litigation, case studies, Rights and Duties of patentowner. Agreements and Treaties: GATT, TRIPS, WIPO, Budapest Treaty on international recognition of the deposit of microorganisms etc.

Unit-6 RECENT ADVANCEMENT IN BIOSAFETY AND INTELLECTUAL PROPERTY RIGHTS 04HOURS Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	MUSHROOM CULTIVATION TECHNOLOGY
Course Code	BSDB3015
Prerequisite	Higher Secondary Examination with Chemistry and Biology
_	or Chemistry, Botany and Zoology or Biochemistry and
	Chemistry from a recognized Board in science stream with a
	minimum of 50 % marks in aggregate.
Corequisite	Students should have understanding of general biology,
	including a basic knowledge of the biological molecules, the

	cell, genetics, regulation, structure/function, interaction with the environment, and evolution.						
Antirequisite							
		L	Т	Р	С		
		4	0	0	4		

Course Objectives: Students are able to understand the basic concept of mushroom cultivation technology.

Course Outcomes

CO1	Understand the values of mushroom.
CO2	Describe the technology used for cultivation of mushroom
CO3	Demonstrate the concepts of mushroom bed preparation.
CO4	Demonstrate the process of storage and its nutritional value.
CO5	Understand the concepts of types of foods prepared from mushroom.
CO6	Elucidate the recent development in field of mushroom culture technology.

Text Book (s)

- 5. Marimuthu, T. Krishnamoorthy, A.S. Sivaprakasam, K. and Jayarajan. R (1991) Oyster Mushrooms, Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore.
- 6. Swaminathan, M. (1990) Food and Nutrition. Bappeo, The Bangalore Printing and Publishing Co. Ltd., No. 88, Mysore Road, Bangalore 560018.
- 7. Tewari, Pankaj Kapoor, S.C., (1988). Mushroom cultivation, Mittal Publications, Delhi.
- 8. Nita Bahl (1984-1988) Hand book of Mushrooms, II Edition, Vol. I & Vol. II.

Reference Book (s)

- 5. Marimuthu, T. Krishnamoorthy, A.S. Sivaprakasam, K. and Jayarajan. R (1991) Oyster Mushrooms, Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore.
- 6. Swaminathan, M. (1990) Food and Nutrition. Bappeo, The Bangalore Printing and Publishing Co. Ltd., No. 88, Mysore Road, Bangalore 560018.
- 7. Tewari, Pankaj Kapoor, S.C., (1988). Mushroom cultivation, Mittal Publications, Delhi.
- 8. Nita Bahl (1984-1988) Hand book of Mushrooms, II Edition, Vol. I & Vol. II.

Unit-1 INTRODUCTION TO MUSHROOM CULTIVATION 06 hours

Introduction, history. Nutritional and medicinal value of edible mushrooms; Poisonous mushrooms. Types of edible mushrooms available in India - Volvariellavolvacea, Pleurotuscitrinopileatus, Agaricusbisporus.

Unit-2 CULTIVATION TECHNOLOGY - I 08 hours

Infrastructure: substrates (locally available) Polythene bag, vessels, Inoculation hook, inoculation loop, low cost stove, sieves, culture rack, mushroom unit (Thatched house) water sprayer, tray, small polythene bag. Pure culture: Medium, sterilization, preparation of spawn, multiplication.

Unit-3CULTIVATION TECHNOLOGY-II

08hours

Mushroom bed preparation - paddy straw, sugarcane trash, maize straw, banana leaves. Factors affecting the mushroom bed preparation - Low cost technology, Composting technology in mushroom production.

Unit-4 STORAGE AND NUTRITION

10 hours

Short-term storage (Refrigeration - upto 24 hours) Long term Storage (canning, pickels, papads), drying, storage in saltsolutions. Nutrition - Proteins - amino acids, mineral elements nutrition - Carbohydrates, Crude fibre content - Vitamins.

Unit-5FOOD PREPARATION

08 hours

Types of foods prepared from mushroom. Research Centres - National level and
Regional level. Cost benefit ratio - Marketing in India and abroad, Export Value.Unit-6 Recent Advancement in mushroom technology04hoursResearch article/ Review paper/ MOOC04hours

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	PARASITOLOGY				
Course Code	BSDB3016				
Prerequisite	Higher Secondary Examination with Chemistry and Biology				
-	or Chemistry, Botany and Zoology or Biochemistry and				
	Chemistry from a recognized Board in science	str	ean	ı wit	h a
	minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of ger	ner	al I	biolo	gy,
_	including a basic knowledge of the biological i	mo	lecu	les,	the
	cell, genetics, regulation, structure/function, in	ter	acti	on w	rith
	the environment, and evolution.				
Antirequisite					
]	L	Т	Р	С
	2	4	0	0	4

Course Objectives: Students are able to understand the basic concept of parasitology Course Outcomes

CO1	Describe the basic concept Parasitology
CO2	Interpret about the Parasitic Protists and disease caused by it
CO3	Interpret Parasitic Platyhelminthes
CO4	Elucidate Parasitic Nematodes
CO5	Illustrate Parasitic Arthropoda and Parasitic Vertebrates
CO6	Evaluate the recent advancement in parasite biology.

Text Book (s)

9. Arora, D. R and Arora, B. (2001) Medical Parasitology. II Edition. CBS Publications and Distributors
- 10. E.R. Noble and G.A. Noble (1982) Parasitology: The biology of animal parasites. V Edition, Lea &Febiger
- 11. Ahmed, N., Dawson, M., Smith, C. and Wood, Ed. (2007) Biology of Disease. Taylor and Francis Group
- 12. Parija, S. C. Textbook of medical parasitology, protozoology & helminthology (Text and colour Atlas), II Edition, All India Publishers & Distributers, Medical Books Publishers, Chennai, Delhi
- 13. Rattan LalIchhpujani and Rajesh Bhatia. Medical Parasitology, III Edition, Jaypee Brothers Medical Publishers (P) Ltd., New Delhi
- 14. Meyer, Olsen & Schmidt's Essentials of Parasitology, Murray, D. Dailey, W.C. Brown Publishers
- 15. Thomas C. Cheng (1986). General Parasitology, II Edition, Academic Press Inc
- 16. K. D. Chatterjee (2009). Parasitology: Protozoology and Helminthology. XIII Edition, CBS Publishers & Distributors (P) Ltd. DSE

Reference Book (s)

- 9. Arora, D. R and Arora, B. (2001) Medical Parasitology. II Edition. CBS Publications and Distributors
- 10. E.R. Noble and G.A. Noble (1982) Parasitology: The biology of animal parasites. V Edition, Lea &Febiger
- 11. Ahmed, N., Dawson, M., Smith, C. and Wood, Ed. (2007) Biology of Disease. Taylor and Francis Group
- 12. Parija, S. C. Textbook of medical parasitology, protozoology & helminthology (Text and colour Atlas), II Edition, All India Publishers & Distributers, Medical Books Publishers, Chennai, Delhi
- 13. Rattan LalIchhpujani and Rajesh Bhatia. Medical Parasitology, III Edition, Jaypee Brothers Medical Publishers (P) Ltd., New Delhi
- 14. Meyer, Olsen & Schmidt's Essentials of Parasitology, Murray, D. Dailey, W.C. Brown Publishers
- 15. Thomas C. Cheng (1986). General Parasitology, II Edition, Academic Press Inc
- 16. K. D. Chatterjee (2009). Parasitology: Protozoology and Helminthology. XIII Edition, CBS Publishers & Distributors (P) Ltd. DSE

Unit-1 INTRODUCTION TO PARASITOLOGY	04 hours
Brief introduction of Parasitism, Parasite, Parasitoid biological vector) Host parasite relationship.	and Vectors (mechanical and
Unit-2 PARASITIC PROTISTS	12hours
Study of Morphology, Life Cycle, Prevalence, Epidemic Prophylaxis and Treatment of Entamoebahisto Trypanosomagambiense, Leishmaniadonovani, Plasmo	ology, Pathogenicity, Diagnosis, olytica, Giardia intestinalis, odium vivax.
Unit-3PARASITIC PLATYHELMINTHES08hours	
Study of Morphology, Life Cycle, Prevalence, Epidemic	ology, Pathogenicity, Diagnosis,

Study of Morphology, Life Cycle, Prevalence, Epidemiology, Pathogenicity, Diagnosis,ProphylaxisandTreatmentofFasciolopsisbuski,Schistosomahaematobium, Taeniasolium and Hymenolepis nana.

Unit-4PARASITIC NEMATODES

12 hours

Study of Morphology, Life Cycle, Prevalence, Epidemiology, Pathogenicity, Diagnosis, Prophylaxis and Treatment of Ascarislumbricoides, Ancylostomaduodenale, Wuchereriabancrofti and Trichinellaspiralis. Study of structure, life cycle and importance of Meloidogyne (root knot nematode), Pratylencus (lesion nematode).

Unit-5PARASITIC ARTHROPODA AND PARASITIC VERTEBRATES 08 hours

Biology, importance and control of ticks, mites, Pediculushumanus (head and body louse), Xenopsyllacheopis and Cimexlectularius, A brief account of parasitic vertebrates; Cookicutter Shark, Candiru, Hood Mockingbird and Vampire bat.

Unit-6 RECENT ADVANCEMENT IN PARASITE BIOLOGY

04hours

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Program: B.Sc (H) Forensic Science

Scheme: 2020-2021

Vision

To be recognized globally as a center of excellence in imparting value-based education in Basic and Applied Sciences by creating innovation in fundamental and multidisciplinary research.

Mission

M1. To excel in imparting contemporary knowledge and skills by developing an educational ecosystem with diverse interests and talents.

M2. To perform cutting edge research leading to innovation in sciences through national and international collaborations.

M3. To develop solutions for the emerging challenges in Basic and Applied Science to cater the needs of society.

M4. To attract best quality faculty to facilitate knowledge and develop confidence in our graduates to succeed in the world.

Program Educational Objectives

PEO1:The graduates shall be successful professionals in Academia, Industry, Government and Entrepreneurship.

PEO2: The graduates shall pursue higher education/research at institute of national and international repute.

PEO3: The graduate shall effectively address the challenges of the society and undertake the projects for bridging the gap between industry and societal needs.

Program Specific Objectives

The students shall be able to

PSO1: Exhibit technical skills required for examination of questioned documents and toxicological evidences.

PSO2:Acquire industrial exposure and scientific knowledge through industry internship and research based learning in State and Central forensic labs.

Program Outcomes

PO1: Apply knowledge of basic sciences to the dscipline and to provide the solution in the the area of forensic sciences

PO2: Employ critical thinking and the scientific knowledge to design, carry out, record and analyze the results of complex forensic problems.

PO3: Create a awareness for intricate forensic issues and propagate knowledge for public health and safety, along with the cultural, societal, and environmental considerations.

PO4: Demonstrate the knowledge of forensic science for sustainable development of man, society and environment and provide assistance to the Criminal Justice System and the consequent responsibilities relevant to the society

PO5: Apply ethical principles and commit to professional ethics and responsibilities and norms of the forensic lab professionals or Work proficiently as a member of crime investigating teams

PO6: Proficiently communicate with the forensic community and being able to understand and write effective reports, documentation and make effective presentations.

PO7: Demonstrate knowledge and understanding of the forensic skills and apply these to one's own work, or as a member in a team, to manage projects.

PO8: Develop the ability to critically evaluate theories, methods, principles, and applications of pure and applied science in multidisciplinary domain.

Curriculum

		Semester 1							
Sl.	Course Code	Nome of the Course					Assess	sment Pa	attern
No	Course Code		L	Τ	Р	С	IA	MTE	ETE
1		Introduction to Forensic Science							
1	BBS08T1101	and Criminal Law	3	0	0	3	30	20	50
2	BBS08T1102	Inorganic Chemistry	3	0	0	3	30	20	50
2		Basic of Digital and Cyber							
3	BBS08T1103	Forensics	3	0	0	3	30	20	50
4	BSCF 1003	Biology I	3	0	0	3	30	20	50
5	BSCF1004	Practicals – Biology I			2	1	50		50
6	BBS08T1104	Elements of Basic Physics	3	0	0	3	30	20	50
7	BBS08P1101	Physics Lab I			2	1	50		50
8	XXX	Soft Skill				0			
9	XXX	Computer awareness				0			
10	XXX	Liberal Art				0.5			
11	XXX	BEC-B1				3			
12	XXX	Environmental Science	0	0	0	0.5			
13	XXX	AI and Machine learning				2			
		Total				23			
		Semester II							
Sl	Course Code	Norre of the Correspondence					Assess	sment Pa	attern
No	Course Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1	BBS08T1105	Crime Scene Investigation	3	0	0	3	30	20	50
2		Practicals – Crime Scene							
2	BBS08P1102	Investigation			2	1	50		50
3	BBS08T1106	Forensic Photography	2	0	0	2	30	20	50
4		Practicals – Forensic							
4	BBS08P1103	Photography			2	1	50		50
5	BBS08T1107	Physical Chemistry	3	0	0	3	30	20	50
6		Advanced of Digital and Cyber							
0	BBS08T1108	Forensics	2	0	0	2	30	20	50
7	BBS08P1104	Cyber Lab			2	1	50		50
Q		Practicals – Inorganic and							
0	BBS08P1104	Physical Chemistry			2	1	50		50
9	BBS08T5109	Biology II	3	0	0	3	30	20	50
10	BBS08P5104	Practicals – Biology II			2	1	50		50
11	BBS08T5110	APPLIED OPTICS	3	0	0	3	30	20	50
12	BBS08P5105	Physics Lab II			2	1	50		50
13	XXX	BEC-B2				3	30	20	50
1/		***Two week social internship							
14	XXX	(during summer)				0			
		Total				25			
		Semester III							
Sl	Course Code	Nome of the Course					Assess	sment Pa	attern
No			L	Т	P	С	IA	MTE	ETE
	BSCF2001	Fingerprints	3	0	0	3	30	20	50
	BBS08P2106	Practicals – Fingerprints			2	1	50		50
	BBS08T2111	Forensic Toxicology	3	0	0	3	30	20	50
	BBS08P2107	Practicals – Forensic toxicology			4	2	50		50
	BBS08T2112	Basics of Forensic Psychology	3	0	0	3	30	20	50

	BBS08T2113	Introduction to Criminology	3	0	0	3	30	20	50
	BBS08T2114	Organic Chemistry	3	0	0	3	30	20	50
-	BBS08P2108	Practicals- Organic Chemistry	-		2	1	50		50
	BBS08T5115	Applied Biology-1	3	0	0	3	30	20	50
	BBS08T5116	Atomic Spectra and Applications	3	Ô	Ô	3	30	20	50
				•	•	U			
		Total				25			
		Semester IV							
SI							Assess	ment P	attern
No	Course Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1	BBS08T2117	Forensic Ballistics	3	0	- 0	3	30	20	50
2	BBS08P2109	Practicals – Forensic Ballistics		•	2	1	50		50
-		Recent Advancement of Forensic			-	-			
3	BBS08T2118	Science	3	0	0	3	30	20	50
4	BBS08T2119	Basic concept of spectroscopy	3	Ő	Ő	3	30	20	50
5	BBS08T2120	Analytical Chemistry	3	Ő	Ő	3	30	20	50
6	BBS08T5121	Annlied Biology-II	2	Ô	Ô	2	30	20	50
		Practicals – Forensic	_	•	v			_0	
7	BBS08P5107	anthropology and odontology			2	1	50		50
		Electronic Circuits and				-			
8	BBS08T5122	Transducers	2	0	0	2	30	20	50
9	BBS08P5108	Physics Lab III			2	1	50		50
10	BBS09P2411	Research Methodology				2			
11	XXX	IPR				0.5			
12	XXX	Foreign Language				0.5			
13	XXX	waste management			2	1	50		50
						-			
		Total				23			
		Semester V							
SI	~ ~ ~						Assess	sment Pa	attern
No	Course Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1	BBS08T3123	Forensic Medicine	3	0	0	3	30	20	50
2	BBS08T3124	Explosives	2	0	0	2	30	20	50
3	BBS08P3109	Practicals - Explosives	0	0	2	1	50	-	50
		Introduction to Questioned							
4	BBS08T3125	Documents	3	0	0	3	30	20	50
_		Practicals – Questioned							
3	BBS08P3110	Documents			2	1	50		50
6	BBS08T3126	Applied Chemistry-I	3	0	0	3	30	20	50
7	BBS08P3111	Practicals – Applied Chemistry I	0	0	2	1	50		50
8	BBS08T5127	Applied Serology	3	0	0	3	30	20	50
9	BBS08P5112	Practical's - Serology			2	1	50		50
10	BBS08T5128	Applied Physics I	3	0	0	3	30	20	50
11	BBS08P5113	Practicals – Applied Physics I			2	1	50		50
12	XXX	Campus to corporate				2			
		Total				24			
		Semester VI							
Sl	Course Code	Name of the Course					Assess	sment Pa	attern
No			L	Т	Р	С	IA	MTE	ETE
1	BBS08T3129	Applied Chemistry-II	3	0	0	3	30	20	50

2		Practicals – Applied Chemistry							
4	BBS08P3114	II			2	1	50		50
3	BBS08T5130	DNA Profiling	3	0	0	3	30	20	50
4		Practical's – DNA and Amino							
4	BBS08P5115	acid			2	1	50		50
5	BBS08T5131	Applied Physics II	3	0	0	3	30	20	50
6	BBS08P5116	Practicals – Aapplied Physics II			2	1	50		50
7	BBS08R5117	Project				12			
		Total				24			

List of Electives

Elective-1

Sl	Course Code	Name of the Floatives				Assessment Pattern				
No	Course Coue	Name of the Electives	L	Т	Р	С	IA	MTE	ETE	
1	BBS08T5109	Biology II	3	0	0	3	30	20	50	
2	BBS08P5104	Practicals – Biology II			2	1	50		50	
3	BBS08T5115	Applied Biology-1	3	0	0	3	30	20	50	
4	BBS08T5121	Applied Biology-II	2	0	0	2	30	20	50	
		Practicals – Forensic								
5		anthropology and								
	BBS08P5107	odontology			2	1	50		50	

Elective-2

Sl	Course Code	Course Code Name of the Elective					Assessment Pattern			
No Course Code Nan	Ivalle of the Elective	L	Т	Р	С	IA	MTE	ETE		
1	BBS08T5110	APPLIED OPTICS	3	0	0	3	30	20	50	
2	BBS08P5105	Physics Lab II			2	1	50		50	
3	BBS08T5116	Atomic Spectra and Applications	3	0	0	3	30	20	50	
4	BBS08T5122	Electronic Circuits and Transducers	2	0	0	2	30	20	50	
5	BBS08P5108	Physics Lab III			2	1	50		50	

Detailed Syllabus

B.Sc. Forensic Science (H)

Semester 1

Name of The Course	Introduction to Forensic Science and Criminal Law						
Course Code	BBS08T1101						
Perquisite							
Co requisite							
Anti requisite							
		L	Т	Р	С		
		3	0	0	3		

Course Objective: To introduce students with the field of forensic science its importance in criminal justice system and how forensic science has evolved. Course Outcomes:

CO1	To understand about the history & development of forensic science
CO2	To gain knowledge about the development of forensic science laboratories and it various divisions.
CO3	To understand about the various procedures for collection,& preservation of various types of evidences .

I.

CO4	To gain knowledge about law of evidence ,different laws related to interrogation
CO5	To understand about the criminal justice system and various sections under IPC ,CrPc and Indian Evidence Act
CO6	To study about various important case studies in forensic science

Text Book (s) & Reference Book (s)

- 1. Bodziak, W., Footwear Impression Evidence (2ndEdn.) CRC Press, Boca Raton, Florida, 2000.
- 2. DeForest, P., Gaensslen, R., and Lee, H., Forensic Science; an Introduction to Criminalitics, McGraw Hill, New York, 1983.
- 3. Fisher, B., Techniques of Crime Scene Investigation (6thEdn.) CRC Press, Boca Raton, Florida, 2000.
- 4. James, S. H. And Nordby, J. J. (Eds), Forensic Science An Introduction to Scientific and Investigative Techniques, CRC Press, London, 2003.
- 5. James, S., and Eskerc, W., Interpretation of Blood Stain Evidence at Crime Scenes, (2ndEdn) CRC Press, Boca Raton, Florida, 1999.
- 6. Saferstein, Richard, Criminalistics, An Introduction to Forensic Science, 6th Ed. Prentice-Hall, New Jersey, 1998.
- 7. Sharma, B. R., Forensic Science in Criminal Investigation and Trials (3rdEdn) Universal Law Publishing Co. Ltd. New Delhi, 2001

Unit I: Development and growth of forensic science

Introduction to Forensic science –Definition, nature, need and function; Laws and Principles, basics of Forensic Science; Historical development and scope of Forensic Science in India. Branches of Forensic Science, its utilization at the scene of crime and in the courts

Unit II: Forensic Science Laboratory

Forensic Science Laboratory – Growth of Forensic Science Laboratories in India – Central and State level laboratories, Services and functionalities provided by various FSLs, Various divisions in the FSL – Ballistics, Biology, Chemistry Documents, Physics, Psychology, Serology, Toxicology; Mobile forensic science laboratory: its functions and utility, Introduction of BPRD, NICFS, CCMB, IITR, CDTS, NCRB)

Unit III: Collection & Preservation of various evidences

Collection & Preservation of Biological evidences, Toxicological evidences, in Fire & Arson cases, Explosives, Questioned documents ,Electronic Evidences ,Trace Evidences,Projectiles & Bullets.

Unit IV: Law of Evidence

The law of evidence, testimonial and real evidence and admissibility of scientific evidence in the court of Law; Law related to interrogation and interviewing of the criminals; First Information Report, types of cognizable and non-cognizable offences ; mental disorder and acceptance of evidence in court; child witness and acceptance of evidence in the court.

Unit V: Criminal Justice System:

Introduction to Criminal Justice System; Different agencies involved in crime detection: Police, Medico-legal expert, Judicial officers.

Introduction to IPC (Indian Penal Code) and Cr.P.C – sections 291, 292 and 293.Indian Evidence Act – Introduction and Sections 32, 45, 46, 47, 57, 58, 60, 73, 135, 136, 137, 159. Court Testimony- admissibility of expert testimony, Court Procedure: Examination in

chief, Cross Examination and Re-examination; Ethics in Forensic Science. International Justice System – an overview.

Unit VI: Case studies

Famous Criminal Cases

Beverly Allitt,Robert Donald Auker,Alain Baxter,Al Capone,Lindy Chamberlain,Malcolm Fairley,John Wayne Gacy,Onel de Guzman,Gordon Hay(any other relevant case studies)

Continuous Assessment Pattern

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Inorganic Chemistry						
Course Code	BBS08T1102						
Perquisite	Students should qualify 10+2 or equiv Science stream with Chemistry as major su	alent ez Ibject	xaminat	ion in			
Co requisite	Students should have fundamental know Chemistry	ledge of	f Inorga	nic			
Anti requisite							
		L	Т	Р	С		
		3	0	0	3		

Course Objective:

The course introduces about the inorganic chemistry and students would be acquainted with the basics of bonding fundamentals for both ionic and covalent, predicting geometries of simple molecules, the fundamentals of the chemistry of the s and p group elements, metal complexes and metal-ligand bonding and their applications in various fields of inorganic chemistry. This course will further help to carry out a career in the field of research and development in the core areas of Inorganic chemistry.

Course Outcomes:

The students would be able to describe and understand the basic structure of atoms, characteristics of the periodic table. They also understand the basic concepts in nuclear chemistry as well as basic terminologies of analytical chemistry.

CO1	Explain the conceptual understanding of the various laws and principles of atomic
	chemistry and determine the properties and shape of molecules by various theories of
	chemical bonding. (K2)

CO2	Analyze the modern periodic table which stands the backbone in understanding Chemistry and the periodic properties like Atomic and Ionic size Ionization Energy Electron Affinity Electronegativity and S and P Block elements in depth. (K4)
CO3	Simplify nuclear reactions and apply nuclear chemistry to calculate age of samples. (K4)
CO4	Apply the knowledge to understanding the fundamentals of coordination chemistry, including modern rules of writing formulae and generating names of coordination compounds, comparing bonding theories of coordination compounds, their geometry, isomerism and some properties. (K3)
CO5	Explain the concept of analytical techniques and enhance the instrumentation skills. (K2)
CO6	Elaborate the knowledge of recent advancement in the field of Inorganic Chemistry. (K6)

Text Book (s) & Reference Book (s)

- 1. Inorganic Chemistry by C. Housecroft and A. Sharpe
- 2. Miessler Inorganic Chemistry
- 3. Cotton-Wilkinson Advanced Inorganic Chemistry
- 4. Weller Inorganic Chemistry (Former Atkins)
- 5. Lee Concise Inorganic Chemistry
- 6. Chemistry: A Molecular Approach
- 7. Principles of Analytical Chemistry, A Textbook, Authors: Valcarcel, Miguel
- 8. Reference Book of Inorganic Chemistry (Latimer, Wendell M.; Hildebrand, Joel H.)
- 9. "Inorganic Chemistry" by Duward Shriver
- 10. "Inorganic Chemistry" by Shriver and Atkins
- 11. "Inorganic Chemistry" by Gary Wulfsberg
- 12. "Advanced Inorganic Chemistry" by Cotton and Wilkinson
- 13. "Inorganic chemistry: Principles of Structure and Reactivity" by Huheey

301

- 14. "Fundamental Concepts of Inorganic Chemistry, Vol.2" by Asim K Das
- 15. "Advanced Inorganic Chemistry Vol. 2" by Prakash Satya
- 16. "Advanced Inorganic Chemistry-Vol.-II" by Gurdeep Raj
- 17. Principles of Analytical Chemistry" by F W Fifield and D Kealey
- 18. Inorganic Chemistry, James E House, 2008, Elsevier.

Unit-1:Atomic Structure and Chemical Bonding

Heisenberg uncertainty principle, de Broglie relationship, Concept of shells, sub-shell and orbitals, shapes of s, p and d orbitals, quantum numbers, Rules for filling electrons in orbitals-Aufbau principle, Pauli exclusion principle and Hund's rule, Chemical Bonding- Definition, Types of bonds (Ionic Bond, Covalent Bond; sigma and pi bond, Coordinate bond) Hybridization and types of Hybridization, Limitations of Valence Bond Theory, Molecular Orbital theory- Postulates, Homo and Hetero-diatomic molecule (N₂, O₂, NO), Band theory of solids.

Uni-2: Introduction of periodic table

Study of Modern Periodic Table, Long form of Periodic Table, periodic properties, atomic radiation, ionization potential, electron affinity, electronegativity, metallic characters, Non- metallic characters and magnetic properties, Comparative study of S and P block elements.

Unit-3: Nuclear Chemistry

Radioactivity, Types of Radiations, Properties of radiations, Detection and measurement of radioactivity, Radioactive Decay and its types, The Group Displacement Law, Radioactive disintegration series, Rate of radioactive decay, half-life, Nuclear Reactions (Fission and fusion reactions), Mass defect, Carbon dating.

Unit- 4:Basic concepts of co-ordination

Classification of ligands, chelation, co-ordination number, stereochemistry and nomenclature of coordination compounds, polynuclear or bridged complexes, inner-metallic complexes, Werner's theory, EAN concept

Unit-5:Titrimetric Analysis

Gravimetric analysis, Principle and estimation of gravimetric analysis, volumetric analysis, Principle and classification of volumetric analysis, Acid base theories- Arrhenius, Bronsted-Lowry and Lewis Theory, Theory of indicators- Ostwald's theory.

Unit-6:Recent advancement in inorganic chemistry

Water treatment materials, Toxic chemicals in wastewater

Continuous Assessment Pattern

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Basic of Digital and Cyb	er Forer	nsics		
Course Code	BBS08T1103				
Perquisite	Basic of computers				
Co requisite	Cyber security				
Anti requisite					
	•	L	Т	Р	С
		3	0	0	3

Course Objective: The objective is to impart students the basic knowledge of computers and its application in forensic science and the different types of computer based crimes encountered in the society.

Course Outcomes:

CO1	Understand the basics of computers
CO2	Classify the different types of operating systems
CO3	Appraise the different file systems
CO4	Practice the internet for research

CO5	Compile different types of cyber crimes
CO6	Evaluate the cyber crime based on case studies

Text Book (s) & Reference Book (s)

- 1. Leshin, C.B., Internet Investigation in Criminalistics, Prentice Hall, New Jersey, 1997.
- 2. Tessarolo, A.A. and Marignani, A., Forenisc Science and the Internet. The Canadian Society of Forensic Science Journal, Vol. 29, 1996.
- 3. BernadJahne: Digital Image processing, Springer Verlag (1993)
- 4. Incident Response and Computer Forensic by Kelvin Mandia, TMH Publication.
- 5. Digital Forensics: Digital Evidence in Criminal Investigations by Angus McKenzie Marshall
- 6. Cyber Forensic A Field Manual for Collecting, Examining and Preserving Evidence of Computer Crimes by *Albert J Menendez*. Auerbach Publications.
- 7. First Responder's Guide to Computer Forensics by Richard Nolanetal. Carnegi Mellon, 2005.
- 8. Cyber Forensic by Marecella Menendez.
- 9. Computer Forensic by *Newman*.
- 10. Cyber Crime Investigation Field Guide, by *B Middleton*.
- 11. John. R.Vacca, 2005, Computer Forensics: Computer Crime Scene Investigation, Cengage Learning

Unit-1: Basics of computers and Data representations

Computer organization, components of computers – input output device, CPU, memory-RAM, ROM and external storage devices. Data representations: integers, real, binary, octal hexadecimal & their conversions logic gates – Negation, OR, AND, X OR etc.

Uni-2: Introduction to operating system

Basics of operating system, memory structure, concurrency, scheduling, synchronization and memory management examples of operating systems-Windows and Linux.

Unit-3: File system and networking

Introduction to file system, FAT12, FAT16, FAT32, NTFS, EXT2, EXT3, HFS, Basics of networking-types of topologies, LAN, MAN, WAN

Unit- 4: Introduction to internet

World wide web, E-mails, chat, search engines, networking protocols, network security threats, vulnerabilities, Access control, virus, Trojans etc, security plan and policies.

Unit-5: Cyber crime and digital evidence

What is cyber crime, types of cyber crimes, digital evidence, Digital Vs Physical Evidence, Nature of Digital Evidence, Precautions, while dealing with Digital Evidence.

Unit VI: CASE STUDIES: Gary McKinnon, A Byte Out of History: \$10 Million Hack, Melissa Virus, Operation Innocent Images

Continuous Assessment Pattern

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Biology I				
Course Code	BSCF 1003				
Perquisite					
Co requisite					
Anti requisite					
		L	Т	Р	С
		3	0	0	3

Course Objective: To make the student aware about the basics of biology. It includes the study of cells, study of the human anatomy and physiology, aspect of Genetics. These modules have been worked out with an aim to introduce the students to the fundamental functioning of the human body and the basic of the chemical changes that are important for Forensic biology. The students will learn about the laws of genetics, organization of chromosomes, cell division, various types of mutations and various genetic disorders.

Course Outcomes:

CO1	To understand about basic concepts of biology mainly cell, its various types, and various stages of cell division
CO2	They would be able to understand about basic concepts of genetics
CO3	To gain knowledge about human physiology various system like respiratory, circulatory system, skeletal system.
CO4	To gain knowledge about human physiology ,various system like Digestive system, Excretory system, Nervous system.
CO5	Students will learn about the key concepts of biomolecules, significance of various micro & macro nutrients in human body.
CO6	Students will become familiar about recent advancements in field of biology

Text Book (s) & Reference Book (s) M. A. Miller, L.C. Leavell, &Kimber Grey's Stackpole's Anatomy & Physiology. 16th Edition.

- 1. R.L. Dravce, K.L. Vogl, & AWM Mitchell Grey's Anatomy for students 2005, Elsevier. Inc.
- 2. I.E. Celis Cell biology Academic Press 2nd Edition.
- 3. Robertis&Robertis Cell & Microbiology 8th Edition.
- 4. M.S. Leffel, A.D. Donnenberg& N.R. Rose Handbook of Human Immunology CRC press, 1997
- 5. Essentials of Human Genetics by S.M. Bhatnagaretal (1999) IV edition. Orient Longman.
- 6. Human Genetics: Concepts and Applications by Lewis R (2001) McGraw Hill; Boston.
- Basic Human Genetics by E.J. Manage and A.P. Manage (1997 India Reprint) Rastogi Publications, Meerut.
- 8. Mendelian inheritance in Man: Catalogs of Autosomal recessive, and x-linked phenotypes.[12teditions 1998] by McKusick, V.A. Johns Hopkins university press, Baltimore.
- Principles and Practive of Medical Genetics, by Emery, A.E.H and D.L. Rimoin (Eds_ (1990-2nd edition) Churchill Livingstone, Edinburgh.

- Molecular Basis of Inherited Diseases, (6th Edition-1989) by Scriver, C.R. A.L. Beudit, W.S. Styabnd
 D. Valle (Eds0 McGraw Hill, New York.
- 11. Human Genetics by S.D. Gangane (2nd edition-Reprint 2001), B.L Churchill Livingstone Pvt. Ltd., New Delhi.
- 12. Genetics in Medicine by M.W. Thompson et al, 5th Edition, W.B. Sounders Company, London
- 13. Genetic basis of common diseases by R. A. King et al, Oxford University Press.
- 14. Mendelian inheritance in Man by Mc. Kusick V.A. (1998), 12th Edition, John Hopsins University Press, Baltilmore.

Unit-1: The Cell

History of cell, Cell theory, Cell Structure, Function and Organization of Prokaryotes and Eukaryotes. Unicellular and Multicellular organisms, Structure of DNA and RNA. Cell cyclemitosis and meiosis.

Uni-2: Genetics

Genetic Materials - Structural organization and functions Mendelian Principles, Mendels Laws and Ratio Sex linked inheritance, sex determination and crossing over - Karyotyping analysis, Chromosomal mapping, DNA and RNA structural types.

Unit-3: Human Physiology – I

Inte Integumentary System- components, structure and function of integumentary system, Respiratory System-respiratory organs and Mechanism of breathing Disorders of respiratory system, Cardiovascular System-Blood, elements of blood, Blood group, Coagulation of Blood, Lymph, organs of circulator system and Circulatory pathway Musculoskeletal System-types of muscles, structure of contractile Protein, skeletal system, types of bones, bones of Skull, vertebral column, ribs and ribs cage, types of joints.

Unit- 4: Human Physiology – II

Digestive system-alimentary canal and associated glands, digestion and absorbtion of food Excretory System-organs of human excretory system, Urine formation, Nature, composition and Properties of urine. Nervous System-types and components of human neural system, Neuron-its structure and function Endocrine System-endocrine glands and hormones, of human endocrine system and mechanism of hormone action, Reproductive System-male and female reproductive system, gametogenesis, structure of sperm

Unit-5: Biochemistry

Nutrition - BMR, Calorie value, Types of micronutrients and macronutrients in the body. Balanced diet, obesity Proteins - structure, properties and functions. Carbohydrates - structure, properties and functions. Lipids – structure, properties and functions.

Unit VI:Recent advancements

Various advancements in field of Intravitro fertilization, in field of genetics, field of immunology ,field of biotechnology

Continuous Assessment Pattern

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	PRACTICALS – Biology I				
Course Code	BSCF 1004				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives: The objective is to give exposure to students in different practicals

Aspects of biology.

Course Outcomes

CO1	Studenst should properly able to handle microscope and use it for experimenatl purpose
	, for differentiating animal cell(cheek cell) and plant cell(onion peel)

CO2	Students able to examine the blood components by preparing smear ,study the different types of pollen grains,aquatic organisms.
CO3	Student able to study the sex linked disease, also able to identify different microorganisms by given speciemen
CO4	Students able to estimate heamoglobin by haematometer, also able to handle basic laboratory equipments.

Text Book (s)&Reference Book (s)·M. A. Miller, L.C. Leavell, &Kimber Grey's Stackpole'sAnatomy & Physiology. 16th Edition.

- R.L. Dravce, K.L. Vogl, & AWM Mitchell Grey's Anatomy for students 2005, Elsevier. Inc.
- I.E. Celis Cell biology Academic Press 2nd Edition.
- Robertis&Robertis Cell & Microbiology 8th Edition.
- · M.S. Leffel, A.D. Donnenberg& N.R. Rose Handbook of Human Immunology CRC press, 1997
- Essentials of Human Genetics by S.M. Bhatnagaretal (1999) IV edition. Orient Longman.
- Human Genetics: Concepts and Applications by Lewis R (2001) McGraw Hill; Boston.
- Basic Human Genetics by E.J. Manage and A.P. Manage (1997 India Reprint) Rastogi Publications, Meerut.
- Mendelian inheritance in Man: Catalogs of Autosomal recessive, and x-linked phenotypes.[12teditions – 1998] by McKusick, V.A. Johns Hopkins university press, Baltimore.
- Principles and Practive of Medical Genetics, by Emery, A.E.H and D.L. Rimoin (Eds_ (1990-2nd edition) Churchill Livingstone, Edinburgh.
- Molecular Basis of Inherited Diseases, (6th Edition-1989) by Scriver, C.R. A.L. Beudit, W.S.
 Styabnd D. Valle (Eds0 McGraw Hill, New York.
- Human Genetics by S.D. Gangane (2nd edition-Reprint 2001), B.L Churchill Livingstone Pvt. Ltd., New Delhi.

- Genetics in Medicine by M.W. Thompson et al, 5th Edition, W.B. Sounders Company, London
- Genetic basis of common diseases by R. A. King et al, Oxford University Press.
- Mendelian inheritance in Man by Mc. Kusick V.A. (1998), 12th Edition, John Hopsins University Press, Baltilmore.

List of Experiments					
1.	Study of construction & working of compound/s microscope				
2.	To study the structure of cheek cells				
3.	To study the structure of plant cells				
4.	Blood smear preparation & study of RBCs & WBC				
5.	Study of morphology of pollen grains				
6.	Study of morphology of aquatic organisms				
7. wi	Study of sex linked inheritance (hemophilia, color blindness, sickle cell anemia) th slides/charts./models/photographs				
8. gy	To study given speciemen of Algae, fungi ,lichen, bryophyte, pteridophte, mnosperm ,angiosperm plant				
9. he	To Identify given specimen of porifera,protozoa,coelentrata, lmenthies,Annelida,Arthropoda,mollusca,Amphibians,reptiles,Aves				
10	. To estimate the amount of haemoglobin by haematometer.				
11	. Study of instruments Hot air oven ,pH meter, incubator, colorimeter, centrifuge				

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

Name of The Course	Elements of Basic Physics				
Course Code	BBS08T1104				
Perquisite					
Co requisite					
Anti requisite					
		L	Т	Р	С
		3	0	0	3

Course Objective: This course is designed to impart the basics knowledge of the physics which includes Newtonian Mechanics, wave mechanics and its characteristics, optical fibre and radioactivity.

Course Outcomes:

CO1	Interpret & utilize the Newton's law of Motion along with other physical entities such as elasticity.
CO2	Explain the energy and rotational dynamics of mechanical systems.
CO3	Explain type of waves and their velocities for different mediums.
CO4	Discuss the production and application of Ultrasonic waves.
CO5	Describe the radio activity and its application in forensic
CO6	Predicts the applications of diffraction tomography in the field of science and technology.

Text Book (s) & Reference Book (s)

Text Books

- 4. Waves: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGraw-Hill.
- 5. Fundamentals of Optics, F.A. Jenkins and H.E. White, 1981, McGraw-Hill
- 6. The Physics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons.
- 7. Concepts of nuclear physics by Bernard L. Cohen. (Tata Mcgraw Hill).

8. Principles of Optics, Max Born and Emil Wolf, 7 th Edn., 1999, Pergamon Press.

Research Articles

9. https://www.sciencedirect.com/science/article/pii/B9780121860301500072

Reference Books

- The Physics of Waves and Oscillations, N.K. Bajaj, 1998, Tata McGraw Hill.
 Fundamental of Optics, A. Kumar, H.R. Gulati and D.R. Khanna, 2011, R. Chand Publications. Principles of Optics, Max Born and Emil Wolf, 7thEdn., 1999, Pergamon Press.
- 7. Optics, AjoyGhatak, 2008, Tata McGraw Hill

Unit-1: Newton's Law of Motion and Elasticity	10 h
Definition of motion, position and displacement, average velocity, acceleration of freely falling body, projectile motion, uniform circu dimension and two dimension; Interpretation and applications of N properties of matter, elastic constants and their interrelations	, average speed, acceleration, ular motion, relative motion in one Newton's laws of motion, elastic
Unit II: Kinetic Energy and Rotation	10h
Energy, kinetic energy, work, work done by gravitational force, we and potential energy, work done on system by external force, cons	ork done by spring force, power, work ervation of energy.
Rotation: The rotational variable, rotation with constant angular ac variables, kinetic energy of rotation	cceleration, relating linear and angular
Unit III: Waves and optical fibre	8h
Wave Motion: transverse and longitudinal waves, wavelength and the wave equation, particle and wave velocities, Intensity of Wave	I frequency, speed of travelling wave,
Fibre Optics: Snell's Law, Total Internal reflection, graded index Principle of light propagation through a fibre, Numerical aperture,	x, Optical fibres and their properties, Attenuation in optical fibre
Unit-IV: Sound Wave	10h
Sound waves, speed of sound, intensity and sound level, the Do sound intensity measurement, echo, reverberation, Sabine's Formu buildings and factors affecting acoustics of buildings. Sound distr production of ultrasonic waves, applications of ultrasonic.	oppler effect, shock waves, noise and la, absorption coefficient, acoustics of ribution in an auditorium, Ultrasonic:
Unit-V: Radio Activity	8h
Review of nuclear composition, nuclear properties and half Applications of Radio Isotopes, Radiometric dating. Application science.	f-life, Radioactive decay Schemes, n of radioactive material in Forensic

Unit VI: Application of Elements of Basics Physics

Recent development in Elements of Basics Physics :

X-ray Diffraction measurements, Principle and theory of Diffraction Tomography.

Continuous Assessment Pattern

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	PHYSICS LAB -I				
Course Code	BBS08P1101				
Prerequisite					
Corequisite	Corequisite				
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives: This lab is designed to make the students familiar with optics related experiments. Students will get the skill to operate the instruments to determine the results with acceptable accuracy.

Course Outcomes:

CO1	Operate and handle the physics instruments effectively and safely in the laboratory
CO2	Perform the experiments applying the physics principles and analyze the results with maximum accuracy
СО3	Apply the skill to measure the physical constants in the lab

Text Book (s) & Reference Book (s)

Text Book (s)

- **3.** Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, Asia Publishing House
- 4. M.Sayer and A. Mansingh, Measurement, Instrumentation and Experiment Design in Physics & Engineering, PHI Learning.
- 5. A Text Book of Practical Physics, I.Prakash& Ramakrishna, 11thEdn, 2011,Kitab Mahal

Reference Book (s)

a. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, Heinemann Educational Publishers

List of Experiments

1.	Measurement with Vernier calipers, Screw gauge and spherometer
2. T	To determine the density of given liquid and solid using Pycnometer
3.	To determine therefractive index of glass using Abbe's Refractometer
4.	To determine the refractive index of liquidusing Abbe's Refractometer
5.	To determine the angle of prism using spectrometer
6.	To determine the Refractive Index of the Material of a Prism using Sodium Light
7.	To determine the wavelength of monochromatic light by using spectrometer
8.	To determine wavelength of He-Ne laser using plane diffraction grating
9.	To determine wavelength of sodium light using Newton's Rings
10.	Polarisation of light and Brewster's law

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

Semester II

Name of The Course	Crime Scene Investigation				
Course Code	BBS08T1105				
Perquisite	Forensic Science				
Co requisite	Forensic Photography				
Anti requisite					
		L	Т	Р	С
		3	0	0	3

Course Objective: This course would introduce the students to Forensic Science and its role in the investigative system. The students would be appraised about the crime scene management using which they can successfully evaluate a crime scene.

Course Outcomes:

CO1	Understand the basis of crime scene management
CO2	Infer the role of first responders and forensic scientist.
CO3	Reconstruct the case by generating the hypothesis based on research knowledge followed by experimental techniques and interpreting the acquired results.
CO4	Practice the gained knowledge in handling of different physical evidences found at the crime scene and generalized the cause of conduct based on type of crime scene and pattern of physical evidences found at scene of crime.
CO5	Interpret the result acquired from advanced techniques such as narcoanalysis, brain mapping or lie detection to know whether a person is lying or telling truth.
CO6	Appreciate the recent tools and techniques of criminal profiling

Text Book (s) & Reference Book (s)

1. DeForest, P., Gaensslen, R., and Lee, H., Forensic Science; An Introduction to Criminalitics, McGraw Hill, New York, 1983.

- 2. Fisher, B., Techniques of Crime Scene Investigation (6thEdn.) CRC Press, Boca Raton, Florida, 2000.
- 3. James, S. H. And Nordby, J. J. (Eds) Forensic Science An Introduction to Scientific and Investigative Techniques, CRC Press, London, 2003.
- 4. B.R. Sharma, Forensic Science in Criminal Investigation and trials Universal Law Publishing Company, 2003, ISBN 817534332X, 9788175343320
- Crime Scene Investigation Procedural Guide 1st Edition by Michael S. Maloney, Donald Housman, Ross M. Gardner
- 6. Fundamentals of Forensic Science 3rd Edition 2015 Max M. Houck and Jay A. Siegel
- 7. The Encyclopedia of Crime Scene Investigation (Facts on File Crime Library) 1st Edition by Michael Newton

Unit-1:Crime Scene10 hours

Defining a crime scene, Importance, location and processing of crime scene.Types of Crime Scene:Indoor and outdoor,Primary and secondary and crime scenes based on size of evidence.

Uni-2: Crime Scene Procedures

Crime scene Management – initial response, role of first responding officer, dutymanagement; Role and qualities of an Investigating officer, Role of forensic scientists, forensic doctors, fire brigade and judiciary

Unit-3:Securing and Recording the Crime Scene

8h

10h

Protecting a scene of crime – various steps involved, contamination issues.Recording a crime scene: Crime Scene Survey, Forensic Photography, sketching, field notes, handling clues, modern aids.Crime Scene Reconstruction and its utility, case studies for reconstructing a crime scene with physical evidences; chain of custody.

Unit- 4:Types of Physical Evidences10h

Definition, importance and types of physical evidences;Search, Collection and preservation of physical evidences, packing and forwarding of evidences to the Forensic Laboratory in crimes like murder, theft, extortion, explosion etc

Unit-5:Recent Tools and techniques in Forensic Science8 h

Recent techniques provided in forensic Science laboratories, introduction to digital and cyber-crime detection and analysis, portrait parley, Basics of Narco analysis, Brain Mapping and Lie Detection.

Unit VI: Recent methods for criminal profiling: graphology, linguistic analysis

Continuous Assessment Pattern

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	me of The Course Practicals – Crime Scene Investigation				
Course Code	BBS08P1102				
Prerequisite	Forensic Science				
Corequisite	Forensic Photography				
Antirequisite	Antirequisite				
L T P C				С	
0 0 2 1				1	

Course Objectives: The objective of this course is to give practical exposure to the students in the different aspects of Forensic Courses.

Course Outcomes

CO1	Understand the basis of crime scene management
CO2	appraise the role of sketching in crime scene management

CO3	appreciate the process of search for physical evidence.
CO4	Practice the gained knowledge in handling of different physical evidences found at the crime scene.
CO5	reconstruct the crime scene using the knowledge gained

Text Book (s)&Reference Book (s)

- 1. Bodziak, W., Footwear Impression Evidence (2ndEdn.) CRC Press, Boca Raton, Florida, 2000.
- DeForest, P., Gaensslen, R., and Lee, H., Forensic Science; An Introduction to Criminalitics, McGraw Hill, New York, 1983.
- 3. Fisher, B., Techniques of Crime Scene Investigation (6thEdn.) CRC Press, Boca Raton, Florida, 2000.
- 4. James, S. H. And Nordby, J. J. (Eds) Forensic Science An Introduction to Scientific and Investigative Techniques, CRC Press, London, 2003.
- James, S., and Eskerc, W., Interpretation of Blood Stain Evidence at Crime Scenes, (2ndEdn) CRC Press, Boca Raton, Florida, 1999.

List of Experiments

1.	To perform protection and documentation of indoor crime scene.		
2.	To perform protection and documentation of outdoor crime scene.		
3.	To perform sketching of indoor crime scene using baseline method		
4.	To perform sketching of outdoor crime scene using baseline method		
5.	To perform sketching of indoor crime scene using triangulation method		
6.	To perform sketching of outdoor crime scene using triangulationmethod		
7.	To perform search, collection and packing of physical evidences.		
8.	To write forwarding letter by investigating officer		
9.	To perform evidence collection in cybercrime case		
10.	To perform evidence collection in hit and run case		
11. Tools for forensic animation for crime scene reconstruction			

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

Name of The Course	Forensic Photography
Course Code	BBS08T1106

Perquisite	Forensic science, optics				
Co requisite	Crime scene management				
Anti requisite					
		L	Т	Р	С
		2	0	0	2

Course Objective: This course will impart the knowledge regarding the photographic methods and techniques. Also it aims to appraise the importance of photography in Forensic science .

Course Outcomes:

CO1	Outline the history and development of photography science.
CO2	Understand the basis of working of a camera.
CO3	Appraise the use of black-white and coloured photography
CO4	Assess the value of digital photography
CO5	Design the photography evidence presentation in the court of law.
CO6	Appraise the use of 3D laser scanners for crime scene reconstruction

Text Book (s) & Reference Book (s)

- 1. Redsicker, D. R., The Practical methodology of Forensic Photography, CRC Presss, London, 1994.
- 2. Criminalistics, An Introduction to Forensic Science: Richard Saferstein, 10th Edition, Pearson Education International.
- 3. Forensic Science An Introduction to Scientific and Investigative Techniques : Stuart H. James and Jon J. Nordby., 3rd Edition CRC Press, Taylor & Francis Group.
- 4. Edward M Robinson, Crime Scene Photography
- 5. Herbert L Blitzer, Forensic Digital Imaging and Photography
- 6. Tom Ang, Digital Photography, 1999
- 7. Forensic Digital Image Processing: Optimization of Impression Evidence 1st Edition by Brian Dalrymple, Jill Smith
- 8. The Practical Methodology of Forensic Photography (Practical Aspects of Criminal and Forensic Investigations) by David R. Redsicker
- 9. Fundamentals of Forensic Photography: Practical Techniques for Evidence Documentation on Location and in the Laboratory (Applications in Scientific Photography) 1st Edition, by Keith Mancini , John Sidoriak

10. Forensic Photography: Importance of Accuracy 1st Edition, by Sanford L. Weiss

Unit-1:Introduction and History of photography10 hours

Introduction, History and Development of Photography. Photographic instruments, fundamentals of light and vision, light source, geometry and photometry of image formation.

Unit-2: Camera

10h

Types of Cameras and their working, attachments of camera, types of camera lenses Image sensors, spectral sensitivity of photographic materials, reproduction of colors- photographic processing, Exposing, Camera exposure determination, Working of Camera, F-Number, Depth of field, ISO, Exposure Index, angle, scale, ambient light, color, temperature, flash/ strobe. Developing and Printing. Optical filters.

Unit-3:Black & white and Coloured photography

8h

Basic principles and techniques of black & white and colour photography, cameras andlenses, exposing, developments and printing, Different kinds of developers and fixers, modern developments photography, linkage of cameras and film negatives

Unit- 4: Digital Photography10h

Introduction,Digitalcamera - SLR, DSLR; How digital camera works andbasics of digital imaging. Videography/high speed videography, High-speed photography,Surveillance photography and Aerial photography, Photo imaging evidence.

Unit-5: Forensic Photography

8 h

Introduction, crime scene and laboratory photography- Photography in indoor and outdoor scene of crime, close-up, midrange and bird-eye view photography, trick photography, contact photography. Significance Photography in Forensic Science.legal aspects of visual evidence - juxtapose charts and demonstrative photographs, photographs as secondary evidence

Unit VI: Recent photography methods

using 3-D laser scanners for crime scene reconstruction

Continuous Assessment Pattern

Internal Assessment	Midterm (MTE)	End term Test	Total Marks
(IA)		(ETE)	

30	20	50	100
----	----	----	-----

Name of The Course	Practicals – Forensic Photography				
Course Code	BBS08P1103				
Prerequisite	Optics				
Corequisite	Forensic science, crime scene management				
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives: The objective of this course is to give practical exposure to the students in the different aspects of Forensic Photography.

Course Outcomes

CO1	Understand the working of camera
CO2	Infer the importance of focussed photographs.
CO3	Practice the different types of photography techniques.
CO4	Appraise the significance of sequential photography
-----	--
CO5	Reconstruct the scene of crime using photography evidence.

Text Book (s)&Reference Book (s)

- 1. Redsicker, D. R., The Practical methodology of Forensic Photography, CRC Presss, London, 1994.
- 2. Criminalistics, An Introduction to Forensic Science: Richard Saferstein, 10th Edition, Pearson Education International.
- 3. Forensic Science An Introduction to Scientific and Investigative Techniques : Stuart H. James and Jon J. Nordby., 3rd Edition CRC Press, Taylor & Francis Group.
- 4. Edward M Robinson, Crime Scene Photography
- 5. Herbert L Blitzer, Forensic Digital Imaging and Photography
- 6. Tom Ang, Digital Photography, 1999
- 7. Forensic Digital Image Processing: Optimization of Impression Evidence 1st Edition by Brian Dalrymple, Jill Smith
- 8. The Practical Methodology of Forensic Photography (Practical Aspects of Criminal and Forensic Investigations) by David R. Redsicker
- Fundamentals of Forensic Photography: Practical Techniques for Evidence Documentation on Location and in the Laboratory (Applications in Scientific Photography) 1st Edition, by Keith Mancini, John Sidoriak
- 10. Forensic Photography: Importance of Accuracy 1st Edition, by Sanford L. Weiss

List of Experiments

1.	To understand the working of analog camera
2.	To understand the working of digital camera
3.	To perform photography in different light conditions
4.	To perform black and white photography
5.	To perform landscape photography
6.	To perform photography of live individuals
7.	To perform sequential photography (preparation of chart)
8.	To take photograph of exhibits placed under microscope
9.	To perform photography of indoor crime scene (evidence presentation)
10.	To perform photography of outdoor crime scene (evidence presentation)
11.	Using CAD/CAM software

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

Name of The Course	Physical Chemistry					
Course Code	BBS08T1107					
Perquisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject					
Co requisite	Students should have fundamental knowledge of physical chemistry					
Anti requisite						
		L	Т	Р	С	
3 0 0					3	

Course Objective:

The course intends to impart basic knowledge of physical chemistry.

Course Outcomes:

On completion of this course, the students would be able to learn about the fundamentals of physical chemistry.

CO1	Develop skills to demonstrate the concepts of chemical thermodynamics. (K3)
CO2	Analyze the concept of electrochemical cells and determination of potential of cells. (K4)
CO3	Apply the principles of kinetics to describe chemical reaction. (K3)
CO4	Explain the physical parameters of liquids and utilize the knowledge in practical based learnings. (K2)
CO5	Explain the basic concept of phase rule of homo and hetrosystems (K2)
CO6	Elaborate the knowledge of recent advancement in the field of physical chemistry. (K6)

Text Book (s) & Reference Book (s)

- 1. Principles of Physical Chemistry and Puri, Sharma and Pathania
- 2. Essentials of Physical Chemistry, Arun Bahl, B.S.Bahl, G.D.Tuli

(IA)

Г

3. Instrumental Analysis by Skoog, Holler and Crouch

Unit-1: Chemical Ther	modynamics		10 hours	
Concepts of system, types of systems, surroundings, extensive and intensive properties, state unctions work, heat, First law of thermodynamics – internal energy and enthalpy, heat capacity nd specific heat, measurement of ΔU and ΔH , Hess's law of constant heat summation, entropy, econd law of thermodynamics, Gibbs energy change for spontaneous and non-spontaneous process, criteria for equilibrium, carnot cycle, derivation of entropy for carnot cycle.				
Uni-2: Electrochemistr	y		10h	
Introduction, Electroche emf and free energy, D equilibrium constant for lead Acid Battery.	mical cells, Cell Potentia Determination of emf of a the cell reaction, Hydroge	l, calculating the emf of a half cell, The Nernst n electrode, Calomel and	f a cell, relation between Equation, calculation of Glass Electrode, Battery-	
Unit-3: Chemical Kinet	tics		8h	
Chemical Kinetics, Reac Order of a Reaction, Zer reactions, Half-life of Temperature on Reaction	ction Rate, Units of Rate, I ro order reaction, first or a reaction, Collision Th n Rate.	Rate law, Units of rate co der reaction, second orde eory of Reaction Rates	onstant, Molecularity and er reaction, pseudo order s, Effect of Increase of	
Unit- 4: Liquid State			10h	
Unit- 4: Liquid State Intermolecular forces in 1 of liquid, Vapour press Method, Colligative prop lowering, and osmotic pr	liquids, Free volume of lic ure, Surface tension, visc perties – freezing point de ressure.	quid and density measure osity, Measurement of epression, boiling point	10h ment, physical properties Viscosity - The Ostwald elevation, vapor pressure	
Unit- 4: Liquid State Intermolecular forces in 1 of liquid, Vapour pressu Method, Colligative prop lowering, and osmotic prop Unit-5: Phase Equilibri	liquids, Free volume of lid ure, Surface tension, visc perties – freezing point d ressure.	quid and density measure osity, Measurement of epression, boiling point	10h ment, physical properties Viscosity - The Ostwald elevation, vapor pressure 8 h	
Unit- 4: Liquid State Intermolecular forces in 1 of liquid, Vapour pressu Method, Colligative prop lowering, and osmotic prop Unit-5: Phase Equilibri Explanation of terms suc phase rule, application of systems – general discus	liquids, Free volume of lid ure, Surface tension, visc perties – freezing point de ressure. Ia or Phase Rule ch as phase, component, of f phase rule to one compo sion of simple eutectic – 1	quid and density measure osity, Measurement of epression, boiling point degree of freedom. There nent system- phase diagr lead – silver system.	10h ment, physical properties Viscosity - The Ostwald elevation, vapor pressure <u>8 h</u> modynamic derivation of rams of water and sulphur	
Unit- 4: Liquid State Intermolecular forces in 1 of liquid, Vapour pressu Method, Colligative prop lowering, and osmotic pro Unit-5: Phase Equilibri Explanation of terms suc phase rule, application of systems – general discus Unit 6: Recent advance	liquids, Free volume of lic ure, Surface tension, visc perties – freezing point de ressure. ia or Phase Rule ch as phase, component, of f phase rule to one compo sion of simple eutectic – 1 ement in Physical chemis	quid and density measure osity, Measurement of epression, boiling point degree of freedom. There nent system- phase diagr lead – silver system.	10h ment, physical properties Viscosity - The Ostwald elevation, vapor pressure 8 h modynamic derivation of rams of water and sulphur	
Unit- 4: Liquid State Intermolecular forces in 1 of liquid, Vapour pressu Method, Colligative prop lowering, and osmotic prop Unit-5: Phase Equilibri Explanation of terms suc phase rule, application of systems – general discus Unit 6: Recent advance Solar Cells, Water treatu	liquids, Free volume of lid ure, Surface tension, visc perties – freezing point de ressure. ia or Phase Rule ch as phase, component, of f phase rule to one compo sion of simple eutectic – 1 ement in Physical chemis ment, Photochemistry	quid and density measure osity, Measurement of epression, boiling point degree of freedom. There nent system- phase diagr lead – silver system.	10h ment, physical properties Viscosity - The Ostwald elevation, vapor pressure 8 h modynamic derivation of rams of water and sulphur	
Unit- 4: Liquid State Intermolecular forces in 1 of liquid, Vapour pressu Method, Colligative prop lowering, and osmotic prop Unit-5: Phase Equilibri Explanation of terms suc phase rule, application of systems – general discus Unit 6: Recent advance Solar Cells, Water treatur	liquids, Free volume of lid ure, Surface tension, visc perties – freezing point de ressure. ia or Phase Rule ch as phase, component, of f phase rule to one compo sion of simple eutectic – I ement in Physical chemis ment, Photochemistry t Pattern	quid and density measure cosity, Measurement of epression, boiling point degree of freedom. There nent system- phase diagr lead – silver system.	10h ment, physical properties Viscosity - The Ostwald elevation, vapor pressure 8 h modynamic derivation of rams of water and sulphur	
Unit- 4: Liquid State Intermolecular forces in 1 of liquid, Vapour pressu Method, Colligative prop lowering, and osmotic prop Unit-5: Phase Equilibri Explanation of terms suc phase rule, application of systems – general discus Unit 6: Recent advance Solar Cells, Water treatu	liquids, Free volume of lic ure, Surface tension, visc perties – freezing point de ressure. ia or Phase Rule ch as phase, component, of f phase rule to one compo sion of simple eutectic – 1 ement in Physical chemis ment, Photochemistry t Pattern	quid and density measure osity, Measurement of epression, boiling point degree of freedom. There nent system- phase diagr lead – silver system.	10h ment, physical properties Viscosity - The Ostwald elevation, vapor pressure 8 h modynamic derivation of ams of water and sulphur	

(ETE)

30	20	50	100
----	----	----	-----

Name of The Course	Advanced of Digital and Cyber Forensics					
Course Code	BBS08T1108					
Perquisite	Basic of computers					
Co requisite	Cyber security					
Anti requisite						
		L	Т	Р	С	
		3	0	0	3	

Course Objective: The objective is to impart students the basic knowledge of computers and its application in forensic science and the different types of computer based crimes encountered in the society.

Course Outcomes:

CO1	Understand the basics of computers
CO2	Classify the different types of operating systems
CO3	Appraise the different file systems
CO4	Practice the internet for research
CO5	Compile different types of cyber crimes
CO6	Evaluate the cyber crime based on case studies

Text Book (s) & Reference Book (s)

Text Book (s) & Reference Book (s)

- 1. Leshin, C.B., Internet Investigation in Criminalistics, Prentice Hall, New Jersey, 1997.
- 2. Tessarolo, A.A. and Marignani, A., Forenisc Science and the Internet. The Canadian Society of Forensic Science Journal, Vol. 29, 1996.
- 3. BernadJahne: Digital Image processing, Springer Verlag (1993)
- 4. Incident Response and Computer Forensic by *Kelvin Mandia*, TMH Publication.
- 5. Digital Forensics: Digital Evidence in Criminal Investigations by Angus McKenzie Marshall
- 6. Cyber Forensic A Field Manual for Collecting, Examining and Preserving Evidence of Computer Crimes by *Albert J Menendez*. Auerbach Publications.
- 7. First Responder's Guide to Computer Forensics by Richard Nolanetal. Carnegi Mellon, 2005.
- 8. Cyber Forensic by *Marecella Menendez*.
- 9. Computer Forensic by *Newman*.
- 10. Cyber Crime Investigation Field Guide, by *B Middleton*.
- 11. John. R. Vacca, 2005, Computer Forensics: Computer Crime Scene Investigation, Cengage Learning

Unit-1: Computer Forensic:

Introduction to Computer/Cyber Forensic, Cyber Forensic Steps (Identification, Seizure, Acquisition, Authentication, Presentation, Preservation), Who is Computer Forensic Expert, Cyber Forensic Investigation Process, The Goal of the Forensic Investigation, Why Investigate (Internet usage exceeds norm, Using email inappropriately, Use of Internet, email, or PC in a non-work-related manner, Theft of information, Violation of security policies or procedures, Intellectual property infractions, Electronic tampering), Establishing a Basis or Justification to Investigate, Determine the Impact of Incident, Auditing V/s Cyber Forensic Investigations.

Uni-2: Incident Response

Introduction to Incident Response Process(What is Computer Security Incident, What are the goals of Incident Response, Who is involved in Incident Response Process, Incident Response Methodology, Formulate a Response Strategy, Investigate the Incident.),Preparing For Incident Response, Overview of Preincident Preparation, Identifying Risk, After Detection of an Incident.

Unit-3: Cyber Forensic Tools and Utilities

8h

10h

10 hours

Introduction, Examining a Breadth of Products, Cyber Forensic Tools Good, Better, Best: What's the Right Incident Response Tool for Your Organization?, Tool Review Forensic Toolkit, EnCase, Cyber check suites, what is disk Imaging etc. Specifications for Forensic tools Tested.

Unit- 4:Evidence Collection and Analysis Tools

Volatile and Non volatile Evidences collection (Safeback, Gettime, FileList, Filecvt and Excel, Getfree, Swapfiles and Getswap ,GetSlack, Temporary Files), Detailed Procedures for Obtaining a bit stream backup of hard drive, File System (Details of File system, Data Structure Of File System, Data Recovery in Different file system.

Unit-5 Concealment Techniques

10h

Introduction to Cryptography, Types of Cryptographic Algorithms(Secret Key Cryptography, Public Key Cryptography, Hash Function),Electronic Signature, Stenography, Reversing the Stenographic Process, Cloaking Techniques(Data Hide and Seek),Renaming Files, Manipulating File System, Data Hiding on NTFS with Alternate data Stream

Unit VI: Recent cyber case studies:

Gary McKinnon, A Byte Out of History: \$10 Million Hack, Melissa Virus, Operation Innocent Images

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Cyber Lab				
Course Code	BBS08P1104				
Prerequisite	Basics of computer functioning				
Corequisite	Cyber security				
Antirequisite					
		L	Т	Р	С

	0	0	2	1

Course Objectives: The objective is to impart students the basic knowledge of computers and its application in forensic science and the different types of computer based crimes encountered in the society.

Course Outcomes

CO1	Appraise the functioning Logic gates
CO2	Understand the working of windows and linux
CO3	Demonstrate the usage of internet for safe searching
CO4	Appraise the tools for tracing the emails

Text Book (s)&Reference Book (s)

- 1. Leshin, C.B., Internet Investigation in Criminalistics, Prentice Hall, New Jersey, 1997.
- Tessarolo, A.A. and Marignani, A., Forensic Science and the Internet. The Canadian Society of Forensic Science Journal, Vol. 29, 1996.
- 3. Incident Response and Computer Forensic by Kelvin Mandia, TMH Publication.
- 4. Digital Forensics: Digital Evidence in Criminal Investigations by Angus McKenzie Marshall
- 5. Cyber Forensic A Field Manual for Collecting, Examining and Preserving Evidence of Computer Crimes by Albert J Menendez. Auerbach Publications.
- 6. First Responder's Guide to Computer Forensics by Richard Nolanetal. Carnegi Mellon, 2005.
- 7. Cyber Forensic by Marecella Menendez.
- 8. Computer Forensic by Newman.
- 9. Cyber Crime Investigation Field Guide, by B Middleton.

10. John. R.Vacca, 2005, Computer Forensics: Computer Crime Scene Investigation, Cengage Learning

List of Experiments

1. Finding results of different logic gates and their combinations

2. Working with windows file (creation, modification, deletion, attributes) folder (creation, nesting, attributes)

3. Working with Linux- file (Creation, modification, deletion, attributes), folder (creation, nesting attributes).

4. Working with external storage devices using windows- Reading and writing data on floppy, CD,DVD, USB thumb drive

5. Working with external storage devices using Linux-reading writing data on floppy, CD, DVD, USB, thumb drive.

6. Understanding LAN-client/server, user creation, password protection.

7. Use of internet- visiting websites with given URL, searching in formation using search engine.

8. Use of E-mail, creating e-mail, sending and receiving e-mails with attachments.

9. Networking commands- like ping, IP config. etc, with various switches.

10. Tracing E-mail, finding senders IP address, of received email, tracing route of email received using tool available on internet, e.g. Visual Trace Route etc.

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

Name of The Course	Practicals – Inorganic and Physical Ch	emistry			
Course Code	BBS08P1104				
Prerequisite	Students should qualify 10+2 or equiva stream with Chemistry as major subject	alent exa	minatio	n in Scie	ence
Corequisite	Students should have fundamental kno	wledge	of Labor	atory	
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

Course Outcomes

CO1	Develop skills to utilize the volumetric titrations techniques used in chemistry
	laboratories for analysis. (K3)

CO2	Analyze the strength of a given acid solution p H metrically and identify the viscosity and density of the given liquid. (K4)
СОЗ	Analyse the carbohydrate and protein in the given organic compound. (K4)
CO4	Identify the anions and cations in the given inorganic compound. (K3)

Text Book (s)& Reference Book (s)

R1. Vogel's Textbook of Quantitative Chemical Analysis, Revised by G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney.

R2. Applied Chemistry: Theory and Practice by O.P. Vermani and A.K. Narula.

R3. Laboratory Manual on Engg. Chemistry by S. K. Bhasin and Sudha Rani.

List of Experiments

1. Introduction to Chemistry laboratory apparatus and instruments.

2. To estimate the total permanent Hardness of the given hard water sample. An approximately 0.01M solution of EDTA are provided.

3. To Determine the Alkalinity of a given Water Sample.

4. To find out the amount of dissolved oxygen in the given sample of water.

5. To find out the viscosity of a given liquid using Ostwald's viscometer.

6. Qualitative analysis of carbohydrates, lipids and proteins.

7. To determine the density of given liquid

8. To determine the strength of a given Hydrochloric acid solution by titrating against Sodium hydroxide solution by using pH meter.

9. To determine the percentage of available chlorine in the given sample of bleaching powder.

10. Qualitative inorganic analysis-

Anions: Carbonate, sulphate, chloride, bromide, acetate, nitrate, borate, phosphate.

Cations: Lead, copper, iron, aluminum, zinc, manganese, calcium, strontium, barium, potassium and ammonium.

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

Name of The Course	Biology II				
Course Code	BBS08T5109				
Perquisite					
Co requisite					
Anti requisite					
		L	Т	Р	С
		3	0	0	3

Course Objective:

The given course has been formulated with an objective to make the student aware about some of the important aspects of biology. It includes the study of genetics, a part of which was covered in the first semester, study of the plant anatomy and physiology,

introduction to the immune system and some introduction in to microbiology and Biotechnology.

These modules have been worked out with an aim to introduce the students to the fundamental functioning of the plant physiology,

The classification system of the various plants and micro-organisms. The students will also learn about the organization of chromosomes, cell division, various types of mutations and various genetic disorders Course outcomes:

CO1	The students would be able to understand the human genetics
CO2	The students would be able to understand immunological aspects of human functioning

1

Т

CO3	The students would be able to understand the concept of plant morphology
CO4	To present a complete comprehensive knowledge about the anatomy of plant and its various parts
CO5	To understand the concept of microbiology and biotechnology.
CO6	To acquire the knowledge about recent advancement in the field of biology.

Text Book (s) & Reference Book (s)

- 1. M. A. Miller, L.C. Leavell, &Kimber Grey's Stackpole's Anatomy & Physiology. 16th Edition.
- 2. R.L. Dravce, K.L. Vogl, & AWM Mitchell Grey's Anatomy for students 2005, Elsevier. Inc.
- 3. I.E. Celis Cell biology Academic Press 2nd Edition.
- 4. Robertis&Robertis Cell & Microbiology 8th Edition.
- 5. M.S. Leffel, A.D. Donnenberg& N.R. Rose Handbook of Human Immunology CRC press, 1997
- 6. Essentials of Human Genetics by S.M. Bhatnagaretal (1999) IV edition. Orient Longman.
- 7. Human Genetics: Concepts and Applications by Lewis R (2001) McGraw Hill; Boston.
- 8. Basic Human Genetics by E.J. Manage and A.P. Manage (1997 India Reprint) Rastogi Publications, Meerut.
- Mendelian inheritance in Man: Catalogs of Autosomal recessive, and x-linked phenotypes.[12teditions 1998] by McKusick, V.A. Johns Hopkins university press, Baltimore.
- Principles and Practive of Medical Genetics, by Emery, A.E.H and D.L. Rimoin (Eds_ (1990-2nd edition) Churchill Livingstone, Edinburgh.
- 11. Molecular Basis of Inherited Diseases, (6th Edition-1989) by Scriver, C.R. A.L. Beudit, W.S. Styabnd D. Valle (Eds0 McGraw Hill, New York.
- 12. Human Genetics by S.D. Gangane (2nd edition-Reprint 2001), B.L Churchill Livingstone Pvt. Ltd., New Delhi.
- 13. Genetics in Medicine by M.W. Thompson et al, 5th Edition, W.B. Sounders Company, London

- 14. Genetic basis of common diseases by R. A. King et al, Oxford University Press.
- 15. Mendelian inheritance in Man by Mc. Kusick V.A. (1998), 12th Edition, John Hopsins University Press, **Baltilmore**

Chromosomes: Discovery, morphology and structural Organization. Special types of chromosomes; Salivary gland and Lampbrush chromosomes. Mutations and Mutagens: Definition and Types of mutations.

Uni-2: Immunology

Unit-1: Genetics

Introduction to Immunology-Immune response: Innate and Acquired Immunity Immunoglobulin: Types functions, physico-chemical properties of immunoglobulin's, interaction of antigens and antibody -, raising of Antisera, lectins and their forensic significance.

Unit-3: Plant Morphology and Anatomy-I

Principles of Taxonomy and systems of classification of angiosperms (Bentham and Hooker) and Gymnosperms (Chamberlain), Mechanical and conducting tissue systems in plants-Meristematic and permanent tissue, types and structure of Meristematic and permanent tissue

Unit-4: Plant Morphology and Anatomy-II

Morphology of root, leaf, stem, flowers and their modifications. Anatomy of mono and dicot roots, leaves and stems, secondary growth, growth rings, calculation of life of wood.

Unit-5: Microbiology and Biotechnology

Basics of Microbiology and Broad classification of micro-organisms, concepts of pure culture techniques. Recombinant DNA technology and its application in Heath and Diseases, Western, and Southern Blot techniques and their forensic importance in criminal investigations.

8 h

10h

8h

10 hours

10h

Unit VI:Recent advancement in Biology

Recent techniques used for the culturing of microorganism, recent methods for the antigen and antibodies interaction. Development of different vaccines based on recombinant DNA

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	PRACTICALS-Biology II				
Course Code	BBS08P5104				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives: The objective of this course is to give practical exposure to the students in the different aspects of Biology-II

Course Outcomes

CO1	To able to examine difference between dicot plant & monocot plant
CO2	Students able to perform extraction of DNA
CO3	Students able to perform different staining techniques
CO4	Students able to do qualitative analysis for proteins, carbohydrates, nucleic acids.

Text Book (s)&Reference Book (s)·R.L. Dravce, K.L. Vogl, & AWM Mitchell Grey's Anatomy forstudents 2005, Elsevier. Inc.

- I.E. Celis Cell biology Academic Press 2nd Edition.
- Robertis&Robertis Cell & Microbiology 8th Edition.
- M.S. Leffel, A.D. Donnenberg& N.R. Rose Handbook of Human Immunology CRC press, 1997
- Essentials of Human Genetics by S.M. Bhatnagaretal (1999) IV edition. Orient Longman.
- Human Genetics: Concepts and Applications by Lewis R (2001) McGraw Hill; Boston.
- Basic Human Genetics by E.J. Manage and A.P. Manage (1997 India Reprint) Rastogi Publications, Meerut.
- Mendelian inheritance in Man: Catalogs of Autosomal recessive, and x-linked phenotypes.[12teditions 1998] by McKusick, V.A. Johns Hopkins university press, Baltimore.

- Principles and Practive of Medical Genetics, by Emery, A.E.H and D.L. Rimoin (Eds_ (1990-2nd edition) Churchill Livingstone, Edinburgh.
- Molecular Basis of Inherited Diseases, (6th Edition-1989) by Scriver, C.R. A.L. Beudit, W.S.
 Styabnd D. Valle (Eds0 McGraw Hill, New York.
- Human Genetics by S.D. Gangane (2nd edition-Reprint 2001), B.L Churchill Livingstone Pvt. Ltd., New Delhi.
- Genetics in Medicine by M.W. Thompson et al, 5th Edition, W.B. Sounders Company, London
- Genetic basis of common diseases by R. A. King et al, Oxford University Press.
- Mendelian inheritance in Man by Mc. Kusick V.A. (1998), 12th Edition, John Hopsins University Press, Baltilmore.

List of Experiments 1. Study the morphology of different plant parts roots, stem 2. Study the morphology of different plant parts leaf, flower 3. Studying the modifications of different plant parts: root, stem 4. Studying the modifications of different plant parts : leaf and flower 5. Study of monocot root Study of Dicot root 6. 7. Study of Dicot leaves 8. Study of monocot leaves 9. Extraction & Isolation of DNA 10. Staining techniques ,simple ,negative ,gram staining 11. Qualitative analysis of proteins, sugars, nucleic acids,

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

Name of The Course	Applied Optics				
Course Code	BBS08T5110				
Perquisite					
Co requisite					
Anti requisite					
		L	Т	Р	С
		3	0	0	3

Course Objective: Students will be familiar with different types of lenses, image formation mechanism and the aberration in the images. Also, understand the interference and diffraction phenomenon in the light waves. They get the understanding how to get the polarized light and the different optical instruments. This course also provide the knowledge about basic principles and applications of photography in forensic science

Course Outcomes:

CO1	Discuss various types of lenses and associated entities.
CO2	Describe the various aberrations in the image formed by the lenses and methods to remove these aberrations
CO3	Interpret phenomenon of interference & diffraction and explain the various optical phenomenon based on it.
CO4	Illustrate the polarization of light and explain the methods to produce polarized light
CO5	Explain the basic principles and applications of photography in forensic science.
CO6	Propose for the recent advancement in Metasurface eyepiece for the better resolution in image.

Text Book (s) & Reference Book (s)

Text Books:

4. A textbook of Optics: N. Subrahmanyam, Brijlal and M. N.Avadhanulu.

- 5. Fundamentals of Optics, F.A. Jenkins and H.E. White, 1981, McGraw-Hill
- 6. D.R. Redsicker, The Practical Methodology of Forensic Photography, 2nd Edition, CRC Press, Boca Raton (2000).
- 7. Lee, G., Hong, J., Hwang, S. *et al.* Metasurface eyepiece for augmented reality. *Nat Commun* **9**, 4562 (2018). https://doi.org/10.1038/s41467-018-07011-5

Reference Books:

- 3. Principles of Optics, Max Born and Emil Wolf, 7th Edn., 1999, Pergamon Press.
- 4. Optical Physics, A. Lipson, S.G. Lipson, H. Lipson, 4th Edn., 1996, Cambridge Univ. Press
- 5. Optics, Ajoy Ghatak, 2008, Tata Mc GrawHill

Unit-1: Lenses and image formation	8h
Lenses: Transverse Magnification of a Spherically Refracting Optical System. Deviation produced by a Thin Lens. Equiva separated by a distance. Thick Lenses. Focal Length of a Thic Convex Lens with Thickness. Telephoto lenses.	g Surface. Cardinal Points of a Coaxial lent Focal Length of Two Thin Lenses ck Lens. Variation of Focal Length of a
Unit II: Aberration in image	10h
Aberration in images: Chromatic aberrations; achromatic of separated lenses, Monochromatic aberration and their reducti Overview on Image Forensics: Assessment of the history and image life cycle, Image Acquisition, Image Coding and Ed Digital Forgeries Through Chromatic Aberration	combination of lenses in contact and ion, oil immersion objectives. d credibility of a digital image, Digital diting, Image Antiforensics, Exposing
Unit III: Interference and Diffraction	8h
Interference - Division of Amplitude and Division of Wave Interference in Thin Films: Newton's Rings. Bleach interfere surfaces.	front. Young's double slit Experiment. ence in forensic luminol tests on porous
Fresnel Diffraction and Fraunhofer diffraction: Diffractio Transmission Grating. Rayleigh's criterion of resolution. Res	n due to a Single Slit and a Plane solving Power and Dispersive Power of

a Plane Diffraction Grating.

10h

Unit VI: Polarization of light

Recent advancement in Applied Optics: Metasurfaces, Metasurface eyepiece for augmented reality

Polarisation of light, Brewster's law, Malus law, phenomenon of double refraction, Geometry of Calcite crystal, optic axis, principal section, ordinary and extraordinary rays; Nicol prism, circularly and elliptically polarized light, retardation plate. Optical activity, Polarized Light Microscope.

10h

Entrance and exit pupils, need for a multiple lens eyepiece, common types of Eyepieces and their working and applications (Ramsden Eyepiece).Forensic light source.

Basic principles and applications of photography in forensic science. 3D photography. Photographic evidence. Infrared and ultraviolet photography. Digital photography. Videography. Crime scene and laboratory photography

Unit VI: Application of Applied Optics

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	PHYSICS LAB -II				
Course Code	BBS08P5105				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives: This lab is provided for students to measure the various characteristics such as resolving power, dispersive power, susceptibility etc. The students will learn the measuring skills using microscope. Also, they can perform the experiments based on electrical circuits.

Course Outcomes

CO1	Demonstrate the skill to handle the instruments effectively and obtain the accurate results
CO2	Utilise the optical instruments to determine its ability and calculate the material properties.
СО3	Apply the fundamental knowledge of physics and perform the experiments to determine the various physical constants and the parameters of the materials.

Text Book (s)&Reference Book (s)

Text Book (s)

- 1. <u>B.Sc. Practical Physics</u> by C.L Arora , S. Chand Limited.
- 2. <u>B.Sc. Practical Physics</u> by Harnam Singh, S. Chand Limited

- 3. A Text Book of Practical Physics, InduPrakash and Ramakrishna, 11th Edition, 2011, KitabMahal, New Delhi.
- 4. Advanced Practical Physics for students, B.L.Flint&H.T.Worsnop, Asia Publishing House

Reference Book (s)

- a. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, Heinemann Educational Publishers
- b. A Text Book of Practical Physics, I.Prakash& Ramakrishna, 11th Ed., KitabMahal

List of Experiments

- 1. To determine Dispersive Power of the Material of a Prism using Mercury Light
- 2. To determine the Resolving Power of telescope
- 3. Determine the Cauchy Constants of material of prism
- 4. To determine the Resolving Power of a Prism
- 5. Verification of Stefan's law by electrical method.
- 6. To determine the Planck's constant using LEDs of at least 4 different colours
- 7. To determine the wavelength of diode laser source using diffraction of single slit
- 8. To determine an unknown Low Resistance using Potentiometer
- 9. Measurement of susceptibility of paramagnetic solution (Quinck's Tube Method)
- 10. To study the BH curve of iron using a Solenoid and determine the energy loss

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

Semester III

Name of The Course	Fingerprints				
Course Code	BSCF2001				
Perquisite					
Co requisite					
Anti requisite					
		L	Т	Р	С
		3	0	0	3

Course Objective:

The objective of the course is to impart knowledge of fingerprints as an important physical evidence at the scene of crime. The students would be able to study the manner in which it is developed, identified, classified, collected, packed and forwarded to the Fingerprint Bureau.

Course Outcomes:

On completion of this course, the students would acquire knowledge regarding fingerprint patterns, the different types of fingerprint classification, the various methods of fingerprint development and their recording.they'll get the knowledge of latest trends occurring for fingerprint development

CO1	To explain the history and developments of fingerprints with its importance as evidence.
CO2	To explain the formation of friction ridges, basic fingerprint pattern types and its interpretation. Different individual characteristics of ridges.
CO3	To explain the Ridge counting and tracing. Method for making an inked specimen of fingerprint and Taking of fingerprint from living and dead person.
CO4	To describe the Classification of fingerprints -Henry system, single digit classification and function of fingerprint Bureau.

CO5	To explain the Latent fingerprint and Chance Fingerprints in criminal investigation, and describe the various methods of development of fingerprints: physical and chemical methods, fluorescent method, laser method, lifting of latent fingerprints. Photography of latent traces and presentation of fingerprint evidence in court.
CO6	To gain the knowledge of recent developed methods for latent fingerprint development and other relevant studies.

Text Book (s) & Reference Book (s)

Text Books

Г

1. J. A., Sukoo, R. J, and Knupfer (2000), "Encyclopedia of Forensic Science", Siegel, Academic Press.

2. Champod, C., Lennard, C. J., Margot, P., & Stoilovic, M. (2017). Fingerprints and other ridge skin impressions. CRC press.

- 3. Henry C. Lee and R. E.Gaensslen, "Advances in Fingerprint Technology", Second Edition.
- 4. Fingerprint Manual, Division of Health Improvement.
- 5. Edward Hueske, "Firearms and Fingerprints", Viva Books Private limited
- 6. "Crime Scene Investigation", Aric W. Dutelle, Jones and Bartlett learning, Second Edition.

7. J.E. Cowger, Friction Ridge Skin, CRC Press, Boca Raton (1983).

8. D.A. Ashbaugh (2000), Quantitative-Qualitative Friction Ridge Analysis, CRC Press, BocaRaton.

9. Criminalistics, An Introduction to Forensic Science: Richard Saferstein, 10th Edition, Pearson Education International.

10. Forensic Science An Introduction to Scientific and Investigative Techniques: Stuart H. James and Jon J. Nordby., 3rd Edition CRC Press, Taylor & Francis Group.

11. C. Champod, C. Lennard (2004), P. Margot an M. Stoilovic, Fingerprints and other Ridge Skin Impressions, CRC Press, Boca Raton.

12. Lee and Gaensleen's, Advances in Fingerprint Technology, 3rd Edition, R.S.

13. Ramotowski (2013), CRC Press, Boca Raton.

14. Encyclopedia of Forensic Science, Volume 1-3: Jay A Siegel, Pekka J Saukko, GeofferyKnupfer. Academic Press.

Reference Books

1. Encyclopedia of Forensic Science, Volume 1-3: Jay A Siegel, Pekka J Saukko, GeofferyKnupfer. Academic Press.

2. Criminalistics, An Introduction to Forensic Science: Richard Saferstein, 10th Edition, Pearson Education International.

3. Champod, C., Lennard, C. J., Margot, P., & Stoilovic, M. (2017). Fingerprints and other ridge skin impressions. CRC press.

4. Ashbaugh, D. R. (1999). Quantitative-qualitative friction ridge analysis: an introduction to basic and advanced ridgeology. CRC press.

8 hours

10 Hours

Unit-1History of Fingerprinting

History and Development of fingerprints; important figures in the field of fingerprint, Principles of Fingerprints, Importance, nature and location, Fingerprints as evidence: Its recognition, Collection and Preservation.

Unit-2Introduction to Fingerprints and its pattern 8 hours

Biological Development of fingerprints, Biological significance of skin pattern, Ridge formation, Composition of Sweat, Theory pattern formation, Basic fingerprint patterns (Arch, loop, whorl and composite), Composites, accidental patterns, pattern area, delta and core (ridge characters) Ridge counting, Ridge tracing, General and Individual characteristics of fingerprints;

Unit- 3 Classification of fingerprints

Classification of Fingerprints for Comparison purposes: Pattern area, Core, Delta, Type lines, Poroscopy, edgeoscopy, ridge characteristics, etc. Classification of fingerprints -Henry system of classification and FBI extension, single digit (battle), damage fingers, Ivan Vucetich, Purkinje, Francis Galton, Establishment and function of fingerprint Bureau.

Unit-4 Recording and Examination of fingerprints

12 hour

Ridge counting and tracing, filling and searching .Method for making an inked specimen of fingerprint. Taking of fingerprint from living and dead person, Post-mortem fingerprinting (Fresh corpus, Rigor mortis, Mutilated, Decomposed, Drowned, Burn). Comparison Protocols: Class and individual characteristics (Galton's details), different ridge characteristics.

Unit-5 Latent Fingerprints and development

12 hours

Latent fingerprint and Chance Fingerprints in criminal investigation, investigating latent fingerprints, various methods of development of fingerprints: physical (Black and grey, fluorescent and magnetic powder method), Fingerprint powders metallic (Magnetic, Fine Lead, and Metal Evaporation)

and chemical methods, fuming methods, laser method Iodine Fuming, Iodine Solution method, Cyanoacrylate, Super glue, Ninhydrin method, DFO Method, Silver nitrate method) Instrumental (Laser). lifting of latent fingerprints. Photography of latent traces Fingerprint as forensic Evidence, Visible Fingermarks, Latent Fingermarks and presentation of fingerprint evidence and testimony in court.

Unit VI: Recent Advancements in fingerprints

New developed methods, use of nanoparticles for the development of latent fingerprints, modification of SPR method.

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	PRACTICAL- FINGERPRINTS
Course Code	BBS08P2106

Prerequisite				
Corequisite				
Antirequisite				
	L	Т	Р	С
	0	0	2	1

Course Objectives:

Course Outcomes

CO1	To understand the information about the plain and rolled fingerprints, identification of patterns. (K4,K3.K2)
CO2	To analyse and perform the ridge counting and tracing, for individual characterization. (K3,K2,K4)
CO3	To develop and lift the latent fingerprints using powder and chemical methods present at crime scenes by applying the knowledge. (K3)
CO4	To implement and update the ability of skill and knowledge in forensic science analysis /examination among students so that the future within forensic science discipline will continue to flourish. (K4, K5)

Text Book (s)&Reference Book (s)

List of Experiments

- 1. To take rolled and plain fingerprints.
- 2. To prepare a fingerprint card and identify the pattern.
- 3. To Develop a fingerprint using powder method(black).
- 4. To Develop a fingerprint using powder method(grey).
- 5. To Perform a ridge tracing in the given pattern.
- 6. To Perform a ridge counting in the given pattern.
- 7. To Identify the individual characters from the fingerprint sample.
- 8. To Develop a latent fingerprint using chemical method (iodine fuming).
- 9. To Develop a latent fingerprint using chemical method (Ninhydrin method).
- 10. To develop a latent fingerprint using chemical methods on different surfaces.
- 11. To develop a latent fingerprint by SPR method.

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

Name of The Course	Forensic Toxicol	ogy			
Course Code	BBS08T2111				
Perquisite	Chemistry				
Co requisite	Analytical Chemistry				
Anti requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

The objective of the course is to impart students' knowledge regarding the types of poisons and their toxic effects, characteristics and causes of poisoning, the legal aspects involving hit and run cases. Extraction and analytical techniques used for extraction of Volatile and Non-volatile poison.

Course Outcomes

CO1	Understand the basic concepts and terminologies of Forensic toxicology and identify the type of poison responsible for ill effects on the basis of signs and symptoms in fatal and survival cases.
CO2	Ascertain about the cause of poisoning on the basis of pattern of their toxicity (specific nature) caused.
CO3	Systematize the cause of toxicity based on characteristic features of poisoning followed by appropriate extraction methods and analytical techniques.

I.

L

CO4	Evaluate the level of liquor in breath in field test as well as blood alcohol concentration in drunk and driving cases along with hit and run cases.
CO5	Practice their knowledge to identify the substance responsible for harmful effects based on the type of effects for example corrosive, irritant, asphyxiant, cardiac, spinal poison etc.
CO6	Overview of the recent advancement in the field of Forensic Toxicology

Text Book (s) & Reference Book (s)

- 1. Poklis, Forensic toxicology in, Introduction to Forensic Sciences, 2nd Edition, W.G. Eckert CRC Press, Boca Raton (1997).
- 2. Professor K.S. Narayan Reddy the Essentials Of Forensic Medicine And Toxicology, jaypee

Brothers Medical Publishers, 33rd Edition, 2014

3. Professor V.V. Pillay Textbook Of Forensic Medicine And Toxicology, Paras Medical Publisher,

18th edition (2017)

4. W.J. Tilstone, M.L. Hastrup and C. Hald, Fisher's, Techniques of Crime Scene Investigation, CRC

Press, Boca Raton 8th Edition (2013).

5. Principles of Forensic Toxicology Barry Levine , Amer. Assoc. for Clinical Chemistry, 4th Edition

2014

6. Moffat, A. C.: Osselton, D. M. Widdop, B; Clake's Analysis of Drugs and Poisons in Pharmaceuticals, body fluids and postmortem material, 3rd ed., Pharmaceutical Press 2004.

- 7. Modi, Jaisingh, P.; Textbook of Medical Jurisprudence & Toxicology, M. M. Tripathi Publication (2001).
- 8. Eckert: An Introduction to Forensic Science, CRC Press.
- 9. Pilay, V. V.: Handbook of Forensic Medicine and Toxicology, Paras Pub., 2001.
- 10. Curry, A. S.: Poison Detection in Human Organs.
- 11. Levine B.: Principles of Forensic Toxicology, 2nd Edn., (2006).

12 Handgeon E.: A textbook of Modern Toxicology, 3rd Edn., (2004).

10 h **Unit-1: Introduction to Forensic Toxicology:** Basics of Toxicology – History, scope, classification and principles of Toxicology. Poison – Definition, Classification of Poison, Types of Poisoning, Toxicokinetic and toxicodynamic of Poison. Types of toxicity; LD 50, LC 50, Lethal dose, lethal period, Fatal period and its forensic significance. Role of forensic toxicologist. Collection and Preservation of toxicological exhibits in fatal and survival cases, medico-legal aspects. **Uni-2: Pesticides** 10h Classification of Pesticides - Organophosphorus compounds, Organochloro Compounds and Carbamates- Nature, administration, symptoms, post-mortem findings, detection, and medico-legal aspects. **Unit-3: Metallic & Industrial poisons** 8h Metallic Poison: Arsenic, Mercury, Lead, Cadmium, Mineral Acids: HCl, H₂SO₄, HNO₃; Alkalies: hydrates and carbonates of Sodium and Potassium, NaOH, KOH - Nature, administration, symptoms, postmortem findings, Detection and medicolegal aspects. 10h Unit- 4: Toxicology of Volatile Poison Methyl alcohol, Chloroform, Ethyl alcohol, Acetone; Nature, administration, symptoms, postmortem findings, detection and medico-legal aspects, Introduction, definition of alcohol and illicit liquor, Proof spirit, absorption, de-toxification and excretion of alcohol, Breath test instruments, field sobriety testing, analysis of blood for alcohol. Analytical techniques in the analysis of alcohol cases of drunken driving. **Unit-5: Animal and Vegetable Poisons:** 8 h

Animal poisons: Snake, scorpions and Cantharides; Vegetable Poisons: Dhatura, Oleander, Madar, Abrus precatrious, Castor, Cannabis, Nux vomica, cyanide, etc. Nature, administration, symptoms, post-mortem findings, detection and medico-legal aspects.

Unit VI: Recent Advancement in Forensic Toxicology

Development of Toxicoinformatics, Recent advancement in Analytical toxicology for drug analysis(LC-MS-MS,), Case study - Vizag gas leak.

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	PRACTICALS – Forensic Toxicology				
Course Code	BBS08P2107				
Prerequisite	General Toxicology				
Corequisite					
Antirequisite					
		L	Т	Р	С

	0	0	2	1

Course Objectives: Students will be able to examine various poison and apply the knowledge extraction methods, perform qualitative and quantitative analysis in forensic investigations for identification of toxic compounds.

Course Outcomes

CO1	Detect metallic poison in given biological matrix
CO2	Identify Volatile and non- volatile poison in given sample
CO3	Develop TLC for the identification of Insecticides and pesticides
CO4	Perform Instrumental analysis (UV Vis - Spectrophotometry) for various poison.

Text Book (s) & Reference Book (s)

- Moffat, A. C.: Osselton, D. M. Widdop, B; Clake's Analysis of Drugs and Poisons in Pharmaceuticals, body fluids and postmortem material, 3rd ed., Pharmaceutical Press 2004.
- Forensic Laboratory Handbook procedure and practice, Ashraf Mozayani, 2011
- Laboratory procedure Manual, Forensic Toxicology: DFS, 2005.
- Forensic Science Experiments, Manteshwer, 2011
- Lab Manual Criminalistics An introduction to Forensic Science, Richard Saferstein (2007) Ninth Edition.

List of Experiments

- 1. Preparation of TLC plates.
- 2. Detection of metallic poisons (Arsenic ,Mercury, Lead and Copper)
 - 3. Analysis of alcohol and other volatile poisons.(Ethyl alcohol, Methyl alcohol, Chloroform, Acetone, Phenol)
 - 4. Analysis of non-volatile poisons.(Chlorate, Sulphate, Nitrate, Nitrites, Carbonates, Phosphate)
 - 5. Analysis of vegetable poisons.(Calotropis, Oleander, Nicotine)
 - 6. Spot test of iron, Aluminum, cadmium, zinc.
- 7. Analysis of phenolphthalein (Qualitative) in bribe trap cases.
- 8. Analysis of corrosive poisons. (Hydrochloric acid, Sulphuric acid, Nitric acid)
- 9. Calibration of UV-Vis spectrophotometer.
 - 10. Instrumental analysis of toxic substances using UV-Vis spectrophotometer.

Internal Assessment (IA)	End Term Test (ETE)	Total Marks			
50	50	100			
Name of The Course	Fundamental of Forensic Psychology				
--------------------	------------------------------------	---	---	---	---
Course Code	BBS08T2112				
Perquisite	Basic of Psychology				
Co requisite					
Anti requisite					
		L	Т	Р	С
		3	0	0	3

Course Objective:

This course is designed to introduce students to the interface of psychology and the law, with a specific focus on forensic psychology. Critical issues, such as Not Guilty By Reason of Insanity pleas, will be addressed. Students will be introduced to the roles and responsibilities of a forensic psychologist including psychological assessments, expert testimony, offender treatment, and correctional psychology.

Course Outcomes:

CO1	Describe the major areas of interests shared by psychology and forensic psychology
CO2	explore human cognition and discover the mistakes brains can make
CO3	Explore the behavior of the person in different personality disorder (BPD)
CO4	Understand the many ways psychology contributes to the investigation of crime
CO5	Describe the types of forensic evaluations conducted in criminal and civil cases
CO6	Describe the landmark legal cases of child sexual abuse and police psychology

Text Book (s) & Reference Book (s) 1. Graham J.Towel & David A. Crighton, Forensic Psychology, BPS BLACKWELL Cochrane, R.

E., Tett, R. P., Vandecreek, L. (2003). Psychological testing and the selection of police officers: A National Survey. *Criminal Justice and Behavior*, *30*(5), 511-537.

2. Kocsis, R. N. (2003). Criminal psychological profiling: Validities and abilities. *International Journal of Offender Therapy and Comparative Criminology*, 47(2), 126-144.

3. Indian Penal Code 1860

4. Mental Health Act 1987.

5. Juvenile Justice Act 1986

6. Prof. Paranjape N. V., Criminology and Penology, Central Law Publication, Allahbad.

7. Barlow & Durand. V. M. (2005) Abnormal Psychology, 6th Ed. New Jercy

8. Seligman, Systems & Skill, 6th Ed. New Jercy

9. Serial Crime, Theoretical & Practical issues in behavioural profiling, Petherick, Woodworth Publications.

Unit-1: Basic of Forensic Psychology	10 hours
History of Forensic Psychology, Defining Forensic Psy Concepts of psychology, Professional and ethical issu by Forensic Psychologists., types of psychological pro	chology, Importance of Forensic Psychology, es in Forensic psychology, Services provided fessionals
Uni-2: Consciousness and learning and memory	10h
Consciousness, Altered states of consciousness, attent problems in Attention and perception, assessment atten of learning, models of memory, stages of memory, enco and memory, problem in learning and memory. This intelligence and language.	tion and awareness, sensation and perception, ntion and perception. Learning process, Types oding, retention and retrieval, forgetting, brain nking, decision making and problem solving
Unit-3: Motivation and Personality Disorders	8h
Motivation: Types of approaches Emotion, stress and Trait, theories of personality, psychoanalytic model, Humanistic model, Biological model assessment of Personality Disorders. Types of personality disorders	coping. Understanding personality, type and behavioristic model social cognitive model, f personality Definition and Diagnosing of
Unit- 4: Assessment and Evaluation in Forer 10h	asic Psychology (Psychological Testing):
What is Psychological Tests?, Types of Tests. Chara Forensic Psychology Assessment, Intelligence Tests, A Test.	acteristics of good test.Tests that are used in Achievement Tests ,Personality Tests, MMPI
Unit-5: Legal Aspects of Forensic Psychology:	8h

Introduction. Historical Background Survey into Psychological evidence in court. Ethical and Professional Issues, Application of Forensic Psychology in civil cases, criminal cases and Proceedings. Mental Health Act, 1987. **Mc Naughten rule insanity** – Nature of Insanity, Insanity Assessment, *Competency to* stand trial, Criminal responsibility and insanity defence

Unit VI: Recent trends in Forensic Psycholog

4H

Child custody assessments Assessment of child sexual abuse, Police psychology

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Introduction to Criminology				
Course Code	BBS08T2113				
Perquisite	Human behaviour				
Co requisite					
Anti requisite					
		L	Т	Р	С
		3	0	0	3

Course Objective: To introduce to the students the concepts of crime, criminology and the factors or causes of criminal behavior, The different types of crime committed in the society. The students would also acquire good knowledge regarding Police administration and the Indian Laws associated with different types of offences.

Course Outcomes:

CO1	To gain knowledge about basic concepts of criminology ,its development ,various types of crimes .
CO2	To understand about current scenario of crime in India and various theories given .
CO3	To understand about different forms of crime and concept of punishment.
CO4	To gain knowledge about the juvenile delinquency, various factors responsible for criminal tendency in youth.
CO5	To understand how Indian police system functions
CO6	To gain knowledge about recent advancements in field of criminology

Text Book (s) & Reference Book (s).

- Ellis, L. and Walsh, Anthony, Criminology A Global Perspective, Allyn and Bacon, Boston, 2000.
- 2. Morris, E. K., and Braukman,, C. J.(Eds.), Behavioural Approaches to Crime and Delinquency- A Hand book of Application, Research and Concepts, Plennum Press, New York, 1987.
- 3. Abaadinsky, H., Organised Crime (2ndEdn.), Nelson Hall, Chicago, 1998.
- 4. Adler, F., Mueller, G. O. W. and Laufer, W. S., Criminology, McGraw Hill, Boston, 1991.
- 5. Maguire, M.: Morgan, R and Reiner, R., TheOxford Handbook of Criminology (3rdEdn.), OxfordUniversity Press, Oxford, 2002.
- 6. Ahuja, R., Criminology, Rawat Publications, ND, 2000.
- 7. Bajpai, G. S., Development without Disorders. Vishwavidyala, Prakashan, Sagar (M. P.), 2002.

- 8. Ghosh&Rustamji, Encyclopedia of Police in India 1997 Vol, 3
- 9. VimalaVeeraraghavan, Handbook of Forensic Science
- 10. B S Nabar, Forensic Science in Crime Investigation
- 11. VimalaVeeraraghavan, Handbook of Forensic Psychology

Unit-1: Criminology and Criminal Behaviour	8h
Definition, description, and historical perspectives. Crime, Crimin as Science and Art, The field and scope of Criminology; Method Concept of Criminal Behaviour: Concept of a criminal, cla Operandi,Crime& Deviance	nal and Criminology; Criminology s and Techniques in Criminology; assification of criminals, Modus
Uni-2: Crime scenario in India	10h
Sociological aspects of crime and criminals in society, criminal in Criminal behaviour theories.	heritance and factors responsible,
Unit-3: Crime Types and punishment	10h
Organized crime; White – collar crimes; Sex offences; Murders, 7 against women and children; Concept of punishment, humanitaria punishment, capital punishment in India	Ferrorism; Serial Crime; Crime an approach to concept of
Unit- 4: Juvenile Delinquency	10h
Nature and incidence; Characteristics; Types of Juvenile Delin Delinquents; Factors in Juvenile Delinquency, Custody of juve procedure; Residential treatment, Counseling of Juvenile De techniques; Preventive Programmes	quents; Classification of Juvenile enile delinquents; Juvenile Court elinquents, behaviour modification
Unit-5: Police Administration	10 h
Indian Police System – State & Central level,(introduction CISF,CRPF,ITBP,Assam Rifles,SSB,NSG etc) The Police Act of criminals; Police role in the society as protectors of citizens and the	on to ParaMilitary Forces(BSF, f 1861, Role of police in regard to heir property; Custodial crimes.
Unit VI: Recent advancements in criminology	
Advancements in field of criminology , Important crime stati record Bureau site),	stics fromNCBI(National crime

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Organic Chemistry		
Course Code	BBS08T2114		
Perquisite	Basic inorganic and physical chemistry, Periodic elements	propert	ties of
Co requisite	Analytical chemistry		
Anti requisite			
		Р	С
	3 0	0	3

Course Objective:

To impart knowledge of organic chemistry used in the analysis of different substances encountered during a criminal investigation and their Forensic application

Course Outcomes:

On completion of this course the students will have a thorough knowledge of the basic organic chemistry required in the analysis of different substances encountered during a criminal investigation. They would be able to understand the effect of different functional groups on the activity of organic compounds used/found in Forensic investigations.

CO1	Enable students to understand the fundamental of organic chemistry (K2)
CO2	Enable students to apply the knowledge of stereochemistry of organic molecules to analyze their stereoselectivity and stereospecificity (K3/K4)
CO3	Enable students to understand the chemical reactions of Aliphatic hydrocarbons and their industrial applications (K2/K3)
CO4	Enable students to understand the phenolic and alcoholic compounds on the basis of their chemical reactions and applications (K2/K3)
CO5	Enable students to understand the carboxylic acids and amines on the basis of their chemical reactions and applications (K2/K3)
CO6	Utilization of CO2 to create valuable carbonyl-containing compounds as an advance approach (K6)

Text Book (s) & Reference Book (s)

- 1. Rakesh K. Parashar, V.K. Ahluwalia , Textbook of Organic Chemistry, Viva Books Private Limited
- 2. Rancis A. Carey, Richard A. Sundberg , Advanced Organic Chemistry, 2007

- 3. Michael B. Smith, Jerry March, March's Advanced Organic Chemistry. Reactions, Mechanisms, and Structure, Wiley
- George S. Zweifel, Michael H. Nantz, Modern Organic Paula Y. Bruice, Synthesis An Introduction, 2007
- 5. Paula Y. Bruice, Organic Chemistry, 2010
- 6. Organic Chemistry, Book by Robert Boyd, Robert Neilson Boyd, and Robert Thornton Morrison
- 7. Jonathan Clayden, Nick Greeves, Stuart Warren, Organic Chemistry: Second Edition, 2014
- Michael B. Smith, March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure 7ed (2015)
- Ivandini, T. A., Honda, K., Rao, T. N., Fujishima, A., & Einaga, Y. (2007). Simultaneous detection of purine and pyrimidine at highly boron-doped diamond electrodes by using liquid chromatography. Talanta, 71(2), 648-655.
- 10. Song, L., Jiang, Y. X., Zhang, Z., Gui, Y. Y., Zhou, X. Y., & Yu, D. G. (2020). CO 2= CO+[O]: recent advances in carbonylation of C–H bonds with CO 2. Chemical Communications.

Unit-1: Fundamentals of Organic Chemistry 8h

Physical Effects, Electronic Displacements: Inductive Effect, Electromeric Effect, Resonance and Hyperconjugation. Cleavage of Bonds: Homolysis and Heterolysis, Structure, shape and reactivity of organic molecules: Nucleophiles and electrophiles. Reactive Intermediates: Carbocations, Carbanions and free radicals, Strength of organic acids and bases: Comparative study with emphasis on factors affecting pK values. Aromaticity: Benzenoids and Hückel's rule.

Uni-2: Stereochemistry

10h

Conformations with respect to ethane, butane and cyclohexane.Interconversion of Wedge Formula, Newmann, Sawhorse and Fischer representations.Concept of chirality (upto two carbon atoms).Configuration: Geometrical and Optical isomerism; Enantiomerism, Diastereomerism and Meso compounds). Threo and erythro; D and L; *cis - trans* nomenclature; CIP Rules: R/S (for upto 2 chiral carbon atoms) and E / Z Nomenclature (for upto two C=C systems).

Unit-3: Aliphatic Hydrocarbons

12h

Aliphatic Hydrocarbons:Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Alkanes: (Upto 5 Carbons).Preparation:Catalytic hydrogenation, Wurtzreaction,Kolbe's synthesis, from Grignard reagent. Reactions: Free radical Substitution: Halogenation.

Alkenes: (Upto 5 Carbons)Preparation:Elimination reactions: Dehydration of alkenes and dehydrohalogenation of alkyl halides (Saytzeff's rule); cis alkenes (Partial catalytic hydrogenation) and trans alkenes (Birch reduction).Reactions: cis-addition (alk. KMnO₄) and trans-addition (bromine), Addition of HX (Markownikoff's and anti-Markownikoff's addition), Hydration, Ozonolysis, Hydroboration-oxidation.

Alkynes: (Upto 5 Carbons)Preparation: Acetylene from CaC₂and conversion intohigher alkynes; by dehalogenation of tetra halides and dehydrohalogenation of vicinal-dihalides,

Reactions: addition of bromine and alkaline KMnO₄,ozonolysis and oxidation with hot alkaline KMnO₄.

Unit- 4: Alcohols and Phenols 10h

Alcohols: Preparation: Preparation of 10, 20 and 30 alcohols: using Grignard reagent, Ester hydrolysis, Reduction of aldehydes, ketones, carboxylic acid and esters.

Reactions: With sodium, HX (Lucas test), esterification, oxidation (with PCC, alk. KMnO₄, acidic dichromate, conc. HNO₃).Oppeneauer oxidation Diols: (Upto 6 Carbons) oxidation of diols. Pinacol-Pinacolone rearrangement.

Phenols: (Phenol case) Preparation: Cumenehydroperoxide method, from diazonium salts. Reactions: Electrophilic substitution: Nitration, halogenation and sulphonation.

Reimer-Tiemann Reaction

Unit-5: Carboxylic acids and amines

10 h

Carboxylic acids: Carboxylic acids (aliphatic and aromatic), Preparation: Acidic and Alkaline hydrolysis of esters.Reactions: Hell – Vohlard- Zelinsky Reaction.

Amines and Diazonium Salts: Amines (Aliphatic and Aromatic): (Upto 5 carbons)

Preparation: from alkyl halides, Gabriel's Phthalimide synthesis, HofmannBromamide reaction.

Reactions: Hofmann vs. Saytzeff elimination, Carbylamine test.Electrophilic substitution (case aniline): nitration, bromination, sulphonation.

Unit VI: Recent advances in carbonylation of C–H bonds with CO2

Continuous Assessment Pattern

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	PRACTICALS – Organic Chemistry				
Course Code	BBS08P2108				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

Students will be able to separate and identify the mixture of organic compounds and apply this knowledge purification, identification of compounds in preliminary forensic investigations.

Course Outcomes

Students will be able to identify the organic compounds on the basis of their melting points, boiling points and functional groups activity. They will also be able to separate and identify the mixture of organic dyes and amino acids mixture using basic chromatographic techniques.

CO1	Enable students to identify organic compounds on the basis of their melting and boiling points
CO2	Enable students to identify organic compounds on the basis of their functional group tests
CO3	Enable students to separate and identify the mixture of dyes using paper chromatography
CO4	Enable students to separate and identify the mixture of amino acids using thin layer chromatography

Text Book (s)&Reference Book (s)

- Vogels Textbook Of Practical Organic Chemistry 5th Edition by FURNISS and BRIAN S and HANNAFORD and ANTONY J, PEARSON INDIA
- 2. Practical Organic Chemistry 4th Edition by MANN and FG and saunders, PEARSON INDIA
- 3. A Text-Book of Practical Organic Chemistry by J. W. COOK
- 4. Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.

List of Experiments

1: To determine the Melting and boiling point of pure organic compound/s s
2: Identification of functional group/s in organic compound/s (Carboxylic acids).
3: Identification of functional group/s in organic compound/s (Phenols).
4: Identification of functional group/s in organic compound/s (Aldehye/Ketones).
5: Identification of functional group/s in organic compound/s (Alcohols).
6: Identification of functional group/s in organic compound/s (Amines).
7: Separation of dyes by Paper Chromatographic technique
8: Separation and identification of Amino acids (Rf Calculation)

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

	Applied Biology-1				
Name of The Course					
Course Code	BBS08T5115				
Perquisite	Basic of Biology				
Co requisite					
Anti requisite					
		L	Т	Р	С
		3	0	0	3

Course Objective:

The students would learn the different aspects of Forensic Biology and some very specific areas such as Forensic Botany, wild life forensics, Palynology, and Forensic Entomology. The students will also study in detail the forensic examination of hair samples

Course Outcomes:

CO1	To understand the various aspects of forensic botany & its various types of botanical evidences
CO2	To present comprehensive knowledge of pollens, fungi and spores
CO3	To present complete knowledge to the student Diatoms and importance of diatoms in drowning cases
CO4	Classify the various wild life crimes and identification of wild life evidences.
CO5	Interpret the time since death by using insects as a evidence from the decomposed body and evaluate its forensic importance.
CO6	To apply the knowledge of forensic biology in the field of forensic science and to elaborate the knowledge of recent advancement in the field of forensic biology.

Text Book (s) & Reference Book (s)

- 1. James, S. H. And Nordby, J. J. (Eds), Forensic Science; An Introduction to Scientific and Investigative Techniques, CRC Press, London, 2003.
- 2. Saferstein, Richard, Criminalistics An Introduction to Forensic Science, 6th Ed. Prentice-Hall, New Jersey, 1998.
- 3. Sharma, B. R., Forensic Science in Criminal Investigation and Trials (3rd Ed) Universal Law Publishing Co. Ltd. New Delhi, 2001.
- 4. Bryant, V.M. Jr, Mildenhall, D.C. and Jones, J.G., Forensic Polynology in the United States of America Polynology. 1990, 14.PP.193-208
- 5. Faegri, K. Iverson, J. and Krzywinski, K. Textbook of Pollen Analysis 4th Edition. John Wiley & Sons, New York 1989.
- 6. Microbial forensics By Roger Breeze, Bruce Budowle, Steven E. Schutzer. Elsevier Academic Press
- 7. The Forensic Laboratory Handbook Procedures and Practice By Ashraf Mozayani, Carla
- 8. Noziglia. 2nd edition. 2011. Human Press.
- 9. Forensic Science in Wildlife Investigations. Adrian Linacre Taylor and Francis, 2009
- 10. Forensic Entomology: The Utility of Arthropods in Legal Investigations Jason H. Byrd, James L. Castner Taylor and Francis, 2009
- 11. Forensic entomology: an introduction By Dorothy E. Gennard Wiley.
- 12. Forensic palynology Dallas Mildenhall, Patricia Wiltshire, Vaughn Bryant Elsevier, 2006

13. Forensic palynology: An in-depth look at its indispensable value National University, San Diego, 2002

Unit-1: Forensic Botany

Introduction, Scope and Significance, Various types of evidences related to forensic botany like Wood: types of wood and anatomy, methods of identification and comparison. Leaves: Identification of various types of leaves and their anatomy, methods of comparison. Seeds : identification and analysis .Documentation of botanical evidences.

Uni-2: Forensic Palynology

Pollens: Structure, function, methods of identification and comparison. spores: structure and formation in fungi, gymnosperm and angiosperm. Forensic Importance of pollen and spores

Unit-3: Forensic Diatomology

Diatoms: Nature, classification, location, structure, life cycle, extraction from various body tissues including bone marrow, preparation of slides, methods of identification and comparison, forensic significance.

Unit- 4: Wild Life Forensic

Importance of Wildlife (Protection) Act, its Schedules in the protection of endangered species of flora and fauna. Identification of wild life materials such as skin, fur, bones, nails, horn, teeth, plants, plant parts and products by conventional and modern methods, Identification of Pug marks of various animals, DNA techniques in wildlife investigations.

Unit-5: Forensic Entomology

Forensic Entomology: General entomology and arthropod biology, insects of forensic importance, collection of entomological evidence during death investigations. the role of aquatic insects in forensic investigations, insect succession on carrion and its relationship to determine time since death, factors influencing insect succession on carrion, its application to forensic entomology.

Unit VI: Current trends in Applied Biology

Recent advancement in estimating time since death from the human body, microbial forensics , 3D forensic facial reconstruction.

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Atomic Spectra and Applications				
Course Code	BBS08T5116				
Perquisite					
Co requisite					
Anti requisite					
		L	Т	Р	С
		3	0	0	3

Course Objective: This course is designed to provide the knowledge in the field of atomic spectra. The students will understand the characteristics of the atoms in the presence of external field and different types of emission of radiations. They will explain the mechanism and working principle of different spectroscopy, laser phenomenon and Photoluminescence.

Course Outcomes:

CO1	Explain atomic spectra and apply the concept of selection rules.
CO2	Interpret the impact of external fields such as electric and magnetic fields on the atomic spectra.
CO3	Compare the rotational spectra of diatomic and polyatomic molecules and apply the concepts of IR technology in Forensic science field.
CO4	Differentiate between the Stoke's and Anti-Stoke's Raman lines.
CO5	Compare the behaviour of three & four level lasers and its application in Civil & Bio-medical field
CO6	Predict the applications of Infrared spectroscopy and spectroscopic imaging in forensic science

Text Book (s) & Reference Book (s)

Text Books

1. G M Barrow, Introduction to molecular spectroscopy, Tata McGraw Hill, Japan, 1962.

2. Arthur Beiser, Concepts of Modern Physics, 6thed.,McGraw Hill, New Delhi, 2008.

3. Harvey Elliott White, Introduction to Atomic Spectra, McGraw Hill, 1963.

4. J.W. Robinson, Undergraduate Instrumental Analysis, 5th Edition, Marcel Dekker, Inc., New York (1995).

5. Andrew V. Ewing and Sergei G. Kazarian, 'Infrared spectroscopy and spectroscopic imaging in forensic science,' Analyst, 2017, 142, 257-272, https://doi.org/10.1039/C6AN02244H

Reference Books

1. ManasChanda, Atomic Structure and Chemical Bond, 2nd ed., Tata McGraw Hill, New Delhi, 1979.

2. G .Aruldhas, Molecular Structure and Spectroscopy, 2nd ed., Prentice Hall of India Ltd, New Delhi, 2007.

3. B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules, 2nd Edition, Wiley, Hong Kong, 1990.

Unit-1 Atomic Spectra	8h
Isotopes and Isobars, Origin of atomic spectra, Explan Correspondence principle, Bohr and <u>Sommerfeld mod</u> Spin Orbit interaction; Lande interval rule; Two electro Spectroscopic terms and selection rules	ation of different series in hydrogen spectra, <u>el</u> , Stern-Gerlach experiment, Electron spin; on systems; LS – JJ coupling Schemes;
Unit II: Atoms in External Fields	8h
Zeeman and Paschen Back Effect of one and two elect transitions; Compton Effect; NMR – Principles and de Chemical shift; ESR – Basic principles;	ron systems; Stark effect; X-ray – Auger scription; Magnetic dipole coupling;
X-Rays: Bragg's law for X-ray diffraction, Bragg's X- method. Continuous X-ray and Bremsstrahlung proces law.	ray spectrometer. Debye and Scherrer s. Characteristic X-ray spectra, Mosley's
Unit III: IR and Ultraviolet Spectroscopy	10h
Rotational spectra of diatomic molecules; Rotation spe symmetric top and asymmetric top molecules; Diatomic techniques.	ectra of polyatomic molecules; Linear, ic vibrating rotator; Analysis by infrared
Usage of Infrared-Based Technologies in Forensic Scie electronic transitions, radiative processes, energy diagn visible spectroscopy	ences, Ultraviolet and Visible Spectroscopy: ram, forensic applications of Ultraviolet-
Unit VI: Raman Spectroscopy	8h
Raman Effect: Stoke's and Anti-Stoke's Lines, Quantu Character of Raman and infrared Spectra, Electronic, r diatomic molecules; Experimental techniques.	Im Theory of Raman Effect. Complimentary otational, vibrational and Raman spectra of
Unit V: Laser and Luminescence	10h
Lasers: Spontaneous and Stimulated emissions, Einster Optical Pumping and Population Inversion. Three-Lev Ne Laser and Semiconductor laser; Laser applications Light Reactions in Forensics: Incandescence, Lumines Photoluminescence- Fluorescence and Phosphorescence	in's A and B coefficients, Metastable states, el and Four-Level Lasers, Ruby Laser, He- in Civil; Bio-medical applications of lasers cence: Types of Luminescence, Types of ce, Phosphors – use in evidence collections.
Unit VI: Application of Atomic Spectra	ЛЬ
Decent advancement in storie spectra Infrared spect	TH
forensic science	toscopy and spectroscopic imaging in

Continuous Assessment Pattern

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Forensic Ballistics				
Course Code	BBS08T2117				
Perquisite					
Co requisite					
Anti requisite					
		L	Т	Р	С
		3	0	0	3

Course Objective:

The objective of the course is to impart students knowledge regarding the types of firearms and ammunition, characteristics of identification, determination of range of firing and introduction to exterior ballistics. The legal aspects involving firearms cases.

Course Outcomes:

CO1	Explain the history and development of the firearm and describe the various types of firearms and their mode of operation.
CO2	Identify the types of propellant, primer and their composition and examine the fired cartridge case and bullet to correlate it with the firearm used in gunshot case.
CO3	Interpret the velocity of the bullet, recoil force, barrel pressure, ballistic coefficient, angle of elevation of the barrel when a bullet is fired.
CO4	Predict the range by which a bullet is fired and to Reconstruct the sequence of events in a shooting case.

CO5 Assess the nature of the injury inflicted to the body from various ranges.

CO6 Elaborate the knowledge of recent advancement in the field of forensic ballistics.

Text Book (s) & Reference Book (s)

Text Book (s) & Reference Book (s)

1. Sharma, B.R.; "Firearms in Criminal Investigation & Trials", Universal Law Publishing Co Pvt Ltd, New Delhi, 4th Edition. 2011.

2. Hatcher, Jury and Weller; "Firearms Investigation, Identification and Evidence", Stackpole Books, Harrisburg, Pa, 1997.

3. Heard, B.J; "Handbook of Firearms and Ballistics", John Wiley, England, 1997.

4. Jauhari M; "Identification of Firearms, Ammunition, & Firearms Injuries", BPR&D, New Delhi.

5. Hogg, I.V; "The Cartridge guide – A Smallarms Ammunition Identification Manual", The Stackpole publishing Co., Harrisburg, Pa, 1982.

6. Janes, T.J.G; "Infantry Weapons", Janes Information Group, Sentinal House, Surrey, U.K. (2004-05)

7. Burrard: "The Identification of Firearms and Forensic Ballistics", Herbert Jenkins, London, 1956.

8. Gunther and Gunther; "The Identification of Firearms", New York, 1935.

9. Wilber; "Ballistic Science for the Law Enforcement Officer", Charles C. Thomas, USA, 1977.

10.Hayes, T.J; "Elements of Ordnance", John Wiley & Sons, Inc, London, 2013.

11.Smith and Smith; "Book of Rifles", Stackpole Books, Harrisburg, Pa, 1972.

12.Smith and Smith; "Book of Pistols and Revolvers", Stackpole Books, Harrisburg, Pa, 1968.

Unit-1Fire Arms and Ammunitions	8 hours
History and development of fire arms and ammunitions, Cla operations, proof marks. Types of ballistics, ammunitioncom their compositions.	assification of firearms, weapon types and their apponents, types of primers and propellants with

Unit-2Internal and External Ballistics

Internal ballistics – Definition, Combustion of propellants, lock time, ignition time, barrel time, factors affecting the internal ballistics, External Ballistics – Vacuum trajectory, bullet drop, spin, drift, yaw, ricochet, trajectory computation, ballistics coefficient, Theory of recoil, barrel pressure measurement. Factors affecting trajectory.

8 hours

Unit-3Firearms-Ammunition Linkage	8 hours	
Class and Individual characteristics, Cartridge case and Bullet Exami Microscope, NIBIN System, The Arms Act 1959.	nation, Test exhibits, Comparison	
Unit-4Range of fire, GSR and Reconstruction of events	8 hours	
Muzzle pattern, scorching, blackening, tattooing, wad distribution, pe Reconstruction of the sequence of events in a shooting case. Presenta	ellet patterns, GSR analysis, tion of evidence in the court.	
Unit-5Wound /Terminal ballistics	8 hours	
Introduction, Injuries and the quantity of energy of projectiles, Shock wave and cavitation effect, Elements of wound Ballistics; Nature of target, Velocity of projectile, Constructional features, Range, Penetration of shots in different regions of the body.		
Unit VI: Recent advancement in Ballistics		
Recent trends in gunshot residue analysis: luminescent marker, l cartridges case images. Recent Amendments in Arms Act,2019.	Fully automatic method for comparing	

٦

Name of The Course	Practicals– Forensic Ballistics				
Course Code	BBS08P2109				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives: The objective of this course is to give practical exposure to the students in the different aspects of Ballistics regarding examination of cartridge cases, comparison of bullets, various parts of firearms, chemical analysis of Gunshot residues and firearm injury evaluation.

Course Outcomes

CO1	Discriminate between different types of firearms and their operation.
CO2	Demonstrate and practice the various methods of identification of firearms, fired bullets/cartridge cases.
CO3	Select the analysis methods for the explosive residues and evidences.
CO4	Assess the nature of the firearm injury inflicted to the body from various ranges.

Text Book (s)&Reference Book (s)

- Forensic Laboratory Handbook procedure and practice, Ashraf Mozayani, 2011
- · Ballistics DFS Manual, 2005

.

- Forensic Science Experiments, Manteshwer, 2011
- Brain J. Heard; Hand book of Firearms and Ballistics; John Willey, England; (1997)
- Lab Manual Criminalistics An introduction to Forensic Science, Richard Saferstein (2007) Ninth Edition.

List of Experiments

 \cdot To describe, with the aid of diagrams, the different parts of firearms and classification of firearms and their firing mechanism.

- To study the characteristic features of the firearm- caliber, choke and proof marks.
- To study the different components of shotgun cartridges
- · To study the different components of Metallic cartridges
- To examinefiredcartridgescases for Individual and Class characteristics.
- To carry out the comparison of fired bullets.
- To carry out the comparison of fired cartridge cases.
- To collect the GSR from hands and cloths.
- To examine the organic and inorganic components of Gunshot Residues.
- To differentiate, with the aid of diagram, contact wounds, close range wounds and distantwounds.
- · Visit for Autopsy in Firearms cases.

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

	Recent Advancement of Forensic Science				
Name of The Course					
Course Code	BBS08T2118				
Perquisite					
Co requisite					
Anti requisite					
		L	Т	Р	C
		3	0	0	3

Course Objective:

The students would be able to understand the principle of various types of biometric recognition techniques and working of advanced techniques for the detection of truth and other forensic tools for investigation. They would also know the application of nanotechnology in various domains of forensic science along with legal considerations of environmental regulatory statutes.

Course Outcomes:

CO1	Understand concept of principle of various types biometric techniques, their acceptance, advantages and disadvantages in the field of forensic investigation. K6.
CO2	Interpret the result acquired from advanced techniques such as narcoanalysis, brain mapping, lie detection to know whether a person is lying or telling truth with other advanced assisting techniques such as remote personal assessment, super imposition technique etc. K2
CO3	To make students understand the application of nanotechnology in in fingerprint development, Military investigation, DNA, Narcotics and Drugs testing. K4.
CO4	Understand hazards and risks of exposure of various environmental contamination to our ecology and how to evaluate such toxicant in environment by various detection techniques such as atmospheric tracer along with illegal considerations of regulatory bodies. K3 .
CO5	Understand the concept of thanotomicrobiome, to know the cause of death due to microbial pathogens and to carryout outbreak investigation K2.
CO6	Understand and apply the concept and application of alternative light photography, LA-ICP-MS, Digital surveillance for gaming equipment and develop the research aptitude K6.

Text Book (s) & Reference Book (s)

- 1. Hand book of biometric, Edt., Anil K. Jain, Patrick Flynn, Arun A. Ross, Springer Pubisher, 2008.
- 2. Biometrics: Theory, Methods, and Applications, N. V. Boulgouris, Konstantinos N. Plataniotis, Evangelia Micheli-Tzanakou, 2010.
- 3. New perspective of nanotechnology: role in preventive forensic Alok Pandya1 and Ritesh K Shukla, Egyptian Journal of Forensic Sciences, 1-11, (2018) 8:57
- 4. Introduction of Forensic Nanotechnology as Future Armour in Nanotechnology Science and Technology, Nova Publisher, Edi., Ritesh Kumar Shukla, Alok Pandya, September 2019.
- 5. Forensic Microbiology, Editor(s): David O. Carter, Jeffery K. Tomberlin, M. Eric Benbow, Jessica L. Metcalf, 3 April 2017, Publishre; John Wiley & Sons Ltd., Wiley online library.
- 6. Forensic Microbiology, David O. Carter, Jeffery K. Tomberlin, M. Eric Benbow, Jessica L. Metcalf, John Wiley & Sons, 30-May-2017, Wiley Publisher

- 7. Forensic Microbiology in Forensic Science in Focus) Hardcover 21 April 2017, by David O. Carter (Editor), Jeffery K. Tomberlin (Editor), M. Eric Benbow (Editor), & Jessica L. Metcalf.
- 8. Introduction to Environmental Forensics, Book, 2nd Edtion, 200, Brain L., Murphy Robert D. Morrison, 2007, pp.776.

Unit-1Biometrics: 8 hours

Definition, Scope,Pattern Recognition & Biometrics - Face, Iris & retinal imaging, Voice recognition, finger print, palm print recognition, Computer simulation, Image processing - Image capturing, Image restoration & enhancement. Image editing, Compression Technique, Proactive Forensic science. Biometrics Applications, Advantage of Biometric Database (Fingerprints, iris, face, etc.).

Unit-2Recent & advanced tools and techniques utilize in Forensic Science8 hours

Portrait parley method, Narco-analysis, Brain Mapping, Polygraphy, Ballistic Fingerprinting, Binocular for identifying dangerous gases, Remote personal assessment, super imposition technique, Fire technology, 3D Scanner, High speed ballistics photography, Forensic carbon-14 Dating.

Unit-3Forensic Nanotechnology

Forensic Nanotechnology: Introduction and application of nanotechnology in forensic science such as in fingerprint development, in Military such asexplosives detection,GSR analysis,DNA, Narcotics and Drugs testing.

8 hours

8 hours

Unit-4 Environmental Forensic

Sources identification, effect on human health and ecological effects of environmental contamination in air, water, soil, sediments and biota, chemicals, atmospheric tracers and concentration evaluations, Vapour Intrusion, Illegal mining of fossil fuels, minerals & metals, Legal Considerations including regulatory statutes and actions.

Unit-5-Forensic microbiology 10 hours

Investigation of thanotomicrobiome, Cause of death: Due to bacterial and viral pathogens, Outbreak investigation: Biological warfare, Animal pathogen, Food born outbreak, Agro-terrorism.Location based information of a person, Detection of Chain of infection.

Agent, elucidate the source and provide these results as evidence in court.

Definition, Concept and application of Alternative light photography, LA-ICP-MS, Digital surveillance for gaming equipment in forensic investigation.

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Basic concept of spectroscopy					
Course Code	BBS08T2119					
Perquisite						
Co requisite						
Anti requisite						
			L	Т	Р	С
			3	0	0	3

Course Objective:

To impart knowledge of the various technique used in the analysis of different substances encountered during a criminal investigation and their Forensic application

Course Outcomes: On completion of this course the students will have a thorough knowledge of the various techniques used in the analysis of different substances encountered during a criminal investigation They would be able to understand the various types of principles, and their Forensic applications.

CO1	Explain the fundamentals of electromagnetic spectra. (K2)
CO2	Explain the conceptual understanding of the various laws, principles and applications of UV- Visible and IR Spectroscopy. (K2)
CO3	Analyse the basic principles and structural analyses and applications in Raman Spectroscopy (K4)
CO4	Apply the basic concepts of Principles, structural analyses, application of X- rays spectroscopy and instrumental knowledge of Mass spectroscopy. (K3)

CO5 Explain the basic principles, mechanism and applications of flame photometry and be able to calculate the NMR signal in the given molecule. (K2)

CO6 | Elaborate the knowledge of recent advancement in the field of Instrumentation (K6)

Text Book (s) & Reference Book (s)

- 1. Stout G.H., & Jensten, L.H., X-ray Structure Determination A practical Guide, 2nd Ed., Wiley, New York, 1989.
- Gchristian, Gray D and Fredric J. Feldman, Atomic Absorption Spectroscopy; Wiley-Interscience, London, 1970.
- 3. Willard, H.H. et al, Instrumental Methods of Analysis, CBS Publishers and Distributors, Delhi 1986.
- 4. Bassett, J., et al, Vogel's Text Book of Quantitative Inorganic Analysis including Elementary Instrumental Analysis (Fourth Ed.), Long man Essex, 1978.
- 5. Sneddon, J., Advances in Atomic Spectroscopy, Vol. I & II, JNI Press 1992 & 1994.
- 6. Lin Vien, D & Other Infrared & Raman Characteristics frequencies of organic molecules; San Diego Acad, Press 1991.
- 11. Maclaffrty, F.W. & F. Turecek, Interpretation of Mass spectra, 4thedMillValley, C A Univ Science Books, 1993.
- 12. R.M. Silverstein, Baster, G.C. & Morsill, T. C., Spectrometric identification of Organic Compounds, 4thEdn., Wiley, New York, 1981.
- 13. S.J. Haswell, Atomic Absorption spectrometry, Elsevier, Amsterdam, 1992.
- 14. Senders, I & Hunter B., Modern Spectroscopy- A center for Chemists; 2nd ed. Oxford Univ. Press, UK, 1993.
- 15. https://www.sciencedirect.com/topics/chemistry/physico-chemical-analysis-method
- 16. <u>https://www.sciencedirect.com/topics/chemistry/ir-spectroscopy</u>

UNIT-I Electronic spectroscopy:

Interaction of electromagnetic radiation with molecules and types of molecular spectra. Energy levels of molecular orbitals (σ , π , n). Selection rules for electronic spectra. Types of electronic transitions in molecules effect conjugation.

Unit-2 UV-Visible &Infra-Red Spectroscopy

Introduction, Lamberts Beer's law, Electronic transition, Chromophore, Auxochrome, Types of Band Shifts, Applications of U.V.Spectroscopy, Introduction, Fundamental modes of vibrations Types of vibrations, (Stretching, bending) Function group region, Fingerprint region and Applications of IR-Spectroscopy

Unit-3 Raman Spectroscopy

Scattering of light, Elastic and Inelastic collisions, Stoke's, Anti-stoke's and Rayleigh lines, polarization measurements of water and carbon-dioxide molecules

Unit-4 X-ray and M	Mass Spectroscopy
--------------------	-------------------

6 hours

8 hours

8 hours

8 hours

Introduction, Methods of generation of X-rays, General principle, Instrumentation working of Mass Spectroscopy and its applications.

Unit-5 Flame Photometryand NMR spectroscopy

10 hours

Introduction, Principle of Flame photometer, Parts of Flame photometer, Mechanism and Applications. Introduction of NMR, Basic Principle, Calculations for number of signals, shielding and de-shielding effect, chemical shift and applications of NMR.

Unit 6: Elaborate the knowledge of recent advancement in the field of Instrumentation.

Physico Chemical Analysis Methods, Advanced instrumental techniques, Medical Science applications etc

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Analytical Chemistry				
Course Code	BBS08T2120				
Perquisite	Basic concepts of analytical chemistry				
Co requisite	Spectroscopy				
Anti requisite					
		L	Т	Р	С
		3	0	0	3

Course Objective:

To impart knowledge of the various analytical techniques in the analysis of different substances encountered during a criminal investigation and their Forensic application, understand the principles and instrumentation of these methods in analysis of samples/mixtures

Course Outcomes:

On completion of this course the students will have a thorough knowledge of the various instruments used in the analysis of different substances encountered during a criminal investigation. They would be able to understand the principles of various types of instrumentation, their Forensic application, their methods of sample analysis.

CO1	Enable students to understand and apply the knowledge of centrifugation in the separation of biomolecules/complex mixtures (K2/K3)
CO2	Enable students to understand the enzymatic kinetics and to compare it with chemical kinetics (K5)
CO3	Enable students to analyze different immunochemical interactions (K4)
CO4	Enable students to analyze the complex mixtures after chromatographic separation (K4)
CO5	Enable students to apply the principles of microscopy to analyze smaller (microsize) evidences (K3/K4)
CO6	Enable students to elaborate the knowledge of recent advancement in the field of Instrumentation physical chemistry (K6)

- 1. Wilson And Walkers, Principles And Techniques Of Biochemistry And Molecular Biology 8th South Asia Edition 2018 by HOFMANN A, CAMBRIDGE UNIVERSITY PRESS
- 2. James M. Miller, Chromatography: Concepts and Contrasts, 2nd Edition
- 3. R J Mayer and J H Walker., Immunochemical Methods in Cell and Molecular Biology Academic Press, London. 1987.
- 4. Douglas B. Murphy and Michael W. Davidson, Fundamentals of Light Microscopy and Electronic

Introduction of gravimetric analysis and volumetric analysis, Acid base concept, indicators Theory, Introduction, Principles and theories of Column chromatography, Paper chromatography, TLC, Gas chromatography, HPLC, HPTLC

Imaging, Second Edition, First published:13 September 2012

- 5. Reiner WestermeierElectrophoresis in Practice: A Guide to Methods and Applications of DNA and Protein Separations, Fourth Edition,,First published:25 October 20046
- 6. Lewandowski, J., Meinikmann, K., & Krause, S. (2020). Groundwater–Surface Water Interactions: Recent Advances and Interdisciplinary Challenges
- Vagi, M. C., & Petsas, A. S. (2020). Recent advances on the removal of priority organochlorine and organophosphorus biorecalcitrant pesticides defined by Directive 2013/39/EU from environmental matrices by using advanced oxidation processes: An overview (2007–2018). *Journal of Environmental Chemical Engineering*, 8(1), 102940.

UNIT-I Centrifugation Techniques:			8 ha	ours	
Basic principles of sedimentation, various types of centrifuges, Density gradient centrifugation Preparative centrifugation, Cell fractionation, Analysis of sub-cellular fractions, Ultracentrifuge Refrigerated Centrifuges		fugation, ntrifuge-			
Unit-2 Enzyme Techniques			1) hours	
Enzyme kinetics, Purification and protein estimation, Enzyme assay technique, Visible & ultraviolet Spectrophotometric methods - Instrumentation, Automated enzyme analysis, Immobilized enzymes.			ltraviolet enzymes.		
Unit-3 Immuno-chemical Techniques				10 hours	S
Gel immuno-diffusion, Immuno-electrophoresis, F Fluorescence immuno assay.	Radio I	lmmuno	Assay	(RIA),	ELISA,
Unit-4 Chromatographic Techniques			8 hou	rs	
Unit- 5 Microscopy			8 hours		

Definition and theory of microscopy, Different types of microscopes (Optical microscope - .Instrumentation and working of simple, compound microscope and stereomicroscope) and Electron microscope (Instrumentation and working of SEM and TEM)

Unit 6: Recent advancements in Analytical Chemistry for sustainable air/water remediation

Groundwater Surface Water Interactions: **Recent Advances** and Interdisciplinary Challenges

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Applied Biolog	y-II			
Course Code	BBS08T5121				
Perquisite					
Co requisite					
Anti requisite		1	r		
		L	Т	Р	С
		2	0	0	2

Course Objective: The objective of this course is to impart complete and thorough knowledge to the students regarding the various aspects of forensic biology, especially blood, its properties, its various methods of analysis and laboratory examination

Course Outcomes:

CO1	To Understand the types of bones in human skeletal system and establish identity on basis of skeletal remains
CO2	To Establish personal identity by using forensic facial reconstruction techniques
CO3	To assess the identity from various odontological evidences
CO4	To apply recent techniques to establish the identity from skeletal remains

Text Book (s) & Reference Book (s)

- James, S. H. And Nordby, J. J. (Eds), Forensic Science; An Introduction to Scientific and Investigative Techniques, CRC Press, London, 2003.
- Saferstein, Richard, Criminalistics An Introduction to Forensic Science, 6th Ed. Prentice-Hall, New Jersey, 1998.
- Sharma, B. R., Forensic Science in Criminal Investigation and Trials (3rd Ed) Universal Law Publishing Co. Ltd. New Delhi, 2001.

UNIT-I Forensic Anthropology

Introduction, General Definition, Scope and Significance, Types of bones, Anatomy and physiology of major bones like pelvis, limb bones, skull, clavicle and sternum. Determination of sex, age, race and stature through bones, Skull, Pelvis, and long bones.

Unit-2 Forensic anthropometry / Osteametry	10 hours
--	----------

Determination of personal identity, superimposition technique, video image analysis, facial reconstruction from skeletal remains. Identification of burnt bones, recovery and identification of skeletal remains in accident crimes and mass disasters.

Unit-3 Forensic Odontology and Bite marks

Introduction, General Definition, Scope and Significance. Dentition, pattern, types and structure to teeth, age determination and identity of person from dental remains. Bite marks, Photography, lifting and preservation of bite marks, Forensic Significance of bite marks.

Unit 4:Recent Advancement in forensic anthropology and odontology

Recent advances in sex and age identification of human skeletal remains. Insight into Recent Advances of Forensic Odontology

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Practicals– Forensic odontology and anthropology
Course Code	BBS08P5107
Prerequisite	

Corequisite				
Antirequisite				
	L	Т	Р	С
	0	0	2	1

Course Objectives:Students will be able to identify different types of bones and determine age, sex and stature from skull, longbones, pelvis and mandible.

Course Outcomes

CO1	To study the identification and description of different types of bones.
CO2	To determine the sex from the human skull and pelvis
CO3	To determine age from the human skull and mandible.
CO4	To preserve and analyse bite marks from different surfaces

Text Book (s)&Reference Book (s)

- Forensic Laboratory Handbook procedure and practice, Ashraf Mozayani, 2011
 - Christensen AM, Passalacqua NV, Bartelink EJ. Forensic anthropology: current methods and practice. Academic Press; 2019 Jul 19.

List of Experiments

- 1. To study identification and description of long bones bones.
- 2. To study identification and description of flat bones.
- 3. To study identification and description of pelvic girdle.
- 4. Estimation of stature using upper limb long bones.
- 5. Estimation of stature using Lower limb long bones.
- 6. Determination of age from skull .
 - 7. Determination of age from mandible.
 - 8. Determination of sex from skull.
 - 9. Determination of sex from Pelvis.
- 10. Preparation of Dental chart
- 11. To analyze and preserve bite marks.

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

Name of The Course	Electronic Circuits and Transducers
Course Code	BBS08T5122
Perquisite	
Co requisite	

Anti requisite				
	L	Т	Р	С
	2	0	0	2

erence Books:

Course Objective: The students will be familiar with the various electronic components and their functioning in the analog and digital circuits. Also, they will learn the working of different types of transducers and measuring devices and their

applications.

Course Outcomes

CO1	Explain the basic components of electronics and design the circuits for various applications (K3)
CO2	Discuss the different types of transducers (K4)
CO3	Illustrate the basic principles and the working of different mechanical , electrical and other measuring devices (K4)
CO4	Propose the applications of transducers for energy harvesting (K6)

Text Book (s) & Reference Book (s)

Text Book:

- 3. Integrated Electronics, J. Millman and C.C. Halkias, Tata Mc-Graw Hill.
- 4. Solid State Electronic Devices, B.G.Streetman & S.K.Banerjee, 6th Edn., PHI Learning
- 5. Sensors and Transducers, D. Patranabis, PHI, 2nd edition.
- 6. Principles of Industrial Instrumentation, 2nd Edition, D.Patranabis, Tata McGraw Hill Publishing Co., New Delhi.
- 7. Priya, S. Advances in energy harvesting using low profile piezoelectric transducers. *J Electroceram* **19**, 167–184 (2007). https://doi.org/10.1007/s10832-007-9043-4
- 4. Electronic Devices & circuits, S.Salivahanan & N.S.Kumar, 3rd Ed., 2012, Tata Mc-Graw hill
- 5. OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, Prentice Hall
- 6. Process Measurement and Analysis, 4th Edition (1995), Liptak B. G., Chilton Book Company, Pennsylvania.
- 7. Introduction to Measurements and Instrumentation, Arun K. Ghosh, PHI, 4th edition

Unit-I Electronics components and circuits	8h
Passive component; resisters, capacitors and inductors, transform Active component; diodes and its identifications, Zener diode, tra Basics of LR, CR, LCR Circuits, Rectifier circuits, Wave Shapin Diode and transistors as logic gates and application of logic gates	ners and its types. ansistors, g Circuits, photo-sensors. s.
Unit- II Transducers:	8 h

Recent advancement in Electronic Circuits and Transducers: Advances in energy harvesting by low profile piezoelectric transducers

Transducers –electrical transducers, strain gauge, resistance thermometer, thermistors and its applications.

Uses of Linear Variable Differential Transformer (LVDT), capacitive transducers, piezoelectric transducers, photo-electric transducers.

Unit III: Measuring Devices	6h
Mechanical flow meter. anemometer, power and watt meters, '	TDS meters, spectrophotometer, rain

gauge, metal detector, breath analyzer, pH meters.

Unit IV: Application of Electronic Circuits and Transducers	2 h

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	PHYSICS LAB –III (Electronic devices)				
Course Code	BBS08P5108				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives: This lab is designed to make the students to learn the experiments based on passive elements, diodes, transistors, ICs and operational amplifies. From this lab students will acquire the knowledge of applying the resisters, capacitors, inductors, diodes and transistors in the electronic circuits

Course Outcomes

CO1	Interpret the basic principles of the experiments and analyse the results
CO2	Explain the characteristics of different diodes and transistors and their applications
СО3	Employ the understanding of logic gates using transistors and diodes to design switches, AND, OR, NOT, XOR gates

Text Book (s)&Reference Book (s)

Text Book (s)

- 1. <u>B.Sc. Practical Physics</u> by C.L Arora , S. Chand Limited.
- 2. <u>B.Sc. Practical Physics</u> by Harnam Singh, S. Chand Limited

- 3. Modern Digital Electronics, R.P. Jain, 4th Edition, 2010, Tata McGrawHill.
- 4. Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-GrawHill.

Reference Book (s)

- a. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, Heinemann Educational Publishers
- b. Microprocessor Architecture Programming and applications with 8085, R.S. Goankar, 2002, PrenticeHall.
- c. Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India
- d. A Laboratory Manual of Physics for Undergraduate Classes, D.P. Khandelwal, Vani Publication.
- e. A Text Book of Practical Physics, I.Prakash& Ramakrishna, 11th Edn., 2011, KitabMahal

List of Experiments

- 1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses
- 2. To study the characteristics of a series RC Circuit
- 3. To measure the resistivity of a semiconductor (Ge) crystal with temperature by four-probe method (room temperature to 150 °C) and to determine its band gap
- 4. To study V-I characteristics of PN junction diode
- 5. Study of Tunnel diode characteristics
- 6. To study the V-I characteristics of a Zener diode and its use as voltage regulator
- 7. Study the characteristics of Transistors
- 8. To design a switch (NOT gate) using a transistor
- 9. To verify and design AND,OR,NOT and XOR gates using NAND gates.
- 10. Operational Amplifiers and its applications

Internal Assessment (IA)	End Term Test (ETE)	Total Marks			
50	50	100			
Name of The Course	Research Methodology and Statistics				
--------------------	--	---	---	---	---
Course Code	BBS09T2411				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream				
Corequisite	Students should have fundamental knowledge of subjects like mathematics, physics and chemistry				
Antirequisite	-				
		L	Т	Р	С
		2	-	-	2

Course Objective: The objective of the course is to impart research based knowledge to the students. They would be taught the various ways of data collection, research methodologies adopted in different settings, and statistical methods.

Course Outcome:

CO1	Students will get separately familiar with terms research and methodology,
	respectively.
CO2	Identifying different type of research sampling and research design.
CO2	Students will understand raw data, primary data, secondary data and their different
	methods of collection.
CO4	Students will appraise the application of sampling through statistics.
CO5	Students will get familiar with different descriptors of statistics to analyse data both
	quantitatively and qualitatively.
CO6	Students will develop the statistical analysis indulges in modern research for drug
	designing.

Course Contents:

Module I: Introduction to Research Methodology	6-Lectures
Definition, concept and research in science; Introduction to Research Methodology, Research	methodology
in science.	
Module II: Research in Scientific and Social Settings	5-Lectures
Research Design: Research Sampling, rationale for using a particular sampling procedure, Pr	obability.
Module III: Tools of Data Collection	5-
Lectures	
Data and its types, Methods for Collecting Data, Observation method, Questionnaire, Other M	Methods
Module IV: Introduction to Statistics	4-
Lectures	
Introduction to statistics (Biostatistics); Sample and Population, parametric and non parametr	ric statistics.
Module V: Descriptive Statistics	5-
Lectures	
Measures of central tendency; Measures of dispersion and deviation; graphical representatio	on of the data.
Correlation and Regression	
Unit 6: Recent research advances	3 hrs
Descriptors, Quantitative structure-activity relationship (QSAR), Quantitative structure-prop	perty

Descriptors, Quantitative structure-activity relationship (QSAR), Quantitative structure-property relationship(QSPR), Drug designing.

Text & References:

- Broota, K. D., Experimental designs in psychological research, Wiley eastern, New York, 1992.
- Guilford, Statistics in Psychology and Education, McGraw Hill, New York, 1986.
- J T Walker, Statistics in Criminology and Criminal Justice analysis and Interpretation
- Leo, A., & Hoekman, D. H. (1995). *Exploring QSAR*. American Chemical Society.
- Chanin Nantasenamat, Chartchalerm Isarankura-Na-Ayudhya, Thanakorn Naenna, Virapong Prachayasittikul, A Practical Overview of Quantitative Structure- Activity Relationship. EXCLI Journal 2009;8:74-88.
- Wiktor Pronobis, Alexandre Tkatchenko, and Klaus-Robert Muller, J. Chem. Theory Comput. 2018, 14, 2991–3003

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Semester V

Name of The Course	Forensic Med	icine			
Course Code	BBS08T3123				
Perquisite					
Co requisite					
Anti requisite					
		L	Т	Р	С
		3	0	0	3

Course Objective: Course Objective: To study the different types of injuries sustained by a person, examination of such wounds and their medico legal aspects. To understand the cause, dimensions and age of the injury. To study the causes of death, and post mortem examination, and identification of unknown bodies through various means.

Course Outcomes:

CO1	To understand the legal procedure and Medical Jurisprudence
CO2	To present a complete knowledge about the medicolegal aspect of death and post mortem examination
CO3	To learn about the cause, mechanism and the types of asphyxial deaths.
CO4	To understand the different types of injuries sustained by a person, examination wounds and their medico legal aspects
CO5	To acquire good knowledge regarding the personal identification of unknown bodies through various means.
CO6	To elaborate the knowledge regarding the non invasive techniques for autopsy

Text Book (s) & Reference Book (s)

Sharma, B.R., Forensic Science in Criminal Investigation and Trials (3rdEdn.) Universal Law Publishing Co. Ltd. New Delhi

- Modi, Jaishing P, Textbook of Medical Jurisprudence & Toxicology, M.M. Tripathi Pub. 2001.
- Parikh, Textbook of Medical Jurisprudence & Toxicology, 2001.
 - Delafield F. A hand-book of post-mortem examinations and of morbid anatomy. W. Wood & Company; 1872.

Unit-1 Introduction

8 hours

Medical Jurisprudence, Legal Procedure in India: -Police inquest, Magistrate's inquest, Coroner's inquest, Oath and affirmation. Documentary evidence: -Medical certificates, medical reports, dying declaration. Understanding laws and ethics of medical practice.

Unit-2 Medico legal aspects of death

Diagnosis of death-somatic & molecular, early and intermediate changes following death, late changes after death-putrefaction, autolysis, bacterial action, factors affecting these changes. Determination of time since death. Post-mortem examinations; external examination; internal examination. collection, preservation and packaging of viscera.

Unit-3 Asphyxial deaths

Definition, violent asphyxial deaths- hanging, ligature strangulation, throttling, suffocation, Drowning.

Unit-4 Wounds and their medicological aspect

Introduction to wounds; definition, types of injures: Abrasions, grazes, lacérations, Bruises, contusion, Punctured wounds, incised wounds and identification ante – mortem, post – mortem injuries. Medico – legal aspects of wounds; Determining the age of the injury, Identifying, difference between suicidal, homicidal and accidental wounds.

Unit-5 Personal Identification

Importance and need for personal identification, Documents proof, scars, professional marks, personal articles, Finger printing, dentures, Portrait Parley and photographs, skeletal remains, ; identification in mass disasters, mutilated remains and decomposed bodies.

Unit 6:Current trend in the field of forensic medicine

Collection and Submission of Postmortem Specimens from Deceased Persons with Known or Suspected COVID-19, Non invasive techniques for the autopsy

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

	Explosive	s			
Name of The Course					
Course Code	BBS08T3124				
Perquisite					
Co requisite					
Anti requisite			T	ſ	
		L	Т	Р	С
		2	0	0	2

Course Objective: To learn the kinetics and thermochemistry of explosives. To gain knowledge of the explosion effects and manufacturing of different explosives. To understand analysis of various explosive residues.

Course Outcomes:

CO1	To learn the kinetics and thermochemistry of explosives and also about classification of different types of explosives .
CO2	To gain knowledge of the explosion effects and manufacturing & development of different explosives
CO3	To understand about how to locate and collect explosive residues
CO4	To Examine and analyze explosive residues by different techniques.
CO5	To understand about different acts related to Explosives.
CO6	Elaborate the recent advancement in the field of forensic science for explosive residue analysis

Text Book (s) & Reference Book (s)

Text Book:

1. Nabar B S, "Forensic Science in Crime Investigation", Asia Law House, 2nd Edition, 2010.

2. Saferestein Richard, "Criminalistics", Pearson Prentice Hall, 13th Edition 2015.

Reference Book

- 1. Boudreau, JE et al Arson & Arson Investigation, Surevey & Assessment National Institute of Law Enforcement, U.S Dept of Justice, US Govt. Printing Press (1977)
- 2. D.A. Skoog, D.M. West and F.J. Holler; Analytical Chemistry: An Introduction; Saunders College Publishing, Philadephia, USA, (1994)
- 3. Dettean, J D; Kirk's Fire Investigation, 5thed, Prentice Hall, Eaglewood Cliffs, N.J (2002)
- 4. Working Procedure Manual: Chemistry, Explosives and Narcotics, BPR&D Pub (2000)
- 5. Y. Lyalikov; Physiochemical Analysis; Mir, Moscow, USSR, (1968)

Unit-1 Introduction and Classification of Explosives hours

8

Definition of explosive and their physical and chemical properties, Classification of explosives: Primary explosives: lead azide, lead styphnate, mercury fulminate, tetrazene. Secondary explosives: TNT, RDX, PETN, Tetrayl, Gelatines, powders, ANFO, emulsion slurries, explosive high explosive mixtures

Unit 2- Detonators and fuses

Introduction, plain and electric detonators, non electric detonators, delay detonators, detonating and safety fuse, visco fuse, Igniter Safety Fuse Electric, flying fish fuse, spolette, quick match, black match, slow match

Unit-3:Location, Collection of explosives residues

Location and collection of fireworks, home-made bombs, traps bombs and letter bombs. Disposal of an explosive device, dispatch of explosive device and exploded material.

Unit-4Examination of Explosive Residue

Chemical examination, Chromatographic techniques: TLC, HPLC, Vapor detection method: adsorption and concentration of explosive vapors, X-ray imaging.

Unit-5 Legal Aspects of explosives

Explosives Act 1884, (Definition, Powers of Central Govt. and Licensing Authority, Offencesand Penalties) and Section 286 of IPC, 1860, (Negligent conduct with respect to explosive substance), Explosive Substances Act 1908, (Definition, Offences and Penalties). Explosives (Amendments) Rules ,2018

Unit VI: Recent Advancement

Emerging techniques for the detection of pyrotechnic residues from seized postal packages containing fireworks, Fluorescent sensors for explosive detection, Detection of explosives in real liquid effluents like wastewater and landfill leachates.

4 hours

5 hours

4 hours

4 hours

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Expl	osives Lal	b		
BBS	08P3109			
	L	Т	Р	С
	0	0	2	1
	Expl	Explosives Lal	Explosives Lab BBS08P3109 L D 0	Explosives Lab BBS08P3109 L D Q Q Q Q Q

Course Objectives: The objective of this course is to give practical exposure to the students about different types of explosives and examination of explosive remains and to gain the knowledge of different accelerants and its reaction in arson scenes, chemical examination of such accelerants, investigation of Arson scene and Pre &Post explosive bomb scene management.

Course Outcomes

Г

CO1	Discriminate between different types of explosives, based on performance and structure.
CO2	Demonstrate and Practice the various methods of identification of explosive devices and techniques of locating hidden explosives and bomb scene management.
CO3	Construct a relational method for searching, collecting, preserving and analysing arson evidence.

CO4 Assess the methods of analysing trace amounts of petroleum products in crime scene evidence.

Text Book (s) & Reference Book (s)

Text Books:

- 1. S. Ballou, M. Houck, J.A. Siegel, C.A. Crouse, J.J. Lentini and S. Palenik in Forensic Science, D.H. Ubelaker (Ed.), Wiley-Blackwell, Chichester (2013).
- 2. W.J. Tilstone, M.L. Hastrup and C. Hald, Fisher's, Techniques of Crime Scene Investigation, CRC Press, Boca Raton (2013).

References:

- 1. J.D. DeHaan, Kirk's Fire Investigation, 3rd Edition, Prentice Hall, New Jersey (1991).
- 2. A.A. Moenssens, J. Starrs, C.E. Henderson and F.E. Inbau, Scientific Evidence in Civil and Criminal Cases, 4th Edition, The Foundation Press, Inc., New York (1995).
- 3. R. Saferstein, Criminalistics, 8th Edition, Prentice Hall, New Jersey (2004).
- 4. Forensic Laboratory Handbook procedure and practice, Ashraf Mozayani, 2011
- 5. Explosives DFS Manual, 2005
- 6. Lab Manual Criminalistics An introduction to Forensic Science, Richard Saferstein (2007) Ninth Edition.

List of Experiments

 \cdot To describe, with the aid of diagrams, the different parts of Explosives devices and classification of Explosives.

To separate explosive substances using thin layer chromatography.

 \cdot $\,$ To perform qualitative analysis of explosives and explosive residue by colour test, microscopic examination and TLC/HPTLC and HPLC

- To test the presence of inorganic anions and cations in explosive residues.
- To prepare a case report on bomb scene management.
- To carry out analysis of gasoline.
- To carry out analysis of diesel.
- To carry out analysis of kerosene oil.
- To analyse arson accelerators.
- To prepare a case report on a case involving arson.

Internal Assessment (IA)	End Term Test (ETE)		Total Mark	S	
50	50		100		
Name of The Course	Introduction to Questioned Documents				
Course Code	BBS08T3125				
Perquisite					
Co requisite					
Anti requisite					
		L	Т	Р	C
		3	0	0	3

Continuous Assessment Pattern

Course Objective:

To know the different types of questioned documents, the types of forgery generally encountered. To learn the methods of their detection and examination and handwriting identification. To identify and do analysis of typewritten documents.

Course Outcome:

On completion of this course, the students would be able to know the different types of questioned documents, the types of forgery generally encountered, methods of their detection and examination, handwriting and typewriting identification.

CO1	Students will be able to delineate the basics of questioned documents and the sections dealing with expert testimony in IPC, IEA,Cr.PC. (K2)
CO2	Students will be able to handle, preserve and manage the questioned documents found at the scene of crime.(K4)
CO3	Students will be able to distinguish between the counterfeit and genuine currencies, passports, cheques, credit and debit cards. (K3)
CO4	Students will be able to examine, analyze and differentiate various inks, papers and pens used in preparing a document. (K4)
CO5	Students will be able to identify class and individual characteristics, compare and form an opinion about the authorship of handwriting and signatures. (K6)

CO6	

Text Book (s) & Reference Book (s)

- · Albert, S. Osborn, Questioned Documents, Second Ed., Universal Law Publishing, Delhi, 1998.
- · Albert, S. Osborn, The Problem of Proof, Second Ed., Universal Law Publishing, Delhi, 1998.
- · Charles, C. Thomas, I.S.Q.D. Identification System for Questioned Documents, Billy Prior Bates, Springfield, Illinois, USA, 1971.
- Charles C. Thomas, Typewriting Identification I.S.Q.D.; Billy Prior Bates; Springfield, Illinois, USA, 1971.
- Hard less, H.R., Disputed Documents, handwriting and thumbs print identification: profusely illustrated, Low Book Co., Allahabad, 1988.
- · Kurtz, Sheila, Grapholypes a new plant on handwriting analysis, Crown Publishers Inc., USA, 1983.
- · Lerinson, Jay, Questioned Documents, Acad Press, London, 2001.
- · Morris, Ron, N., Forensic handwriting identification, Acad Press, London, 2001.
- Ordway Hilton, Scientific Examination of Questioned Documents, Rev. ED., Elsevier, New York, 1982.
- Wilson, R., Harrison, Suspect Documents Their Scientific Examination; Universal Law Publishing, Delhi, 1997.

Unit-1Questioned Documents Types	8 hours
Definition of documents, questioned documents and the type of cases en nature and problems of documents, Location, collection, handling and pradequacy of exemplars and standards.	countered; Importance, reservation of documents,
Unit-2 Handwriting & Signature Identification	10 hours
Principle of handwriting, individual and class handwriting characteristics. Identification, External internal and physical characteristics affecting the handwriting of a person. Signatures: Authentic signatures, forged signatures, disguised signatures, traced signatures and their characteristics. Factor affecting the signature of individuals.	
Unit-3 Paper analysis	8 hours

Physical characteristics, water mark examination, fiber analysis, chemical and trace elemental analysis; Equipments required: Camera, Microscope, Reference standards, TLC and HPLC.

Unit-4 Examination of documents

10 hours

Examination of alterations, erasures, overwriting, additions and obliterations.examination, Determination of age of the documents, Instruments and equipments used for examination of fraudulent documents; Identification and comparison of typescripts, study of electronic printing and Photostat documents.

Unit-5 Methods of Detection

12 hours

Detection and deciphering of indented writing, charred documents, invisible/secret writing; Ink Examination, Composition of major types of writing inks (carbon ink, fountain pen ink, ballpoint pen ink, rolling ball marker inks, fiber or porous tips pen ink, analysis of writing inks and ink dating, Pencil lead examination

Unit 6: Recent trends in questioned documents research

Forensic document examination methods: Infrared absorption - fluorescence inspection is applied to altered and faded documents for identification. Electrostatic detection apparatus (ESDA), Personality identification through handwriting

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	PRACTICALS - Questioned Documen	t			
Course Code	BBS08P3110				
Prerequisite	Forensic Science, Forensic Photography	, Crime	scene m	anageme	ent
Corequisite	Instrumentation-Physical, Chemical				
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives: The objective of this course is to give practical exposure to the students in the different aspects of Document Examination, Various characteristics of handwriting, analysis of ink samples, and use of some instruments for qualitative and quantitative estimation.

Course Outcomes

CO1	compare the class and individual characteristics of two samples of handwritings to find out the authorship of the writings. (K6)
CO2	Demonstrate various methods used to decipher invisible writings and indented writings found at the scene of crime.(K2)
CO3	Analyse various inks used to execute a document. (K4)
CO4	Plan various ranges of Photography of the questioned document found at the scene of crime helpful in documenting the evidence (K3)
CO5	Appraise the science of graphology

Text Book (s)

- T1 Albert, S. Osborn, Questioned Documents, Second Ed., Universal Law Publishing, Delhi, 1998.
- T2 Wilson, R., Harrison, Suspect Documents Their Scientific Examination; Universal Law Publishing, Delhi, 1997.
- T3 Charles C. Thomas, Typewriting Identification I.S.Q.D.; Billy Prior Bates; Springfield, Illinois, USA, 1971.

Reference Book (s)

R1 Charles, C. Thomas, I.S.Q.D. Identification System for Questioned Documents, Billy Prior Bates, Springfield, Illinois, USA, 1971.

- R2 Lerinson, Jay, Questioned Documents, Acad Press, London, 2001.
- R3 Morris, Ron, N., Forensic handwriting identification, Acad Press, London, 2001.
 - R4 Ordway Hilton, Scientific Examination of Questioned Documents, Rev. ED., Elsevier, New York, 1982.

ist of Experiments
Photography of documents – area photography of evidence
TLC of different ink samples – area ink analysis
Identification of Invisible writing - area invisible writing (INK – ANIMAL)
Identification of Invisible writing - area invisible writing (INK –PLANT)
Identification of Invisible writing - area invisible writing (INK –
CHEMICAL)
Identification of Invisible writing - area invisible writing (INK –
MISCELLANEOUS)
Identification of security features in currency notes. – area security
documents

Identification of Indented writing – area indented writing
Examinations of alterations and additions in documents area fraudulent
document
Examinations of obliterations in documents. – area fraudulent document
Identification of class characteristics in handwriting area handwriting
examination
Identification of individual characteristics in handwriting area
handwriting examination
To compare the questioned handwriting with the standard handwriting and
opine regarding their origin
Interpretation of personality of writer using graphology

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

	Applied Chemistry-I				
Name of The Course					
Course Code	BBS08T3126				
Perquisite					
Co requisite					
Anti requisite			•		
		L	Т	Р	С
		3	0	0	3

Course Objective:

To impart the knowledge of the various subdivisions in forensic chemistry encountered in investigation such as narcotic drugs, oils and fats, material used in food adulteration and its analysis

Course Outcomes:

CO1	To get the knowledge of forensic chemistry, exhibits dealing and the analysis of inorganic compounds.
CO2	To explain and deliver the knowledge for the different classified drugs and their abuse and its forensic examination.
CO3	To describe the adulteration products added in different foods, and how to analyse them. With a knowledge of food adulteration act.
CO4	To understand the classification, characterization and analysis of various oils and fats.
CO5	To understand the legal provisions and act deals with the variant drugs and psychotropic substances.
CO6	To understand the new development in the field of forensic chemistry

- A. Stolemen, Progress in Chemical Toxicology: Acad. Press, New York, 1963.
- · Clark, E.G.C., Isolation and identification of Drugs, Vol. I and Vol. II, Academic Press, 1986.
- · Connors., A test book of Pharmaceuticals analysis, Interscience, New York, 1975.
 - Tandon, T., & Collective, L. (2015). Drug policy in India. *IDPC briefing paper, February*.
- · Cravey, R.H., Baselt, R.C., Introduction to Forensic Toxicology, Biochemical publications, Davis C A, 1981.
- · Curry A.S., Analytical Methods in Human Toxicology, Part-II, 1986.,
- · Curry, A.S., Poison Detection in Human Organs, C. Thomas Springfield, Illinois USA, 1963.
- Smith, F. (2004). Handbook of forensic drug analysis. Elsevier.
- Modi, Jaishing P., Textbook of Medical Jurisprudence & Toxicology, M.M. Tripathi Pub., 2001.
- Mule, S.J. et al., Immunoassays for Drugs subjects to ab, CRC Press USA, 1974.
- Sunshine, I., Guidelines for Analytical Toxicology Programme, Vol. I, CRC Press, USA, 1950.
 - India, & Malik, V. (2014). Law Relating to Drugs and Cosmetics: Containing Drugs & Cosmetics Act, 1940, Drugs and Cosmetics Rules, 1945 Along with Drugs (Prices Control) Order, 2013, National Pharmaceuticals Pricing Policy, 2012 (NPPP-2012), Pharmacy Act, 1948, Poisons Act, 1919, Drugs and Magic Remedies (Objectionable Advertisements) Act, 1954 and Other Allied Acts, Rules Etc. with Information on Herbal Formulations, Cosmetics and Extracts, Etc. Eastern book company.
- Sunshine, Methods of Analytical Toxicology, CRC Press USA, 1975.
- Working Procedure Manual Toxicology, BPR&D Publication, 2000.
 - Wang, X., Cui, J., Zhuo, Y., Shen, B., Zhang, S., Liu, W., ... & Xiang, P. (2020). A Retrospective of Prevalence of Drugs of Abuse by Hair Analysis in Shanghai using LC–MS-MS. *Journal of Analytical Toxicology*.
 - Manousi, N., & Samanidou, V. F. (2020). Recent Advances in the HPLC Analysis of Tricyclic Antidepressants in Bio-Samples. *Mini Reviews in Medicinal Chemistry*, 20(1), 24-38.

8

8

Unit-1 Forensic chemistry Hours

Introduction, types of cases/exhibits, preliminary screening, presumptive test (colour and spot test), inorganic analysis, micro-chemical methods of analysis, Examination procedures involving standard methods and instrumental techniques.

Unit-2 Drugs of Abuse Hours

Drugs of abuse: introduction, classification of drugs of abuse: Sedatives, Narcotics, Stimulants and Hallucinogens: their administration, symptoms, postmortem findings and medico-legal aspects; drugs of abuse in sports, narcotics drugs and psychotropic substances, designers drugs and their forensic examination. The identification of an addict, tolerance, signs and symptoms of addiction.

Unit-3 Food adulteration 8 Hours

Introduction, Examination of adulterations in different milk products (Khoya, Paneer, Milk, Butter etc) and spices (Red Chilli, Turmeric Powder, Coriander powder etc.) in Prevention of food adulteration, Analytical techniques for analysis of exhibits involved in food. Prevention of Food Adulteration Act 1954 (Definition, Power of Food Inspector, Offences and Penalties)

Unit-4 Oils and fats:

Definition and classification of oils and fats. Analysis and characterization of various oils and fats by physical, and chemical methods – Colour, Density, Specific gravity, Smoke point, Acid value, Peroxide value, Iodine value, Saponification value, self-stability value. Examination of adulteration in oils. Determination and significance of these aspects in quality control.

Unit-5 Legal Provisions Hours

8

Narcotic Drugs & Psychotropic Substances Act 1985 (Definition, Licit Opium Cultivation, Minimum and Commercial Quantity in Narcotic Drugs, Offences and Penalties), Prevention of Illicit Trafficking in NDPS Act 1985 (Detention of a Person Under the Act), Drugs Control Act 1950(Definition, Power of Chief Commissioner Under the Act), Drugs & Cosmetics Act 1940 (Definition, Adulterated, Misbranded, Spurious Drugs and Cosmetics, Offenses and Penalties.)

Unit 6: Recent advancements

A Retrospective of prevalence of drugs of abuse by hair analysis using LC-MS-MS,

Recent advancement in HPLC analysis of antidepressants.

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Practical applied chemistry-I				
Course Code	BBS08P3111				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

Students would be able to examine various categories of narcotics drugs and psychotropic substances along with drugs of abuse. They would also be able to identify adulterants in edible products along with the analysis of various oils and fats by chemical methods.

Course Outcomes

CO1	Examine various categories of drugs such as sedative, stimulants and hallucinogenic drugs.
CO2	Identify Narcotic drugs and psychotropic substances along with the drugs of abuse
CO3	Analyze adulterants in milk and spices
CO4	Examine various oils and fats along with analysis of adulterants in them .

N K Rao, Textbook of Forensic Medicine and Toxicology, Chapter 21, p. 369, Irritant Poioson, 2nd edi., (JP Brothers Medical Pulisher P. LTD, 2006)

2. K. S. N. Reddy and O.P. Murty, The Essential of Forensic Science and Toxicology, Edi. (2006).

3. R. N. Karmakar, Forensic Science and Toxicology, p. 471, 3rd edi., (Academic Publisher, 2010).

4. K Vij, Textbook of Forensic Medicine and Toxicology: Principles and Practice, Chapter 43 p. 531, Agro-chemical Poisoning, 5th edn., (Elsevier, 2011).

5. https://www.scribd.com/doc/310201137/Toxicology-Manual, Laboratory procedure manual forensic toxicology, Directorate of Forensic Science, MHA, Govt. of India

6. Laboratory procedure manual of Forensic chemistry, Directorate of Forensic Science, MHA, Govt. of India

7. G. Sarathchandra, A. Albert, A.T. Venugopalan, Manual on Analytical Toxicology, Tamilnadu Veterinary & Animal Sciences University. Toxicology Unit, Central University Laboratory, Centre for Animal health Studies, Madhavram Milk Colony, Madras.

8. Toxicological Chemistry, LVIV–2009, Universitatis Medici Leopoliensis Sigillum. AD 1784.

9. C. Moffat, M. D. Osselton, B. Widdop, S. Jickells and A. Negrusz, Clarke's Analytical Forensic Toxicology, Introduction to Forensic Toxicology, Chapter 1, p. 1, 2nd edi., Editor: Adam negrusz, Gail A A Cooper, (Pharmaceutical Press, 2013).

List of Experiments

- 1. Examination of Sedatives drugs.
- 2. Analysis of stimulating drugs.
- 3. Detection of hallucinogenic drugs.
- 4. Analysis of Narcotic drugs.
- 5. Identification of psychotropic substances.
- 6. Analysis of drugs of abuse commonly encountered in sports.
- 7. Identification of adulterants in Milk products

0	T1 ('C' ('	C	1 1/ /	•	•
ð.	Identification	OI	adulterants	ın	spices.

- 9. Analysis of various oils and fats by chemical methods
- 10. Identification of adulterants in oils.

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
--------------------------	---------------------	-------------

Name of The Course	Applied Serology				
Course Code	BBS08T5127				
Perquisite					
Co requisite					
Anti requisite					
		L	Т	Р	С
		3	0	0	3

Course Objective: The objective of this course is to impart complete and thorough knowledge to the students regarding the various aspects of forensic biology, especially blood, its properties, its various methods of analysis and laboratory examination

Course Outcomes:

CO1	To Understand the nature of Blood and its various components
CO2	To present comprehensive knowledge of the various methods of analysis and laboratory examination of blood stains.
CO3	To determine the species of origin using various immunological methods
CO4	To assess the nature of the body fluid found at the crime scene and to present comprehensive knowledge of the various methods of analysis and laboratory examination of different types of body fluids
CO5	To understand the basic principle of bloodstain pattern analysis
CO6	To apply recent techniques for identification of various biological fluids

Eckert, W.G., & James S.H., Interpretation of bloodstain evidence at crime scene, CRC Press, Florida, 1989.
James, S.H. and Nordby, J.J. (Eds.), Forensic Science - An introduction to Scientific and investigative Techniques, CRC Press, London, 2003.
Kirk, P.L., Introduction in crime investigation (2 nd), John Willey and, New York, 1974.
Saferstein, R. (1998).Criminalistics, An Introduction to Forensic Science, 6 th Ed. 6 th Ed. Prentice –Hall. New Jersey.
M K Bhasin, A Laboratory Manual for Human Blood Analysis
Richard Li, Forensic Biology: Identification and DNA Analysis
Tom Bevel, Bloodstain Pattern Analysis with and Introduction to Crime Scene Reconstruction

Unit-1 Blood and its Properties

8 hours

The nature of blood, Components of blood- Cellular part & plasma part, study of blood composition and its functions, identification of blood cells by microscopic methods.

Unit-2 Analysis of blood

Collection, preservation & packing of blood evidence. Presumptive examination-Catalytic test (Phenolphthalein, Benzedine tests), Confirmatory test- crystal tests (Teichmann test, Takayama test and Wagenaar test). ABO system, Rh system and MN system; Techniques for the determination of blood groups from bloodstains: Absorption –inhibition, mixed-agglutination, Absorption-elution method

Unit-3 Analysis of blood: Instrumental technique

Spectrophotometric method, Electrophoresis methods: Cellulose Acetate Electrophoresis, Immunoelectrophoresis; chromatographic methods and immunological methods, Determination of species of blood: precipitin test (Ring test, immune-diffusion, Crossed-Over electrophoresis and others methods.

Unit-4 Analysis of Biological Fluids

Composition and examination of Biological Fluids such as Saliva, semen, Vaginal Fluid, Urine and sweat, Protection of Biological Evidences, collection, Packaging, preservation & transportation of Biological Evidences

Unit-5 Blood Pattern Analysis

History and evolution of Bloodstain Pattern analysis, target surface considerations, Size, Shape and Directionality of bloodstains, Basic tenets of bloodstain pattern analysis Bloodstain pattern on clothing and footwear, Documentation and Photography for Bloodstain Pattern Analysis. Preservation of blood evidence; procedures and precautions thereof.

Unit 6:Recent advancement in applied serology

Recent techniques for the identification of blood, semen, saliva, urine, vaginal fluid and sweat.

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Practical's - Serology				
Course Code	BBS08P5112				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives: The objective of this course is to give practical exposure to the students in the different aspects of Advanced Biology-1

Course Outcomes

CO1	Students will gain hand on experience in handling of Biological evidences, and their serological examination.
CO2	Students will able to identify unknown stain as blood.
CO3	Students will be able to identify unknown stain /sample as urine stain .
CO4	Students will able to identify unknown stain /sample as saliva stains

Text Book (s)&Reference Book (s)

Biology lab manual ·

Eckert, W.G., & James S.H., Interpretation of bloodstain evidence at crime scene, CRC Press, Florida, 1989.

•

•

- James, S.H. and Nordby, J.J. (Eds.), Forensic Science An introduction to Scientific and investigative Techniques, CRC Press, London, 2003.
 - Kirk, P.L., Introduction in crime investigation (2nd), John Willey and, New York, 1974.
- Saferstein, R. (1998).Criminalistics, An Introduction to Forensic Science, 6th Ed. 6th Ed.
 Prentice –Hall. New Jersey.
- M K Bhasin, A Laboratory Manual for Human Blood Analysis
- · Richard Li, Forensic Biology: Identification and DNA Analysis
- · Tom Bevel, Bloodstain Pattern Analysis with and Introduction to Crime Scene Reconstruction

List	of Experiments
1.	Examination of blood group/s from fresh blood
2.	Examination of blood group/s from old blood stains
3.	Preliminary Examination of blood by phenolphthalein test
4.	Preliminary examination of blood by Benzidine test
5.	Confirmatory Examination of blood by Takayama crystal test
6.	Confirmatory Examination of blood by Teichmann crystal test
7.	Examination of biological fluids (semen)
8.	Examination of biological fluids(saliva)
9.	Examination of biological fluid Urine by Jaffe's color test
10.	Examination of body fluid urine by Urea Nitrate crystal test
11.	Examination of blood stain pattern
12.	To perform precipitin test for species of origin determination

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

		Applied Physic	es I			
Name of The Course						
Course Code	BBS08T5128					
Perquisite						
Co requisite						
Anti requisite						
			L	Т	Р	С
			3	0	0	3

Course Objective:

On completion of this course, the students would be able to understand the physics of speech which is important in speaker identification, paint, soil tool marks another aspect that will be covered in this paper.

Course Outcomes:

CO1	Discuss the human vocal cord anatomy, production of voice and
CO2	Discuss the speaker identification and authentication and its forensic significance
CO3	Appraise the forensic importance of tool marks

CO4	Construct a relational comparison method for the forensic examination of soil and its legal aspects.
CO5	Estimate the forensic importance of paint and its legal aspects.
CO6	Handle various new techniques in the field of forensic physics.

Text Book (s) & Reference Book (s)

B. Caddy, Forensic Examination of glass and paints analysis and interpretation, ISBN 078405749 2001.

- · Bengold and Nelson Morgan, Speech and Audio Signal Processing, John Wiley and Sons, USA, 1999.
- C.E. O 'Hara and J.W. Osterburg, An Introduction to Criminalistic, Indiana University Press, Blomington, 1972.
- · Denis Shaw, Physics in the Prevention and Detection of Crime, Contem Phys. Vol.17, 1976.
- · Carper, K. (ed.), Forensic Engineering, 2ndEdn. CRC Press, Bocarida, Florida, 2001.
- Field, J., and Carper, K., Construction Failure, 2ndEdn. John Wiley and Sons, New York, 1996.
- James, S.H. and Nordby, J.J. Eds., Forensic Science An Introduction to Scientific and Investigative Techniques, CRC Press, London, 2003.
- Nickolls, L.C., Scientific Investigation of Crime, Bulterwest, London, 1956.
- · Philip Rose, Forensic Speaker Identification, Taylor & Francis Forensic Science series, London 2001.
- R. Saferstein, Forensic Science Handbook, Vols. I, II, (Ed), Prentice Hall, Eaglewood Cliffs, NJ; 1988.
- Raymond C Murray and John C.F Tendrew, Forensic Geology, Prentice Hall, New Jersey, 1991.
- Working Procedure Manual: Physics BPR&D Publication, 2000.

Unit -1: Physics of Speech

Introduction, the generation of sound, amplitude vibration, simple motion, addition of sine waves, physical properties of vibrating propagation of sound waves, standing waves, modes of vibration.

Unit-2 Speaker Identification

Human Vocal cord anatomy, Production of voice, Basic factors of sound in speech, Speaker identification and authentication, various approaches in forensic speaker identification, application in automatic speaker identification and verification system.

Voice analysis and their Forensic Significance.

Unit-3 Tool Marks

Types of tool marks: compression marks, striated marks, combination of compression and striated marks, repeated marks: class characteristics and individual characteristics, tracing and lifting of marks, Photographic examination of tool marks. Restoration of Erased / Obliterated Marks: Methods of making-cast, punch, engrave; methods of obliteration, methods of restoration- etching (etchings for different metals), magnetic, electrolytic etc., recording of restored marks.

Unit -4 Forensic Examination of Paint

8 hours

7 hours

Types of paint and their composition, macroscopic and microscopic studies, pigment distribution, microchemical analysis- solubility test, pyrolysis chromatographic techniques, TLC, colorimetry, IR spectroscopy and X-ray diffraction, elemental analysis, interpretation of paint evidence.

Unit-5 Forensic Examination of Soil

12 hours

Classification and composition of soil, Variations in soil, Collection and preservation of soil evidence. Forensic analysis and examination of soil – Colour, density, molecular particle size distribution, turbidity test, pH measurements, microscopic examination, density gradient analysis, ignition-loss test, mineral analysis and chemical analysis of soil, the significance of soil evidence.

Unit 6: Recent research in applied physics

Gem Stones: Analysis of crystalline substances.

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Practicals – Applied Forensic physics	I			
Course Code	BBS08P5113				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

The objective of the course is to impart knowledge and give hands on training for the analysis of various physical evidence.

Course Outcomes

On completion of this course, the students must be able to perform the analysis in the lab of various physical evidence such as paint, tool marks, soil.

CO1	To analyse the paint sample under microscope and by chemical methods.
CO2	To understand and examine the tool marks present at crime scenes using different techniques.
CO3	To develop and restore the obliterated tool marks by chemical methods.
CO4	To analyse the soil samples, present at crime scenes using different techniques.

Text Book (s)&Reference Book (s)

· DFS Physics lab Manual

List of Experiments

- 1. To perform chemical analysis of given paint samples.
- 2. To perform TLC of given paint samples.
- 3. Comparison of paint chips under microscope.
- 4. Refractive index of liquids by using abbey refractometer.
- 5. Examination of Tool marks.
- 6. Restoration of obliterated marks by chemical etching method.
- 7. Density gradient analysis of soil samples.
- 8. Particle size distribution of soil.
- 9. Examination of identification marks.
- 10. Restoration of obliterated marks on steel surfaces by chemical method.
- 11. Physical examination of soil sample.
 - 12. Examination of soil sample using soil analysis kit.

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

		Applied Chemist	ry-II			
Name of The Course						
Course Code	BBS08T3129					
Perquisite						
Co requisite						
Anti requisite						
			L	Т	Р	С
			3	0	0	3

Course Objective:

To impart the knowledge of various petroleum products, beverages, arson, alkaloids and fertilizers and their analysis, importance in forensic investigation.

Course Outcomes:

CO1	Understand the usage and analysis of various petroleum products encountered in an investigation
CO2	To understand the difference in arson and fire, the collection and its importance in forensic investigation.
CO3	Examination of types of beverages and their medico legal aspects with the reference of cases.
CO4	To get the knowledge of different alkaloids substances and their analysis methods.

CO5 Analyse various types of fertilizers and other miscellaneous compounds handled in different cases.
 CO6 Elaborate the knowledge of recent advancement in the field of forensic chemistry.

Text Book (s) & Reference Book (s)

- A. Stolemen, Progress in Chemical Toxicology: Acad. Press, New York, 1963.
- · Clark, E.G.C., Isolation and identification of Drugs, Vol. I and Vol. II, Academic Press, 1986.
- · Connors., A test book of Pharmaceuticals analysis, Interscience, New York, 1975.
- · Cravey, R.H., Baselt, R.C., Introduction to Forensic Toxicology, Biochemical publications, Davis C A, 1981.
- · Curry A.S., Analytical Methods in Human Toxicology, Part-II, 1986.,
 - Fattorusso, E., & Taglialatela-Scafati, O. (Eds.). (2008). *Modern alkaloids: structure, isolation, synthesis, and biology*. John Wiley & Sons.
- · Curry, A.S., Poison Detection in Human Organs, C. Thomas Springfield, Illinois USA, 1963.
- Mule, S.J. et al., Immunoassays for Drugs subjects to ab, CRC Press USA, 1974.
- Sunshine, I., Guidelines for Analytical Toxicology Programme, Vol. I, CRC Press, USA, 1950.
- Sunshine, I., Guidelines for Analytical Toxicology, CRC Press USA, 1975.
- Sunshine, Methods of Analytical Toxicology, CRC Press USA, 1975.
 - Speight, J. G. (2015). *Handbook of petroleum product analysis*. John Wiley & Sons.
 - Popl, M., Fahnrich, J., & Tatar, V. (1990). *Chromatographic analysis of alkaloids*. M. Dekker.
 - Saleh, T. A. (2020). Characterization, determination and elimination technologies for sulfur from petroleum: Toward cleaner fuel and a safe environment. *Trends in Environmental Analytical Chemistry*, 25, e00080.

Unit -1: Petroleum and Petroleum Products

Petroleum and Petroleum Products- Commercial uses of different petroleum fractions. Analysis of traces of various Petroleum Products like Petrol, Kerosene, Diesel, Aviation Turbine Fuel (ATF-Kerosene) Lubricating oil, Furnace oil, etc. in forensic exhibits. Examination of adulteration in petroleum products like Diesel, Petrol, Kerosene etc

Unit-2 Arson:

8 hours

Chemistry of fire, difference between Arson, cause of fire, origin of fire and collection of evidence, evaluation of clue material, Management of Arson cases, forensic Investigation of fire and arson cases.

Unit-3 Study of Analysis of Beverages

7 hours

Introduction, Classification of beverages, Definition of alcohol and illicit liquor, Alcoholic and non-alcoholic beverages and their composition, Proof spirit, absorption, detoxication and excretion of alcohol, problems in alcohol cases and difficulties in diagnosis, Alcohol and prohibition, Consequences of drunken driving, and their medicololegal aspects and case studies

Unit -4 Analysis of alkaloids

Alkaloids:-Introduction, Isolation, Classification. Structure determination, preparation, properties and applications of Cocaine, Piperine, Nicotine, isolation and properties of Quinine, Atropine, Ephedrine. Extraction and analysis of caffeine and catechine.

Unit-5 Miscellaneous:

12 hours

Characteristics, examination and legal aspects of gold, silver, sugar, salts, fertilizers, Detective dyes- cases and importance in trap cases.

Fertilizers: Introduction, classification and analysis of fertilizers, Urea, ammonium nitrate, calcium phosphate.

Unit VI: Recent Advancements

Characterization, determination and elimination technologies for sulfur from petroleum: Toward cleaner fuel and a safe environment.

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Practical applied chemistry-II
Course Code	BBS08P3114
Prerequisite	
Corequisite	
Antirequisite	

L	Т	Р	С
0	0	2	1

Course Objectives:

Students would be able to examine adulterants in petroleum products and to distinguish among the various fractions of petroleum products. They would also be able to examine alcoholic beverages, extract the alkaloids, isolation of caffeine and catechine. They would be able to carry out trap analysis and examination of fertilizers.

Course Outcomes

CO1	Examine adulterants in petroleum products and to distinguish among the various fractions of petroleum products i.e. diesel, kerosene and petrol.
CO2	Examine various alcoholic beverages, extract the alkaloids and isolation of caffeine and catechine.
CO3	Carry out trap case analysis such as bribe case
CO4	Examine various categories of fertilizers

Text Book (s)&Reference Book (s)

1. N K Rao, Textbook of Forensic Medicine and Toxicology, Chapter 21, p. 369, Irritant Poioson, 2nd edi., (JP Brothers Medical Pulisher P. LTD, 2006)

2. K. S. N. Reddy and O.P. Murty, The Essential of Forensic Science and Toxicology, Edi. (2006).

3. R. N. Karmakar, Forensic Science and Toxicology, p. 471, 3rd edi., (Academic Publisher, 2010).

4. K Vij, Textbook of Forensic Medicine and Toxicology: Principles and Practice, Chapter 43 p. 531, Agro-chemical Poisoning, 5th edn., (Elsevier, 2011).

5. https://www.scribd.com/doc/310201137/Toxicology-Manual, Laboratory procedure manual forensic toxicology, Directorate of Forensic Science, MHA, Govt. of India

6. Laboratory procedure manual of Forensic chemistry, Directorate of Forensic Science, MHA, Govt. of India

7. G. Sarathchandra, A. Albert, A.T. Venugopalan, Manual on Analytical Toxicology, Tamilnadu Veterinary & Animal Sciences University. Toxicology Unit, Central University Laboratory, Centre for Animal health Studies, Madhavram Milk Colony, Madras.

8. Toxicological Chemistry, LVIV–2009, Universitatis Medici Leopoliensis Sigillum. AD 1784.

9. C. Moffat, M. D. Osselton, B. Widdop, S. Jickells and A. Negrusz, Clarke's Analytical Forensic Toxicology, Introduction to Forensic Toxicology, Chapter 1, p. 1, 2nd edi., Editor: Adam negrusz, Gail A A Cooper, (Pharmaceutical Press, 2013).

List of Experiments Examination of adulterants in diesel. 1. 2. Identification of adulterants in petrol. 3. Analysis of adulterants in kerosene. 4. To differentiate among diesel, petrol and kerosene 5. Examination of alcoholic beverages. 6. Extraction method of alkaloids. 7. Extraction and Isolation of caffeine and catechine. 8. Detection of caffeine and catechine in samples. 9. Analysis of Trap cases 10. Examination of fertilizers

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

	DNA Profiling				
Name of The Course					
Course Code	BBS08T5130				
Perquisite					
Co requisite					
Anti requisite					
		L	Т	Р	С
		3	0	0	3

Course Objective: To understand the genetic basis of DNA typing, types and techniques of DNA typing, Polymerase Chain Reaction technique and the practical applications and forensic importance of DNA Fingerprinting. To know the types of evidences that are collected for conducting DNA typing

Course Outcomes:

CO1	To understand the basic concepts of genetics, heredity and DNA fingerprinting
CO2	To present comprehensive knowledge of the various methods of DNA profiling
CO3	To classify the various methods of DNA polymorphism and their use in disputed paternity and missing person cases .
Т

1

CO4	To assess the various methods for the isolation and staining of DNA
CO5	To understand the application of DNA fingerprinting for personal and criminal identity.
CO6	To apply recent techniques for identification and isolation of genetic material

Text Book (s) & Reference Book (s)

- Norah Rudin and Keith Inman, (2nd Ed): An Introduction to Forensic DNA Analysis, CRC Press, New York, 2002.
- Sharma, B. R., Forensic Science in Criminal Investigation and Trials (3rdEdn) Universal Law Publishing Co. Ltd. New Delhi, 2001.
- · John M. Butler, Forensic DNA Typing

Unit -1: Introduction

History of DNA fingerprinting, Human genetics – Heredity, Alleles, Mutations & Population. Definition, importance of DNA and RNA in Forensic Science; types of evidences & crime cases for DNA fingerprinting, collection, packing and preservation of evidences containing DNA

Unit-2 DNA profiling

8 hours

1

Double helical structure of DNA, alternate forms of DNA double helix, replication, denaturation and renaturation of DNA, DNA binding proteins, factors affecting DNA stability, types and structure of RNA. Chemical nature of DNA and RNA. Nature and structure of human genome and its diversity.mt-DNA, nuclear DNA, Y-Chromosomes and the peopling, migration, of modern humans, Forensic DNA profiling and its application in criminal and civil investigations.

Unit-3 DNA polymorphism

7 hours

Concept of gene – Conventional and modern views. Concept of sequence variation - VNTRs, STRs, Mini STRs, SNPs. Detection techniques - RFLP, PCR amplifications, Amp-RFLP, sequence polymorphism, Y-STR, Mitochondrial DNA. Disputed paternity cases. Missing person identity, population genetics and legal admissibility of DNA evidence. Concepts of length and sequence DNA polymorphism, DNA markers (VNTRs, Stars, SNPs, Y-STRs, mt DNA)- their importance and detection

Unit 4 - DNA Isolation techniques

Quantification and Quality assessment methods. PCR amplification – PCR process, components, controls, advantages and disadvantages, types of PCR, principle of PCR. PCR inhibitors, optimization and solution to PCR inhibition. Stochastic effect. PCR Primer designing. RT-PCR, process and Principle. DNA separation methods: Slab gel and Capillary Electrophoresis. Capillary electrophoresis-Principle and Instrumentation. DNA detection methods: Fluorescent Dyes and Silver–staining.

Unit-5 Miscellaneous: Forensic application of DNA Fingerprinting

12 hours

Paternity and maternity testing, personal identification, criminal identification and Forensic importance; Kinship testing and lineage markers DNA databanks, limitations of DNA Fingerprinting, legality of DNA Fingerprinting in India.

Unit 6:

Continuous Assessment Pattern

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks

3	0	20	50	100
---	---	----	----	-----

Name of The Course	Practicals– DNA and Amino acid				
Course Code	BBS08P5115				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:To understand the procedure of extraction of amino acids and DNA from different tissue samples and hand on experience of PCR

٦

Course Outcomes

Г

CO1	To present a hand on experience of extraction of amino acid from different samples
CO2	To carry out the extraction of DNA from different tissue samples
CO3	To understand the procedure of DNA fragment separation using electrophoresis
CO4	To present a hand on experience of polymerase chain reaction.

Text Book (s)&Reference Book (s)

- Laboratory procedure manual of DNA, Directorate of Forensic Science, MHA, Govt. of India
- M K Bhasin, A Laboratory Manual for Human Blood Analysis
- Richard Li, Forensic Biology: Identification and DNA Analysis

List of Experiments

- 1. To carry out the separation of amino acids by thin layer chromatography.
- 2. To carry out extraction of DNA from blood
- 3. To carry out extraction of DNA from Hair roots.
- 4. To carry out extraction of DNA from skin
- 5. To carry out extraction of DNA from plant tissue.
- 6. To preparation of gel plates for electrophoresis.
- 7. To carry out electrophoresis for separation of DNA fragments.
- 8. Quantification of DNA
- 9. PCR for DNA samples
- 10. To prepare a report on the role of DNA typing in solving paternity disputes.

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

	Applied Physics II				
Name of The Course					
Course Code	BBS08T5131				
Perquisite					
Co requisite					
Anti requisite					
		L	Т	Р	С
		3	0	0	3

Course Objective:

On completion of this course, the students would be able to understand the physics of Causes and investigation of vehicular accidents, and its legal implications. Analysis of glass fiber and cement used in the investigation of crime will be covered in this course.

Course Outcomes:

CO1	Demonstrate the tire and other marks identification, importance of eye witness and know how to investigate the vehicular accidents
CO2	To understand the application of legal aspects of vehicular accidents
CO3	Estimate the forensic importance of glass evidence
CO4	To apply recent techniques for identification of cement and concrete
CO5	To assess the various methods for the examination of Fibre
CO6	To apply recent techniques for identification in the field of forensic physics.

Text Book (s) & Reference Book (s)

- B. Caddy, Forensic Examination of glass and paints analysis and interpretation, ISBN 078405749 2001.
- · Bengold and Nelson Morgan, Speech and Audio Signal Processing, John Wiley and Sons, USA, 1999.
- C.E. O 'Hara and J.W. Osterburg, An Introduction to Criminalistic, Indiana University Press, Blomington, 1972.
- · Denis Shaw, Physics in the Prevention and Detection of Crime, Contem Phys. Vol.17, 1976.
- · Carper, K. (ed.), Forensic Engineering, 2ndEdn. CRC Press, Bocarida, Florida, 2001.
- · Field, J., and Carper, K., Construction Failure, 2ndEdn. John Wiley and Sons, New York, 1996.
- · James, S.H. and Nordby, J.J. Eds., Forensic Science An Introduction to Scientific and Investigative Techniques, CRC Press, London, 2003.
- · Nickolls, L.C., Scientific Investigation of Crime, Bulterwest, London, 1956.
- Philip Rose, Forensic Speaker Identification, Taylor & Francis Forensic Science series, London 2001.
- · R. Saferstein, Forensic Science Handbook, Vols. I, II, (Ed), Prentice Hall, Eaglewood Cliffs, NJ; 1988.
- · Raymond C Murray and John C.F Tendrew, Forensic Geology, Prentice Hall, New Jersey, 1991.
- Working Procedure Manual: Physics BPR&D Publication, 2000.

Unit-1: Causes and Investigation of Vehicular Accidents-an overview 12 hours			
Automobile accidents-Introduction, sources of information: eye witnesses, Tire and other mark, Pedestria impacts and vehicle speed, vehicle condition, vehicle speed and damage, curved scuffmarks, Time and distance reaction time, Vehicular Accident Photography.			
Rail Accidents- Investigation of rail crash: criminal and safety investigation,			
Investigation principles, Best Practices: rail company tests, inspection of driving cab,			
examination of electrical/electronic/technological system and their failure. Necessary			
equipments required for forensic examination.			
Unit-2 Legal Aspects of Vehicular accidents 8 Hours			
Relevant Provisions of Motor Vehicle Act, 1988 (Offenses and Penalties); Relevant Provisions of Indian Pena Code, 1860, (Sections 337 (causing hurt), 304 A (causing death due to negligence) and 279 (rash and negligen driving), Relevant Provisions of Motor Vehicle Act, 1939 (Offenses and Penalties). Relevant Provisions of Railway Act, 1989, (Offenses and Penalties).			
Unit-3 Forensic Examination of Glass 11 hours			

Classification and Types of glass, Composition of glass, Glass fractures- rib marks, hackle marks, cone fracture, wavy, backward fragmentation, concentric and radial fractures., Collection and preservation of glass evidence, Comparison of glass fragments, Examinations of glass fractures-

Colour, fluorescence, physical measurements, refractive index, density gradient, becke-line, specific gravity examination and elemental analysis of glass evidences

Unit-4 Analysis of cement and concrete

Cement and Concrete-Cement- chemical composition of cement, mortar and concrete Detection and estimation of the constituents of cement, mortar and concrete in crime cases, bromoform test, fineness test, ignition-loss test. Identification of adulterated cement. Mortar and concrete analysis.

Unit-5 Examination of Fibre

Fibre Types of fibres, forensic aspects of fibre examination- fluorescence, optical properties, refractive index, birefringence, dye analysis. Physical fit and chemical testing. TLC, IR-micro spectroscopy. Difference between natural and man-made fibres. Fibre comparison of dye Component.

Unit 6: Physics of Bloodstain Pattern Analysis (BPA):

Introduction, Determination of Point of Convergence and Point of Origin. Impact spatter and mechanisms.

Continuous Assessment Pattern

Internal Assessment (IA)	Midterm (MTE)	End term Test (ETE)	Total Marks
30	20	50	100

Name of The Course Practical – Applied Forensic physics II					
Course Code	BBS08P5116				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

The objective of the course is to impart knowledge and give hands on training to the students for the analysis of various physical evidence found at crime scenes.

Course Outcomes

On completion of this course, the students must be able to perform the analysis in the lab of various physical evidence such as glass, cement, fibres.

CO1	To provide the information about the glass evidence, how to analyse the glass fracture and identification of fractures and sequence.
CO2	To be able to analyse/examine the glass pieces by density analysis technique.

CO3	To understand the adulteration in cement samples and analysing the adulteration present in samples using different techniques.
CO4	To examine the different fibres, present at crime scene and differentiate between them using different analysis techniques.

Text Book (s)&Reference Book (s)

DFS PHYSICS LAB MANUAL

List of Experiments

- 1. To study physical matching of broken glass pieces.
- 2. Determination of sequence of impact in glass fractures.
- 3. Study of glass fractures due to impacts and heat.
- 4. Examination of small glass pieces by flotation method.
- 5. To detect adulteration in cement samples.
- 6. To identify the nature of adulterants used in cement samples.
- 7. To check the quality of cement samples.
- 8. Physical examination of fibers.
- 9. Microscopic examination of fibers.
- 10. To perform burning test for fibers examination.
- 11. Determination of refractive index of glass.

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test (ETE)	Total Marks
50	50	100

Name of The	Projects				
Course					
Course Code	BBS08R5117				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test (ETE)	Total Marks		
50	50	100		

(Established under Galgotias University Uttar Pradesh Act No. 14 of 2011)

School of Basic and Applied Sciences Department of Life Sciences Division of Biological Science

Programme: B.Sc. (Hons.) Biological Science

Scheme: 2020 – 2023

Vision

"To be known globally for value-based education, research, creativity and innovation"

Mission

- 9. Establish state-of-the-art facilities for world class education and research.
- 10. Collaborate with industry and society to align the curriculum,
- 11. Involve in societal outreach programs to identify concerns and provide sustainable ethical solutions.
- 12. Encourage life-long learning and team-based problem solving through an enabling environment.

School of Basic and Applied Sciences

Vision:

To be recognized globally as a center of excellence in imparting value-based education in Basic and Applied Sciences by creating innovation in fundamental and multidisciplinary research.

Mission

- M1. To excel in imparting contemporary knowledge and skills by developing an educational ecosystem with diverse interests and talents.
- M2. To perform cutting edge research leading to innovation in sciences through national and international collaborations.
- M3. To develop solutions for the emerging challenges in Basic and Applied Science to cater the needs of society.
- M4. To attract best quality faculty to facilitate knowledge and develop confidence in our graduates to succeed in the world.

Preamble

B. Sc. (Hons.) Biological Science is an undergraduate versatile course to teach biology as one of the integrating natural science domains. Biology is the science of life forms and living processes. Over centuries, biological knowledge has led to many technologies benefiting humans, be it in food security, health sector or national security. The applicants of the program study about the subjects like System physiology, Ecology, biochemistry Basic Microscopy & Instrumentation, Principles of Transmission Genetics, Principles of Immunology, evolutionary Biology, etc. Various elective courses are available that widens the horizons of the discipline of biological sciences. The duration of the course is three years and the complete syllabus of the program is divided into six semesters.

Scope of the Proposed Programme

The B.Sc., programme of three years is designed to help all the students to get good quality education in the field of Microbiology so that they can pursue Post Graduation or find employment. The ultimate aim is to enable the students to develop an integrated approach for understanding the various life science problems at the molecular level. In addition, the present curriculum gives scope for the students entering different modules to update their knowledge depending upon the employment opportunities in each area. Various practical courses have been designed not only to enable the students to appreciate scientific basis of various life processes but also to train them for self-employment.

There is a greater demand globally for trained manpower in the area of life science. After completion of the course candidate can work as Ecologist, Biochemist, Geneticist and Microbiologist, Weed Scientist, Science Adviser, Research Development, in Multinational Companies, Public Sectors, Quality Control Labs, Biopharmaceuticals companies as well as in Universities.

The course will provide solid foundation for all the students regardless of background and will gain a comprehensive understanding of the various processes concerning with life and allied areas, including clinical and research aspects and with the special attention to current development in the discipline.

Eligibility

Candidate for admission to the first year of B.Sc. Degree Course in Microbiology shall be required to have passed the Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology

or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.

Programme Objectives

- To ignite young minds, from different backgrounds, to understand the principles which govern the biological system through application based learning.
- To provide high quality teaching to the students through traditional classroom teaching as well as varied exposure to audio-visual aids and hands on training on various aspects of Biological Science and allied biological subjects. More emphasis is given on understanding the subject rather than rote learning.
- Develop skills as a self-directed learner, recognize continuing educational needs.
- To equip the students to occupy important positions in Research, Industries and related organizations.
- To inspire the students to apply their knowledge gained for the development of society in general.

Program Educational Objectives (PEO)

PEO1: The graduates shall be successful professionals in Academia, Industry, Government and Entrepreneurship.

PEO2: The graduates shall pursue higher education/research at institute of national and international repute.

PEO3: The graduate shall effectively address the challenges of the society and undertake the projects for bridging the gap between industry and societal needs.

Programme Outcomes (POs)

- PO1: Apply the principles and conceptual knowledge of basic and applied science to understand and solve the complex biological problems.
- PO2: Employ critical thinking and the scientific knowledge to design, carry out, record and analyze the results of biological reactions.
- PO3: Create, select and apply appropriate techniques, resources and modern science and research tools within a defined specification that meet specified needs with appropriate consideration for public health and safety.
- PO4: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal issues and the consequent responsibilities relevant to the professional

biologist.

- PO5: Understand the impact of professional life sciences solutions in communal and environmental contexts and demonstrate knowledge and need for sustainable development.
- PO6: Articulate ideas, comprehend and write effective reports, documentation and to communicate effectively with the basic and applied sciences community and with society at large, professionally and ethically.
- PO7: Demonstrate knowledge and understanding of science and technical principles to manage projects in multidisciplinary research areas and function effectively as an individual, and as a member or leader in diverse resource teams.
- PO8: Seeking stimulation and to exploring numerous opportunities to engage in independent and life-long learning in the broadest context of technological change.

PSO1	Igniting young minds, from different backgrounds to understand the life processes in the biological system through application based learning.
PSO2	Equip students with analytical and technical skills to practice evidence based biological science for industrial and scientific applications.

Programme Specific Outcome (PSOs):

		Seme	ester 1						
Sl.	Course Code	Name of the Course					Asse	ssment	
No							Patt	ern	
			L	Т	Р	С	IA	MTE	ETE
1	BSDB1001	Chemistry	4	0	0	4	30	20	50
		Fundamentals of Cell							
2	BSDB1002	Biology	4	0	0	4	30	20	50
3	BSBC1004	Light and Life	4	0	0	4	30	20	50
4	BSBC1003	Biochemistry	4	0	0	4	30	20	50
	BSBA1061	Hands on Workshop on							
		Basic Analytical							
		Techniques and							
5		Measurements	0	0	4	2	50		50
6	BSBS1012	Biochemistry Lab-I	0	0	6	<mark>3</mark>	50		50
7	XXXX	Liberal Art				0.5			
8	XXXX	Soft Skill				0			
9	XXXX	Environmental Science		-	-	0.5			
10	XXXX	AI and Machine learning				2			
11	XXXX	BEC- B1				3			
12	XXXX	Computer awareness				0			
			Total			27			
		Seme	ster II						
Sl	Course Code	Name of the Course					Asse	ssment	
No					-		Patt	ern	
			L	Т	Р	С	IA	MTE	ETE
1	BSBD1007	Bioinstrumentation-I	4	0	0	4	30	20	50
2	BSDB1008	Ecology	4	0	0	4	30	20	50
		Hormones: Biochemistry							
3	BSDB1009	and Function	4	0	0	4	30	20	50
4	BSDB1011	Concept of immunology	4	0	0	4	30	20	50
5	BSBC1013	Biological Science Lab-II	0	0	6	<mark>3</mark>	50		50
6	XXXX	BEC- B2				3			
		***Two week social							
		internship (during							
7	XXXX	summer)							
			Total			22			
		Seme	ster III				1		
SI	Course Code	Name of the Course					Asse	ssment	
No				1	1	1	Patt	ern	1
			L	Т	Р	C	IA	MTE	ETE
		Fundamentals of		-	-				
1	BSDB2001	Molecular Biology	4	0	0	4	30	20	50
2	BSDB2002	Bioinstrumentation-II	4	0	0	4	30	20	50
_		Fundamentals of	.	_	-			-	
3	BSBC2003	Microbiology	4	0	0	4	30	20	50
	DODOCOC	Biochemistry of		_				• •	
4	BSBS2004	Metabolism	4	0	0	4	30	20	50
_	DODOOL	Biological Science Lab-		_	-		-0		
5	BSBS2014		0	0	6	3	50		50
-		Biological Science Lab-		6	-				-
6	BSBS2015		1 0	1 0	6	13	50	1	50

Curriculum

		Web based							
7	BSDB2006	Course/Seminar -I				2			
		C. C	Total			24			
C1		Semes	ster IV						
SI	Course Code	Name of the Course					Asse	ssment	
NO			T	T	D	C	Patt	ern	
		Des	L	I	P	C	IA	MIE	EIE
1	DCSE1020	in C and Puthon	4	Δ	0	4	20	20	50
2	DCSE1020 DCDD2010	III C and Fython Bistochnology	4	0	0	4	30	20	50
2	BSBS2007	System Physiology	4	0	0	4	30	20	50
3	DSD52007 RSR52008	Brotoin and Engumos	4	0	0	4	50	20	50
4	DSD52000	Floative (Croup L CE)	4	0	0	<u>_</u> 	20	20	50
5	RSRS2017	Biological Science Lab V	4	0	6	4	50	20	50
U		Programming language	U	U	U	3	30		- 30
7	BCSF1031	in C and Python	Ο	0	6	3	50		50
8	Xvvv		0	U	U	1	50		50
9	VVVV	Foreign Language				1			
,	АЛЛА	Research Methodology				-			
10	RRS09T2411	and Statistics				2			
10			Total			28			
		Seme	ster V			-0			
SI	Course Code	Name of the Course					Asse	ssment	
No							Patt	ern	
			L	Т	Р	С	IA	MTE	ETE
1	BSBC3001	Minor Project*	0	0	0	3	50		50
2	BSDB3003	Inheritance Biology	4	0	0	4	30	20	50
		Growth and							
3	BSBS3004								
4		Reproduction	4	0	0	4	30	20	50
	BSDB3005	Reproduction Evolutionary Biology	4 4	0 0	0	4 4	30 30	20 20	50 50
5	BSDB3005 BSDBXXXX	Reproduction Evolutionary Biology Elective (Group-II, DSE)	4 4 4	0 0 0	0 0 0	4 4 4	30 30 30	20 20 20	50 50 50
5	BSDB3005 BSDBXXXX	ReproductionEvolutionary BiologyElective (Group-II, DSE)Biological Sciences Lab-	4 4 4	0 0 0	0 0 0	4 4 4	30 30 30	20 20 20	50 50 50
5 6	BSDB3005 BSDBXXXX BSBS3010	Reproduction Evolutionary Biology Elective (Group-II, DSE) Biological Sciences Lab- VI	4 4 4 0	0 0 0	0 0 0 6	4 4 4 3	30 30 30 50	20 20 20	50 50 50 50
5 6	BSDB3005 BSDBXXXX BSBS3010	ReproductionEvolutionary BiologyElective (Group-II, DSE)Biological Sciences Lab-VIBiological Sciences Lab-	4 4 4 0	0 0 0	0 0 0 6	4 4 4 3	30 30 30 50	20 20 20	50 50 50 50
5 6 7	BSDB3005 BSDBXXXX BSBS3010 BSBS3011	ReproductionEvolutionary BiologyElective (Group-II, DSE)Biological Sciences Lab-VIBiological Sciences Lab-VII	4 4 4 0	0 0 0 0	0 0 0 6 6	4 4 3 3	30 30 30 50 50	20 20 20	50 50 50 50 50
5 6 7 8	BSDB3005 BSDBXXXX BSBS3010 BSBS3011 XXXX	ReproductionEvolutionary BiologyElective (Group-II, DSE)Biological Sciences Lab-VIBiological Sciences Lab-VIICampus to corporate	4 4 4 0	0 0 0 0	0 0 0 6 6	4 4 3 3 2	30 30 30 50 50	20 20 20	50 50 50 50 50
5 6 7 8	BSDB3005 BSDBXXXX BSBS3010 BSBS3011 XXXX	ReproductionEvolutionary BiologyElective (Group-II, DSE)Biological Sciences Lab-VIBiological Sciences Lab-VIICampus to corporate	4 4 0 0 Total	0 0 0 0	0 0 0 6 6	4 4 3 3 2 27	30 30 30 50 50	20 20 20	50 50 50 50 50
5 6 7 8	BSDB3005 BSDBXXXX BSBS3010 BSBS3011 XXXX	ReproductionEvolutionary BiologyElective (Group-II, DSE)Biological Sciences Lab- VIBiological Sciences Lab- VIICampus to corporateSemes	4 4 0 0 Total ster VI	0 0 0 0	0 0 6 6	4 4 3 3 2 27	30 30 30 50 50	20 20 20	50 50 50 50 50
5 6 7 8 51	BSDB3005 BSDBXXXX BSBS3010 BSBS3011 XXXX Course Code	ReproductionEvolutionary BiologyElective (Group-II, DSE)Biological Sciences Lab- VIBiological Sciences Lab- VIICampus to corporateSemesName of the Course	4 4 0 0 Total ster VI	0 0 0	0 0 6 6	4 4 3 3 2 27	30 30 30 50 50 Assee	20 20 20 ssment	50 50 50 50 50
5 6 7 8 5 1 No	BSDB3005 BSDBXXXX BSBS3010 BSBS3011 XXXX Course Code	Reproduction Evolutionary Biology Elective (Group-II, DSE) Biological Sciences Lab- VI Biological Sciences Lab- VII Campus to corporate Semester Name of the Course	4 4 0 0 Total ster VI	0 0 0 0	0 0 6 6	4 4 3 3 2 27	30 30 30 50 50 Asse Patt	20 20 20 ssment ern	50 50 50 50 50
5 6 7 8 Sl No	BSDB3005 BSDBXXXX BSBS3010 BSBS3011 XXXX Course Code	Reproduction Evolutionary Biology Elective (Group-II, DSE) Biological Sciences Lab- VI Biological Sciences Lab- VII Campus to corporate Semes Name of the Course	4 4 0 0 Total ster VI	0 0 0 0	0 0 6 6	4 4 3 3 2 27 C	30 30 50 50 Asse Patt IA	20 20 20 ssment ern MTE	50 50 50 50 50 50 ETE
5 6 7 8 Sl No 1	BSDB3005 BSDBXXXX BSBS3010 BSBS3011 XXXX Course Code BSBS99997	Reproduction Evolutionary Biology Elective (Group-II, DSE) Biological Sciences Lab- VI Biological Sciences Lab- VII Campus to corporate Semes Name of the Course Dissertation	4 4 0 0 Total ster VI	0 0 0 0 0 0	0 0 6 6 	4 4 3 3 2 27 27 12	30 30 50 50 Assee Patti IA 50	20 20 20 ssment ern MTE	50 50 50 50 50 ETE 50
5 6 7 8 Sl No 1	BSDB3005 BSDBXXXX BSBS3010 BSBS3011 XXXX Course Code BSBS9997	Reproduction Evolutionary Biology Elective (Group-II, DSE) Biological Sciences Lab- VI Biological Sciences Lab- VI Campus to corporate Semest Name of the Course Dissertation Web based	4 4 0 0 Total ster VI	0 0 0 0 0 0 1 0	0 0 6 6 	4 4 3 3 2 27 27 C 12	30 30 30 50 50 Asse Patt IA 50	20 20 20 ssment ern MTE	50 50 50 50 50 50 ETE 50
5 6 7 8 Sl No 1 2	BSDB3005 BSDBXXXX BSBS3010 BSBS3011 XXXX Course Code BSBS9997 BSDB3010	Reproduction Evolutionary Biology Elective (Group-II, DSE) Biological Sciences Lab- VI Biological Sciences Lab- VI Campus to corporate Semest Name of the Course Dissertation Web based Course/Seminar-I	4 4 0 0 Total ster VI L 0	0 0 0 0 0 0 1 0	0 0 6 6 	4 4 3 3 2 27 27 C 12 2 2	30 30 30 50 50 50 Asse Patt IA 50 50	20 20 20 ssment ern MTE	50 50 50 50 50 50 ETE 50 50

Group I

	List of Electives								
Sl	Course	Name of the Electives					Asse	ssment I	Pattern
No	Code		L	Т	Р	С	IA	MTE	ETE
1	BSDB2011	Bioinformatics	4	0	0	4	30	20	50
2	BSDB2012	Biostatistics	4	0	0	4	30	20	50

3	BSDB2013	Biophysics	4	0	0	4	30	20	50
4	BSDB2014	Organic Farming	4	0	0	4	30	20	50
5	BSDB2015	Biofertilizers and					30	20	
		Pesticides	4	0	0	4			50

Group II

Sl	Course	Name of the Elective					Asses	sment P	attern
No	Code		L	Т	Р	С	IA	MTE	ETE
1	BSDB3011	Nanobiotechnology	4	0	0	4	30	20	50
2	BSDB3012	Bioresource Management	4	0	0	4	30	20	50
3	BSDB3013	Biosafety and IPR	4	0	0	4	30	20	50
4	BSDB3015	Mushroom Culture Technology	4	0	0	4	30	20	50
5	BSDB3016	Parasitology	4	0	0	4	30	20	50

Name of The Course	CHEMISTRY				
Course Code	BSDB1001				
Prerequisite	Higher Secondary Examination with Chemistry a Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a	and and min	Bic Ch uimu	ology emis m of	or try 50
	% marks in aggregate.				
Corequisite	Students should have understanding of general bio a basic knowledge of the biological molecules, the regulation, structure/function, interaction with the and evolution.	olog e ce e er	y, ir ell, g ivire	iclud geneti onme	ing ics, ent,
Antirequisite					
]	L	Τ	P	С
	4	4	0	0	4

SEMESTER-I

Course Objectives: To provide a broad foundation in chemistry that stresses scientific reasoning and analytical problem solving with a molecular perspective.

Course	Outcomes

CO1	Understand atomic structure with various Bohrs, Aufbau, Pauli's principles.
CO2	Describe chemical thermodynamics, law of thermodynamics.
CO3	Identify chemical bonding and molecular forces.
CO4	Express the knowledge stereochemistry.
CO5	Interpret the ionic equilibria.
CO6	Evaluate the applications of advancement of chemistry

Text Book (s)

- J.D. Lee: A New Concise Inorganic Chemistry, E.L.B.S.
- P.W. Atkins : Physical Chemistry, Oxford University Press
- R.T. Morrison & R.N. Boyd : Organic Chemistry, Prentice Hall

Reference Book (s)

- P.W. Atkins : Physical Chemistry, Oxford University Press
- R.T. Morrison & R.N. Boyd : Organic Chemistry, Prentice Hall
- J.E. Huheeyetl.: Inorganic Chemistry : Principles of Structure and reactivity

Unit-1 ATOMIC STRUCTURE

12 hour

Recapitulation of Bohr's theory and its limitations, dual behaviour of matter and radiation, de-Broglie's relation, Heisenberg Uncertainty principle. Quantum numbers and their significance. Shapes of s, p, d and f orbitals. Discovery of spin, spin quantum number (s) and magnetic spin quantum number (ms).Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Pauli's exclusion principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations, Variation of orbital energy with atomic number.

Unit-2 CHEMICAL THERMODYNAMICS

Introduction of thermodynamics, state of system, state variables, thermodynamic equilibrium, thermodynamic properties, various types of systems and processes. Laws of Thermodynamics.

Unit-3 CHEMICAL BONDING AND MOLECULAR FORCES

09 hours

10 hour

Introduction to ionic interactions and covalent bond, inter-molecular and intra-molecular forces, types of intermolecular forces and their characteristics: ion-dipole, dipole-dipole,

dipole-induced dipole and dispersion (London) forces, hydrogen bond (intra-molecular and inter-molecular), effect of inter/intra-molecular forces on structure of different biomolecules.

Unit-4 STEREOCHEMISTRY

Optical isomerism: Optical activity, specific rotation, enantiomerism, D and L designation, racemic modification, R and S sequence rules, diasteroisomers. Conformational isomers: conformation of ethane and butane, interconversion of projection formula, cyclohexane (monoand di-substituted), resolution, optical purity, Walden inversion, enantiotopic and diastereotopic hydrogens and prochiralcenters. Geometrical isomerism: Definition, nomenclature- E and Z.

Unit-5 IONIC EQUILIBRIA

Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and base, pH scale, common ion effect, Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions. Oualitative treatment of acid base titration curves. Theory of acid - base indicators.

Unit-6 RECENT ADVANCES IN CHEMISTRY

04 hours

08 hours

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	FUNDAMENTAL OF CELL BIOLOGY				
Course Code	BSDB1002				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or				
	Chemistry, Botany and Zoology or Biochemistry and Chemistry				
	from a recognized Board in science stream with a	ı min	nimu	m of	50
	% marks in aggregate.				
Corequisite	Students should have understanding of general biology, including				
	a basic knowledge of the biological molecules, the cell, genetics,				
	regulation, structure/function, interaction with the environment,		nt,		
	and evolution.				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

1. Students will understand the structures and purposes of basic components of prokaryotic and eukaryotic cells, especially macromolecules, membranes, and organelles.

2. These can include responses to environmental or physiological changes, or alterations of cell function brought about by mutation.

Course Outcomes

08 hours

CO1	Identify cell types, structure, functions and differentiate between various cell organelles.
CO2	Interpret the membrane biochemistry and transport of ions across the membrane.
CO3	Summarize the different types Cell-Cell Interaction and cellular communication.
CO4	Demonstrate protein sorting and transport.
CO5	Express the knowledge cell aging and death.
CO6	Evaluate the applications of advancement of fundamental of cell biology

Text Book (s)

- The Cell: A Molecular Approach (2009) 5th ed., Cooper, G.M. and Hausman, R.E., ASM Press & Sunderland (Washington DC), Sinauer Associates, MA, ISBN: 978-0-87893-300-6.
- Molecular Cell Biology (2012) 7th ed., Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell, J., W.H. Freeman & Company (New York), ISBN: 13:978-1-4641-0981-2 / ISBN:10: 1-4641-0981-8.
- Molecular Biology of the Cell (2008) 5th ed., Alberts, B., Johnson, A., Lewis, J., and Enlarge, M., Garland Science (Princeton), ISBN:0-8153-1619-4.

Reference Book (s)

- Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W.H. Freeman and Company (New York), ISBN: 13: 978-1-4641-0962-1 / ISBN: 10:1-4292-3414- 8.
- Molecular Biology of the Cell (2008) 5th ed., Alberts, B., Johnson, A., Lewis, J., and Enlarge, M., Garland Science (Princeton), ISBN: 0-8153-1619-4.

Unit-1 STRUCTURE OF CELL

Introduction to the cell, its chemical composition, Cell types - organization of prokaryotic and eukaryotic cells, Plant and animal cells: variation in structure and function, cell theory. Structure and functions of cell organelles – Nucleus, mitochondria, chloroplast, ribosome, lysosomes.

Unit-2 MEMBRANE BIOCHEMISTRY

Membrane: chemical composition and its structural plan; molecular model of cell membrane fluid mosaic model and membrane fluidity; Overview of types of transport systems and macromolecule transport: Exocytosis; Endocytosis; Pinocytosis and phagocytosis.

Unit-3 CELLULAR COMMUNICATION

Cell Wall: Eukaryotic cell wall, Extracellular matrix and cell matrix interactions, Cell-Cell Interactions - adhesion junctions, tight junctions, gap junctions, and plasmodesmata. Cytoskeleton: Structure and organization of actin filaments, association of actin filaments with plasma membrane, cell surface protrusions, intermediate filaments, microtubules.

Unit-4 PROTEIN SORTING AND TRANSPORT

Endoplasmic Reticulum – Structure, targeting and insertion of proteins in the ER, protein folding, processing and quality control in ER, smooth ER and lipid synthesis, export of proteins and lipids Golgi Apparatus – Organization, protein glycosylation, protein sorting and export from Golgi Apparatus.

Unit-5 CELL CYCLE AND CELL DEATH

10 hours

07 hours

07 hours

12 hours

10 hours

Cell cycle - phases of cell cycle; cell division - mitosis and meiosis; Cell cycle regulation; Cell aging and death - necrosis and apoptosis; Stem cells. Types: Embryonic stem cell, induced pluripotent stem cells.

Unit-6 RECENT ADVANCES IN FUNDAMENTALS OF CELL BIOLOGY 04 hours

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	LIFE AND LIGHT				
Course Code	BSDB1004				
Prerequisite	Higher Secondary Examination with Chemistry	and	Bio	ology	or
_	Chemistry, Botany and Zoology or Biochemistry	and	l Ch	nemis	try
	from a recognized Board in science stream with a minimum of 50				
	% marks in aggregate.				
Corequisite	Students should have understanding of general biology, including				
	a basic knowledge of the biological molecules, the cell, genetics,				
	regulation, structure/function, interaction with the environment,				
	and evolution.				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of light in biological system. Course Outcomes

CO1	Discuss the importance of light in biological system
CO2	Interpret the effect of light on plant morphology and physiology
CO3	Explain the basic mechanism of photosynthesis
CO4	Demonstrate the process of bioluminescence.
CO5	Describe the phenomena of circadian rhythms.
CO6	Evaluate the applications of advancement of life and light

Text Book (s)

- Hawes C & Satiat-Jeunemaitre 2001 Plant Cell Biology : Practical approach
- Buchanan B, Gruissem G & Jones R 2000 Biochemistry and Molecular Biology of Plants.

Reference Book (s)

- Hawes C & Satiat-Jeunemaitre 2001 Plant Cell Biology : Practical approach
- Buchanan B, Gruissem G & Jones R 2000 Biochemistry and Molecular Biology of Plants.

Unit-1 LIGHT AND ITS ROLE IN BIOLOGICAL SYSTEM

12 hours

Nature of light, spectrum of light which is useful/ harmful (ionizing radiation) for various biological processes in life of plants and animals. Unit of light energy (Photon, quantum), the different Photo Biological reactions. Measurement of light (Lux, Foot Candle). Comparative account of chemistry and functional roles of pigments associated with harvesting light energy: pigments/receptors of light, chlorophylls, caroteniods, phycobilinoproteins,

bacteriochlorophylls, phytochromes rhodopsin etc. Photoreception in animals, evolution of eye and visual processing in vertebrate retina.

Unit-2 INTRODUCTION TO PHOTOBIOLOGY

Definition of Photobiology, General account of effect of light on morphology and physiology (stomatal opening and closing, transpiration, respiration, growth and differentiation) Phytochrome mediated photomorphogenesis phenomena - seed germination etc. Photoperiodism: LDP, SDP, DNP plants, vernalization, vernalin, etiolation and deetiolation. Light as an ecological factor affecting distribution of plants and animals (Phyto and Zoo geography), in terrestrial and aquatic ecosystems: Morphological, Anatomical, Physiological and Behavioural adaptations to extreme light conditions by organisms. Changes during fruit ripening process as affected by light.

Unit-3 PHOTOSYNTHESIS

Photosynthesis: History, Photosynthetic equation, Light and dark reactions, mechanism of photolysis of water and oxygen evolution, Q cycle, O2 evolving complex; C3, C4, CAM plants, spectrum of photoautotrophs, photoautotroph vsphotoheterotrophs; Photoautotroph vs. chemoautotroph, structure of chloroplast and quantasome, Anoxygenic and oxygenic photosynthesis, reaction centers. Bacterial Photosynthesis.

Unit-4 BIOLUMINESCENCE

Bioluminescence: definition, discovery, diversity of organisms (plants and animals), photoreceptors - distribution, mechanism.

Unit-5 BIOLOGICAL CLOCK

Behavioural aspects of ecology and physiology: circadian rhythms, jetlag, rhythm of heart beat, melanocytes and skin colour, chromatophores and colour changes in animals.. Light as an inducer for biosynthesis of enzymes, hormones and other biomolecules.

Unit-6 RECENT ADVANCES IN LIFE AND LIGHT

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOCHEMISTRY			
Course Code	BSDB1003			
Prerequisite Higher Secondary Examination with Chemistry and				
	Chemistry, Botany and Zoology or Biochemistry and Chemistry			
	from a recognized Board in science stream with a minimum of 50			
	% marks in aggregate.			
Corequisite	Students should have understanding of general biology, including			
	a basic knowledge of the biological molecules, the cell, genetics,			
	regulation, structure/function, interaction with the environment,			
	and evolution.			

06 hours

04 hours

06 hours

12 hours

12 hours

Antirequisite					
	L	J	ſ	P	С
	4	0)	0	4

Course Objectives: The course objectives are as following -

- Demonstrate knowledge and understanding of the molecular machinery of living cells;
- Demonstrate knowledge and understanding of the principles that govern the structures of macromolecules and their participation in molecular recognition.

Course Outcomes

CO1	Understand Chemical and physical foundations of biomolecules like carbohydrates.
CO2	Identify major classes of storage and structural lipids.
CO3	Understand the properties of amino acids, proteins and nucleic acids
CO4	Interpret basic concepts in enzymology and Vitamins function.
CO5	Express the knowledge in the area Bioenergetics.
CO6	Evaluate the applications of advancement of biochemistry

Text Book (s)

- Campbell, PN and Smith AD (2011) Biochemistry Illustrated, 4th ed., Published by Churchill Livingstone
- Tymoczko JL, Berg JM and Stryer L (2012) Biochemistry: A short course, 2nd ed., W.H.Freeman
- Berg JM, Tymoczko JL and Stryer L (2011) Biochemistry, W.H.Freeman and Company
- Campbell, MKJ (2012) Biochemistry, 7th ed., Published by Cengage Learning

Reference Book (s)

- Berg, J. M., Tymoczko, J. L. and Stryer, L. Biochemistry. Freeman, 7th edition, 2011.
- Mathews, C. K. & Van Holde, K. E. & Ahern, K. G. Biochemistry. Addison Wesley, 4th edition, 2012.

Unit-1 CARBOHYDRATES

Chemical and physical foundations of biomolecules, Carbohydrates: structure of sugars, classification, properties, chemical reactions, stereoisomerism and optical isomers of sugars, carbohydrate derivatives.

Unit-2 LIPIDS

Definition and major classes of storage and structural lipids. Storage lipids. Fatty acids structure and functions. Essential fatty acids, Lipids with specific biological functions, micelles and liposomes.

Unit-3 AMINO ACIDS, PROTEINS AND NUCELIC ACIDS

12 hours

12 hours

07 hours

07 hours

Amino acids; classification, chemical reactions and physical properties; biosynthesis and catabolism; Nucleotides; biosynthesis and catabolism.

Unit-4 ENZYMES AND VITAMINS

Basic concepts in enzymology, enzyme classification, Enzyme kinetics, Enzyme inhibition: competitive, noncompetitive and uncompetitive inhibition, allosteric enzymes, Vitamins and cofactors: structure, distribution and biological properties.

Unit-5 BIOENERGETICS

08 hours

First and second laws of Thermodynamics. Definitions of Gibb's Free Energy, enthalpy and Entropy and mathematical relationship among them, Standard free energy change and equilibrium constant, Coupled reactions and additive nature of standard free energy change, Energy rich compounds: Phosphoenolpyruvate, 1,3- Bisphosphoglycerate, Thioesters, ATP.

Unit-6 RECENT ADVANCES IN BIOCHEMISTRY

04 hours

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	Hands on Workshop on Basic Analytical Techniques and			
	Measurements			
Course Code	BSBA1061			
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50			
Corequisite	 Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution. 			
Antirequisite				
	L T P C			

Course Objectives:

- To provide the knowledge of the scientific instruments in life sciences and biotechnology along with the applications.
- This will enable the students to understand all the subjects of biological sciences as these tools and techniques will be used therein.
- Also acquire the basic knowledge of the microbiological techniques to be applied in the laboratory.
- To know the general microbiological techniques for isolation of pure cultures of microorganisms.

Course Outcomes

CO1	Demonstrate the basic principles, working and applications of different microscopic
	techniques.
CO2	Demonstrate the principle and applications of centrifugation technique.
CO3	Illustrate the principle and functioning of electrophoresis and chromatography.
CO4	Evaluate the different types of spectroscopic techniques
CO5	Deduce fundamental concept of radioactivity and radioisotopic techniques
CO6	Evaluate the applications of advancement of hands on Workshop on Basic analytical
	techniques and measurements

Text Book (s)

- Physical Biochemistry: Principles and Applications (2010) 2nd ed., Sheehan, D., Wiley Blackwell (West Sussex), ISBN:978-0-470-85602-4 / ISBN:978-0-470-85603-1.
- Physical Biochemistry: Applications to Biochemistry and Molecular Biology (1982) 2nd ed., Freifelder, D., W.H. Freeman and Company (New York), ISBN:0-7167-1315-2 / ISBN:0-7167-1444-2.
- An Introduction to Practical Biochemistry (1998) 3rd ed., Plummer D. T., Tata McGraw Hill Education Pvt. Ltd. (New Delhi), ISBN:13: 978-0-07-099487-4 / ISBN:10: 0-07-099487-0.

Reference Book (s)

- Principles and techniques of biochemistry and molecular biology. 6th ed. Wilson, Keith, Walker, John M Cambridge; New York : Cambridge. ISBN-10: 9780521178747.
- An Introduction to Practical Biochemistry (1998) 3rd ed., Plummer D. T., Tata McGraw Hill Education Pvt. Ltd. (New Delhi), ISBN:13: 978-0-07-099487-4 / ISBN:10: 0-07-099487-0

S.N.	Name of Practicals
1.	Different types of microscopes and its applications.
2.	Direct analysis of nanoparticle.
3.	Preparation of nano- particles.
4.	Preparation of solution and molarity and normality calculation.
5.	Measurement of surface tension and viscosity of given liquid.
6.	Soldering of electrical circuits
7.	Measurement with Verniercalipers, Screw gauge and spherometer
8.	Operation of oscilloscope
	Familiarization with linear, logarithmic and polar graphs for plotting of experimental data
	Assembling of elementary electric circuits using breadboard.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50		50	100

Name of The Course	BIOLOGICAL SCIENCE LAB I			
Course Code	BSBS1012			
Prerequisite	Higher Secondary Examination with Chemistry an Chemistry, Botany and Zoology or Biochemistry an from a recognized Board in science stream with a m % marks in aggregate.	d Bi d Ci inim	ology hemis um of	or stry f 50
Corequisite	Students should have understanding of general biolo a basic knowledge of the biological molecules, the regulation, structure/function, interaction with the and evolution.	gy, i cell, envii	nclud genet onmo	ling tics, ent,
Antirequisite				
	L	Т	Р	С
	0	0	6	3

Course Objectives:

- Supporting or strengthening theoretical knowledge.
- Experiencing the pleasure of discovery and development of their psycho-motor skills.

- Teaching how scientific knowledge may be used in daily life.
- Increasing creative thinking skills.
- Gains in scientific working methods and higher order thinking skills.
- Developing manual dexterity by using tools and equipment and allowing students to apply skills instead of memorizing.

Course Outcomes

CO1	Display the various GLP with basic concentration problems
CO2	Demonstrate the basic principle and applications of important instruments
CO3	Handle extraction of enzymes using different sources
CO4	Measures the various factors affecting enzyme activity.
CO5	Perform the analysis of carbohydrates, Lipids and protein
CO6	Evaluate the applications of advancement of biological science laboratory experiments

Text Book (s)

- G.Stehli, The Microscope And How to Use It, English edition, 1970.
- M.Sayer and A. Mansingh, PHI Learning. Measurement, Instrumentation and Experiment Design in Physics & Engineering, 2005.
- Aliofkhazraei, Mahmood, Handbook of Nanoparticles, Springer, 2016
- Huheey, J.E., Keiter, E.A., Keiter, R.L. & Medhi, O.K. Inorganic Chemistry: Principles of Structure and Reactivity, Pearson Education India, 2006.
- Aneja KR. Experiments in Microbiology, Plant pathology and Biotechnology. 4th Edition, New Age International Publishers, Chennai. 2005
- Horold J Benson. Microbiological Applications. Laboratory Manual in General Microbiology. 7th International Edition, WCB McGraw Hill, Boston. 1998
- Dubey RC and Maheswari DK. Practical Microbiology 1st Edition, S. Chand & Company Ltd., New Delhi. 2004

Reference Book (s)

- Aliofkhazraei, Mahmood, Handbook of Nanoparticles, Springer, 2016
- Huheey, J.E., Keiter, E.A., Keiter, R.L. & Medhi, O.K. Inorganic Chemistry: Principles of Structure and Reactivity, Pearson Education India, 2006.
- Kannan N. Handbook of Laboratory Culture Media, Reagents, Stains and Buffers. Panima Publishing Corporation, New Delhi. 2003
- Kalaichelvan PT. Microbiology and Biotechnology A Laboratory Manual 1st Edition, MJP Publishers, A Unit of Tamil Nadu Book House, Chennai. 2005.
- ChellamRajamanicam Experiments Protocols in Basic Molecularbiology. Osho Scientific Publications, Madurai.

S.N.	Name of Practicals
1.	Study of the life history of the following scientists and their contributions with the
	help of their photographs: Anton von Leeuwenhoek, Linus Pauling, Kary Mullis,
	Robert Hoooke and Alexander Fleming.
2.	To study the principle and applications of important instruments (Microscope,
	Spectrophotometer, autoclave, Centrifuge) used in the microbiology laboratory.
3.	Qualitative analysis of carbohydrates present in the given solution.
4.	Qualitative analysis of amino acid and protein present in the given solution.
5.	Qualitative analysis of lipid present in the given solution.
6.	To understand the principle of Osmosis and Diffusion

7.	Demonstration of different stages of mitosis.
8.	Demonstration the different stages of meiosis.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50		50	100

SEMESTER-II

Name of The Course	BIOINSTRUMENTATION-I				
Course Code	BSDB1007				
Prerequisite	Candidate for admission to the first year of B.Sc. Degree Course in Biochemistry should passed the Higher Secondary				
	Examination with Chemistry and Biology or Chemistry, Botany and Zoology with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have the basic knowledge of chemistry and environmental science.				
Antirequisite	site				
		L	Τ	P	С
		4	0	0	4

Course Objectives: Students will understand the principle and application of basic instruments and the fundamental concept of microscopy, spectroscopy and radioisotopic techniques.

Course Outcomes:

CO1	Describe different types of microscopes for the study of cell, identification of cellular
	changes within organs
CO2	Explain various kind centrifugation techniques for study of separation of different
	cells and cellular organs
CO3	Describe the Principles and applications of chromatography, separation techniques
	based on chromatography, types of chromatography and application in industry
CO4	Explains absorbance based techniques like Visible and UV spectroscopy, Basic concepts
	and applications of MS and NMR.
CO5	Explain basic concepts of crystallography and its application
CO6	Evaluate the applications of advancement of bioinstrumentation I

Text Book (s)

- 5. Principles and Techniques of Practical Biochemistry Wilson, K., Walker, J. (eds.); Cambridge University Press, Cambridge, 2000, 784 pp., ISBN 0-521-65873.
- 6. An Introduction to Practical Biochemistry (1998) 3rd ed., Plummer D. T., Tata McGraw Hill Education Pvt. Ltd. (New Delhi), ISBN:13: 978-0-07-099487-4 / ISBN:10: 0-07-099487-0.

Reference Book

- 3. Physical Biochemistry: Principles and Applications (2010) 2nd ed., Sheehan, D., Wiley Blackwell (West Sussex), ISBN:978-0-470-85602-4 / ISBN:978-0-470-85603-1.
- 3. Physical Biochemistry: Applications to Biochemistry and Molecular Biology (1982) 2nd ed., Freifelder, D., W.H. Freeman and Company (New York), ISBN:0-7167-1315-2/ISBN:0-7167-1444-2.

Unit-1 SEPARATION TECHNIQUES

Different methods of protein precipitation: Precipitation using inorganic salts (salting out) and organic solvents, isoelectric precipitation, Dialysis, Ultrafilteration, Lyophilization.

Unit-2 MICROBIAL TECHNIQUES

Buffer, Principle and working of pH meter, Laminar-air flow, Decontamination, sterilisation and disinfection techniques, media preparation technique, Culture of Human, Plant & Animal cells. Preparation of microbial, animal and plant samples for microscopy.

Unit-3 MICROSCOPY

Basic principles and applications of - Light microscopy, Bright & Dark Field microscopy, Fluorescence microscopy, Phase Contrast microscopy, TEM, SEM, Confocal Laser microscopy, Radio Microscopy.

Unit-4 CENTRIFUGATION

Basic Principle of Centrifugation, Types of centrifuge machines, preparative and analytical centrifuges, differential centrifugation, sedimentation velocity, Factors affecting Sedimentation velocity, Standard Sedimentation Coefficient, Centrifugation of associating systems, Rate-Zonal centrifugation, sedimentation equilibrium Centrifugation, density gradient methods and their applications

Unit-5 COLORIMETRY AND SPECTROSCOPY

(10 hours)

(04 hours)

(10 hours)

Simple theory of the absorption of light by molecules, Beer-Lambert law, Principle and use of study of absorption spectra of biomolecules. Visible and UV spectroscopy.Colorimetry, turbidometry, Spectrofluorimetry, nephelometry and luminometry.

Unit-6 RECENT ADVANCES IN BIOINSTRUMENTATION

Research article/ Review paper/ MOOC.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	ECOLOGY
Course Code	BSDB1008
Prerequisite	Higher Secondary Examination with Chemistry and Biology or
	Chemistry, Botany and Zoology or Biochemistry and Chemistry
	from a recognized Board in science stream with a minimum of 50
	% marks in aggregate.
Corequisite	Students should have understanding of general biology, including
	a basic knowledge of the biological molecules, the cell, genetics,
	regulation, structure/function, interaction with the environment,
	and evolution.
Antirequisite	

(08hours)

(10 hours)

(8 hours)

LU	UL	υ	эΪ	

TOT

			_	-	
	4	0	0	4	
Course Objectives: Feelow is "the scientific study of the distribution and abun	done	o of	orgo	niam	

Course Objectives: Ecology is "the scientific study of the distribution and abundance of organisms and the interactions that determine distribution and abundance". It is a tremendously diverse field of study, reflecting the incredible diversity of life, as well as the many types and levels of interactions that influence organisms.

Course Outcomes

CO1	Describe the environment, habitat and Niche.
CO2	Analyze Ecosystem, Biome, Biosphere and Ecosphere
CO3	Interpret about Population ecology
CO4	Demonstrate Community and Ecosystem Ecology
CO5	Understand Species Interactions and Biogeography
CO6	Evaluate the applications of advancement of ecology

Text Book (s)

- Colinvaux, P. A. (1993). Ecology. II Edition. Wiley, John and Sons, Inc.
- Krebs, C. J. (2001). Ecology. VI Edition. Benjamin Cummings.
- Odum, E.P. (2008). Fundamentals of Ecology. Indian Edition. Brooks/Cole
- Ricklefs, R.E. (2000). Ecology. V Edition. Chiron Press

Reference Book (s)

- Basic Ecology: E. P. Odum, Indian Edition. Brooks/Cole
- P. D. Sharma Ecology and Environment, Rastogi publications, india.
- R. H. Whittaker, Communities and Ecosystems, New York and London: Macmillan Publishing Co. Inc., 1975. Second edition. Octavo, pp xx, 385.

Unit-1 THE ENVIRONMENT, HABITAT AND NICHE

Relevance of studying ecology, its history, autecology, synecology. Concept of habitat and niche; niche width and overlap; fundamental and realized niche; resource partitioning; character displacement.

Unit-2 ECOSYSTEM, BIOME, BIOSPHERE AND ECOSPHERE 10 hours

Physical environment; biotic environment; biotic and abiotic interactions. Abiotic Factors: Laws of limiting factors- Liebig's law of minimum and Shelford's law of tolerance. A brief account of light and temperature as limiting factors, soil types and soil erosion.

Unit-3 POPULATION ECOLOGY

Population density, natality, mortality, life tables, fecundity tables, survivorship curves, Exponential/Malthusian and Sigmoid growth patterns, Verhulst-Pearl growth equation, 'r' and 'k' strategies. Population Growth regulation; Intrinsic mechanism- Density dependent fluctuations and oscillations, Extrinsic mechanism- Density independent, environmental and climatic factors, population interactions- types in a tabular form with examples. Niche concept, Gause's principle of competitive exclusion with laboratory and field examples, LotkaVolterra Equation for prey predator interaction, functional and numerical responses of prey and predator.

Unit-4 COMMUNITY AND ECOSYSTEM ECOLOGY

10 hours

08 hours

L T P C

10 hours

Nature of communities; community structure and attributes, community stratification, ecotone/edge effect, succession, stages of primary succession, climax community. Ecosystem structure; ecosystem function; energy flow and mineral cycling (C, N, P); primary production and decomposition; structure and function of some Indian ecosystems: terrestrial (forest, grassland) and aquatic (fresh water, marine, eustarine).

Unit-5 SPECIES INTERACTIONS AND BIOGEOGRAPHY

08 hours

Types of interactions, interspecific competition, herbivory, carnivory, pollination, symbiosis. Major terrestrial biomes; theory of island biogeography; biogeographical zones of India.

Unit-6 RECENT ADVANCES IN ECOLOGY

04 hours

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	HORMONE : BIOCHEMISTRY AND FUNCTION	ON			
Course Code	BSDB1009				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a % marks in aggregate.	and and a mir	l Bio d Ch nimu	ology nemis ım of	or try 50
Corequisite	Students should have understanding of general b a basic knowledge of the biological molecules, t regulation, structure/function, interaction with t and evolution.	iolog he c he e	gy, in ell, g nvir	nclud genet onme	ing ics, ent,
Antirequisite					
_		L	Т	Р	С
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of endocrinology, hormones, mechanism of action and their functions.

Course Outcomes

CO1	Explain the concept of endocrinology.
CO2	Illustrate the basic concepts of hormones and their mechanism of action.
CO3	Explain the importance of pituitary gland hormone.
CO4	Demonstrate the role of thyroid and parathyroid gland in body metabolism.
CO5	Discuss about the importance of pancreatic, adrenal gland hormone.
CO6	Evaluate the applications of advancement of hormone: biochemistry and function

Text Book (s)

- Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M. W.H. Freeman & Company (New York), ISBN:13: 978-1-4641-0962-1 / ISBN:10-14641-0962-1.
- Vander's Human Physiology (2008) 11th ed., Widmaier, E.P., Raff, H. and Strang, K.T. McGraw Hill International Publications, ISBN: 978-0-07-128366-3.
- Endocrinology (2007) 6th ed., Hadley, M.C. and Levine, J.E. Pearson Education (New Delhi), Inc. ISBN: 978-81-317-2610-5.

Reference Book (s)

- 1. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M. W.H. Freeman & Company (New York), ISBN:13: 978-1-4641-0962-1 / ISBN:10-14641-0962-1.
- 2. Vander's Human Physiology (2008) 11th ed., Widmaier, E.P., Raff, H. and Strang, K.T. McGraw Hill International Publications, ISBN: 978-0-07-128366-3.
- 3. Endocrinology (2007) 6th ed., Hadley, M.C. and Levine, J.E. Pearson Education (New Delhi), Inc. ISBN: 978-81-317-2610-5.

Unit-1 INTRODUCTION TO ENDOCRINOLOGY

08 hours

Functions of hormones and their regulation. Chemical signaling - endocrine, paracrine, autocrine, intracrine and neuroendocrine mechanisms. Chemical classification of hormones, transport of hormones in the circulation and their half-lives. Hormone therapy. General introduction to Endocrine methodology.

Unit-2 HORMONE MEDIATED SIGNALING AND GROWTH FACTORS 10 hours

Hormone receptors - extracellular and intracellular. Receptor - hormone binding, Scatchard analysis. G protein coupled receptors, G proteins, second messengers - cAMP, cGMP, IP3, DAG, Ca2+, NO. Effector systems - adenylcyclase, guanylcyclase, PDE, PLC. Protein kinases (PKA, PKB, PKC, PKG). Receptor tyrosine kinases - EGF, insulin, erythropoietin receptor; ras -MAP kinase cascade, JAK - STAT pathway. Steroid hormone/ thyroid hormone receptormediated gene regulation. Receptor regulation and cross talk. PDGF, EGF, IGF-II, and erythropoietin.

Unit-3 HYPOTHALAMIC, PITUITARY AND REPRODUCTIVE HORMONE 12 hours

Hypothalamic - pituitary axis. Study the physiological and biochemical actions of hypothalamic hormones, pituitary hormones - GH, prolactin, TSH, LH, FSH, POMC peptide family, oxytocin and vasopressin, feedback regulation cycle. Endocrine disorders - gigantism, acromegaly, dwarfs, pigmies and diabetes insipidus. Male and female sex hormones. Interplay of hormones during reproductive cycle, pregnancy, parturition and lactation. Hormone based contraception.

Unit-4 THYROID AND PARATHYROID HORMONE

12 hours

Thyroid gland. Biosynthesis of thyroid hormone and its regulation; its physiological and biochemical action. Pathophysiology - Goiter, Graves disease, cretinism, myxedema, Hashimato's disease. PTH, Vitamin D and calcitonin. Mechanism of Ca2+ regulation and pathways involving bone, skin, liver, gut and kidneys. Pathophysiology - rickets, osteomalacia, osteoporosis.

Unit-5 PANCREATIC, ADRENAL AND GI TRACT HORMONES 10 hours

Regulation of release of insulin, glucagon, gastrin, secretin, CCK, GIP, adipolectin, leptin and ghrelin. Summary of hormone metabolite control of GI function. Physiological and biochemical action. Pathophysiology - diabetes type I and type II. Aldosterone, renin angiotensin system, cortisol, epinephrine and norepinephrine. Fight or flight response, stress response. Pathophysiology – Addison's disease, Conn's syndrome, Cushing syndrome.

Unit-6 RECENT ADVANCES IN HORMONE : BIOCHEMISTRY AND FUNCTION 04 hours

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	CONCEPT OF IMMUNOLOGY			
Course Code	BSDB1011			
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50			
	% marks in aggregate.			
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.			
Antirequisite				
	L T P C			

Course Objectives:

- The students will be able to identify the cellular and molecular basis of immune responsiveness.
- The students will be able to describe the roles of the immune system in both maintaining health and contributing to disease.
- The students will be able to describe immunological response and how it is triggered and regulated.

Course Outcomes

CO1	Describe the basic concept of immunology
CO2	It describes how immune response work in our body and explain defense mechanisms
	by CTL and NK cells
CO3	Demonstrate complementary system, organ transplantation, Antigen processing and
	presentation by MHC complex
CO4	Elucidate immunological disorders autoimmunity, hypersensitivity and
	immunodeficiency.
CO5	Evaluate vaccine production, Immunization, immunotherapy
CO6	Evaluate the applications of advancement of immunology

Text Book (s)

- Immunology, 6th edition, (2006), J. Kuby et al, W.H. Freeman and Company, New York. ISBN-13: 978-1429202114.
- Roitt"s Essential Immunology, 12th edition, (2011), Wiley-Blackwell Science. ISBN-13: 978-1405196833.
- Cellular and Molecular Immunology, 7th edition, (2011). Abul K. Abbas, Andrew H. Lichtman, Shiv Pillai. Saunders. ISBN-13: 978-1437715286.

Reference Book (s)

• Immunology, 6th edition, (2006), J. Kuby et al, W.H. Freeman and Company, New York. ISBN-13: 978-1429202114.

• Cellular and Molecular Immunology, 7th edition, (2011). Abul K. Abbas, Andrew H. Lichtman, Shiv Pillai. Saunders. ISBN-13: 978-1437715286.

Unit-1 INTRODUCTION TO IMMUNE SYSTEM

10 hours

Types of immunity; organs and cells involved in immune system; Antigen, haptens, adjuvants, antigenicity, antigenic determinants and epitopes; Antibody structure and functions; Theories of antibody formation; Antibody diversity.

Unit-2 IMMUNE RESPONSE

08 hours

Primary and Secondary Immune Response; Generation of Humoral Immune Response (Plasma and Memory cells); Generation of Cell Mediated Immune Response (Self MHC restriction, T cell activation, Co- stimulatory signals); Killing Mechanisms by CTL and NK cells, Introduction to tolerance.

Unit-3 COMPLEMENT SYSTEM AND MAJOR HISTOCOMPATIBILITY COMPLEX 10 hours

Components of the Complement system; Activation pathways (Classical, Alternative and Lectin pathways); Biological consequences of complement Activation. MHC - Organization of MHC locus (Mice & Human); Structure and Functions of MHC I & II molecules; Antigen processing and presentation (Cytosolic and Endocytic pathways).Transplantation - types, genetics of transplantation, graft versus host reactions.

Unit-4 IMMUNOLOGICAL DISORDERS

12 hours

Types of Autoimmunity and Hypersensitivity with examples; Immunodeficiencies - Animal models (Nude and SCID mice), SCID, DiGeorge syndrome, Chediak- Higashi syndrome, Leukocyte adhesion deficiency, CGD; Types of tumors, tumor Antigens, causes and therapy for cancers.

Unit-5 VACCINES AND IMMUNOLOGICAL TECHNIQUES

Vaccines - Types and their characteristics; Immunization practices-immunoprophylaxis and immunotherapy.Immunological techniques -Principles of Precipitation, Agglutination, Immunodiffusion, Immunoelectrophoresis, ELISA, Western blotting, Immunofluoresence, Flow cytometry, Immunoelectron microscopy.

Unit-6 RECENT ADVANCES IN CONCEPT OF IMMUNOLOGY

04 hours

10 hours

Research article/ Review paper/ MOOC.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOLOGICAL SCIENCE LAB II
Course Code	BSBS1013
Prerequisite	Higher Secondary Examination with Chemistry and Biology or
	Chemistry, Botany and Zoology or Biochemistry and Chemistry

	from a recognized Board in science stream with a minimum of 50 % marks in aggregate.		
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.		
Antirequisite			
	L T P C		
	0 0 6 3		

Course Objectives:

- This will enable the students to understand all the subjects of biological sciences as these tools and techniques will be used therein.
- Also acquire the basic knowledge of the microbiological techniques to be applied in the laboratory.
- To know the general microbiological techniques for isolation of pure cultures of microorganisms.

Course Outcomes

CO1	Display the various methods of sterilization.
CO2	Construct various culture media.
CO3	Handle pure culture techniques.
CO4	Perform the isolation and estimation of DNA, RNA.
CO5	Perform the blood grouping, agglutination inhibition Assay.
CO6	Demonstrate the knowledge of laboratory practices in molecular biology, immunology
	and microbiology.

Text Book (s)

- Aneja KR. Experiments in Microbiology, Plant pathology and Biotechnology. 4th Edition, New Age International Publishers, Chennai. 2005.
- Horold J Benson. Microbiological Applications. Laboratory Manual in General Microbiology. 7th International Edition, WCB McGraw Hill, Boston. 1998.
- James G Cappuccino & Natalie Sherman Microbiology: A Laboratory manual. 6th Edition, Published by Pearson Education. 2004.
- Dubey RC and Maheswari DK. Practical Microbiology 1st Edition, S. Chand & Company Ltd., New Delhi. 2004

Reference Book (s)

- James G Cappuccino & Natalie Sherman Microbiology: A Laboratory manual. 6th Edition, Published by Pearson Education. 2004.
- Dubey RC and Maheswari DK. Practical Microbiology 1st Edition, S. Chand & Company Ltd., New Delhi. 2004.

S.N.	Name of Practicals
1.	Preparation of nutrient broth for the routine cultivation of bacteria.
2.	Preparation of nutrient agar for the routine cultivation of bacteria.
3.	Isolation of microorganisms by streak plate method.
4.	To isolate the microorganisms by spread plate method.
5.	To isolate the microorganisms by serial dilution technique (or viable plate count
	method).

6.	Understanding the different components and working principle of light microscope
	using pre-prepared slide.
7.	Preparation of onion cell slide to study cell morphology using light microscope.
8.	To perform the isoelectric precipitation of casein present in milk.
9.	To determine the pH of 0.1 M NaOH and tap water using pH meter.
10.	Demonstrating the basic principle of centrifugation and calculating the relation
	tween RCF and RPM during centrifugation.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks		
(IA)	(MTE)	(ETE)			
50		50	100		

Name of The Course	FUNDAMENTALS OF MOLECULAR BIOLOG	GΥ			
Course Code	BSDB2001				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or				
_	Chemistry, Botany and Zoology or Biochemistry	y and	d Cł	nemis	stry
	from a recognized Board in science stream with a	a mii	nimu	ım of	f 50
	% marks in aggregate.				
Corequisite	Students should have understanding of general b a basic knowledge of the biological molecules, t regulation, structure/function, interaction with t and evolution.	iolog he c he e	gy, ii ell, g nvir	nclud genet onmo	ling tics, ent,
Antirequisite					
		L	Т	Р	С
		4	0	0	4

SEMESTER-III

Course Objectives: Molecular biology deals with nucleic acids and proteins and how these molecules interact within the cell to promote proper growth, division, and development. It is a large and ever-changing discipline. This course will emphasize the molecular mechanisms of DNA replication, repair, protein synthesis etc.

Course Outcomes

CO1	Explain the functional and structural organization of genetic material
CO2	Illustrate the different stages of DNA replication and type of DNA repair
CO3	Explain detail process of transcription and its regulation
CO4	Elucidate the mechanism of translation and posttranslational modification
CO5	Summarize the basic concept of gene regulation in pro and eukaryotes
CO6	Evaluate the applications of advancement of fundamentals of molecular biology

Text Book (s)

- Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W.H. Freeman and Company (New York), ISBN:13: 978-1-4641-0962-1 / ISBN:10:1-4292-3414- 8.
- Molecular biology of the gene, (4thed)J D Watson, Benjamin/Cummings publ. Co Inc.
- Molecular Cell Biology (2012) 7th ed., Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell. J., W.H. Freeman & Company (New York), ISBN:13:978-1-4641-0981-2 / ISBN:10: 1-4641-0981-8.
Molecular Biology of the Cell (2008) 5th ed., Alberts, B., Johnson, A., Lewis, J., and Enlarge, M., Garland • Science (Princeton), ISBN:0-8153-1619-4 / ISBN:0-8153-1620-8.

Reference Book (s)

- Alberts B, Bray D, Johnson A et al. (1997) Essential Cell Biology. London: Garland Publishing. •
- Darwin C (1859) On the Origin of Species. London: Murray. •
- Graur D & Li W-H (1999) Fundamentals of Molecular Evolution, 2nd edn. Sunderland, MA: Sinauer Associates.

Unit-1 NUCLEIC ACID STRUCTURE AND ORGANIZATION

DNA and RNA as genetic material, chemical structure, base composition and types of nucleic acids, supercoiling of DNA, DNA reassociation kinetics (cot curve analysis), DNA organization into chromatin, bacterial and eukaryotic genomic organization.

Unit-2 DNA REPLICATION AND REPAIR 08 hours Enzymes and proteins of DNA replication, prokaryotic and eukaryotic replication mechanism, replication in phages and retroviruses, Mutagenesis, DNA damage and repair mechanisms.

Unit-3 TRANSCRIPTION

Transcription in prokaryotes and eukaryotes. Mechanism of transcription, enzymes and transcription factors. Post-transcriptional modifications in mRNA, rRNA and tRNA.

Unit-4 TRANSLATION

Genetic code - properties of the genetic code, deciphering of the genetic code. Translation in prokaryotes and eukaryotes; Translational mechanism in prokaryotes and eukaryotes, post translational modification and transport of proteins.

Unit-5 REGULATION OF GENE EXPRESSION

Regulation of gene expression in prokaryotes - The operon concept, lac &tryp operons. Transcriptional control. Post translational control. Regulation in eukaryotes - Control by promoter, enhancer and silencers. Cis-trans elements. DNA methylation & gene expression.

Unit-6 RECENT ADVANCES IN FUNDAMENTALS OF MOLECULAR BIOLOGY 04 hours

Research article/ Review paper/ MOOC.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOINSTRUMENTATION-II
Course Code	BSDB2002
Prerequisite	Candidate for admission to the first year of B.Sc. Degree Course
	in Biochemistry should passed the Higher Secondary

08 hours

12 hours

10 hours

	Examination with Chemistry and Biology or Chen and Zoology with a minimum of 50 % marks in ag	Examination with Chemistry and Biology or Chemistry, Botany and Zoology with a minimum of 50 % marks in aggregate.			
Corequisite	Students should have understanding of general bid including a basic knowledge of the biological molec cell, genetics, regulation, structure/function, intera environment, and evolution.	olog cule actio	y, es, th on wi	ie ith th	ie
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: Students are able to determine the principle of advanced spectroscopy, chromatographic techniques

Course Outcome:

CO1	Describe different types of electrophoretic techniques for separation and isolation of biomolecules.
CO2	Explain various kinds of Spectroscopic techniques to characterize and detect structural changes in biomolecules.
CO3	Describe the principle and applications of various chromatographic techniques.
CO4	Explain the different types of radioactive detection techniques.
CO5	Demonstrate the principle of Sanger and Maxam Gilbert method of Nucleotide sequencing.
CO6	Evaluate the applications of advancement of bioinstrumentaion II

Text Book (s)

- 11. Molecular Biology of the Gene (2008) 6th ed., Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M. and Losick, R., Cold Spring Harbor Laboratory Press, Cold spring Harbor (New York), ISBN:0-321-50781 / ISBN:978-0-321-50781-5.
- 12. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W. H. Freeman & Company (New York), ISBN:13: 978-1-4292-3414-6 / ISBN:10-14641-0962-1.

Reference Book

5. The Cell: A Molecular Approach (2009) 5th Ed. Cooper, G.M. and Hausman, R.E. ASM Press & Sunderland, (Washington DC), Sinauer Associates. (MA). ISBN:978-0-87893-300- 6.

Unit-1 ELECTROPHORESIS	(10 hours)
Principle and applications of native polyacrylamide gel electrophoresis gel electrophoresis, 2D gel electrophoresis Isoelectric focusing, Zymog Agarose gel electrophoresis.	, SDS- polyacrylamide gram preparation and
Unit-2 ADVANCED SPECTROSCOPY	(10 hours)
Basic concepts - Circular Dichroism (CD) and Optical Rotator, Fluorescence spectroscopy, Infrared spectroscopy, FTIR, NMR spectroscopy- MALDI-TOF, Nano-SIMS (10L).	y Dispersion (ORD), spectroscopy. Mass
Unit-3 CHROMATOGRAPHY	(10 hours)
Principles and applications of paper chromatography (including Desce layer chromatography. Column packing and fraction collec chromatography, ionexchange chromatography and affinity chromatog	ending and 2-D), Thin tion. Gel filtration raphy, GLC, HPLC.
Unit-4 RADIOGRAPHY	(10 hours)
Use of radioisotopes in life sciences, radioactive labeling, principle and techniques, detection and measurement of radioactivity using ionization of the second se	l application of tracer chamber, proportional

chamber,	Autoradiography,	FISH-MAR,	Pulse	chase	experiment,	Liquid	scintillation
counting,	Phosphor imaging, I	RMA, Dosime	try.				
Unit-5 AD	VANCED TECHNI	QUES				(08 h	ours)

Chemical synthesis of nucleotides and peptides, Sequencing of proteins and nucleic acids, Enzyme purification and assay techniques.

Unit-6 RECENT ADVANCES IN BIOINSTRUMENTATION

(04 hours)

Research article/ Review paper/ MOOC.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	FUNDAMENTALS OF MICROBIOLOGY				
Course Code	BSDB2003				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a % marks in aggregate.	y and y and a mir	l Bio l Ch nimu	ology nemis ım of	or try 150
Corequisite	Students should have understanding of general b a basic knowledge of the biological molecules, t regulation, structure/function, interaction with t and evolution.	iolog he c he e	gy, in ell, g nvir	nclud genet onme	ing ics, ent,
Antirequisite					
		L	Τ	P	С
		4	0	0	4

Course Objectives:

- Knowledge on Landmark discoveries in Microbiology and different domains classification of living organisms.
- Familiarity with general characters of prokaryotic and Eukaryotic microorganisms for conventional and molecular characterization using modern methods.
- Knowledge of cellular organization, life cycle and economic importance of prokaryotic (Eubacteria, Archaea, Cyanobacteria) and Eukaryotic (Algae, Fungi and protozoans).

Course Outcomes

CO1	Discuss about history, diversity and scope of microbiology.
CO2	Explain microbial nutrition, growth and control of microorganism.
CO3	Describe microbial molecular biology and genetics.
CO4	Demonstrate viruses and microbial pathogenicity.
CO5	Interpret various applications of food and industrial microbiology.
CO6	Evaluate the applications of advancement of fundamentals of microbiology

Text Book (s)

- Prescott & Dunn's Industrial Microbiology. Ed. E.G. Reed (1987). CBS Publishers, New Delhi.
- Biotechnology: A Text book of Induxctrial Microbiology 2nd Edition. Crueger, W. and Cruger, A. (2000) Panima Publishing Corporation, New Delhi.

- Manual of Industrial Microbiology and Biotechnology 2nd Edition. Ed. Arnold L. Demain and Julian E. Davies (1999) ASM Press Washington D.C.
- Microbiology, Pelczar Jr. M.J.: Chan E.C.S. and Krieg, N. R. (1993) Tata Mc. Graw Hill, New Delhi.

Reference Book (s)

- Prescott & Dunn's Industrial Microbiology. Ed. E.G. Reed (1987). CBS Publishers, New Delhi.
- Biotechnology: A Text book of Induxctrial Microbiology 2nd Edition. Crueger, W. and Cruger, A. (2000) Panima Publishing Corporation, New Delhi.

Unit-1 HISTORY, DIVERSITY AND SCOPE OF MICROBIOLOGY 12 hours

Discovery of microorganisms, spontaneous generation, germ theory of disease, members of the microbial world, scope and relevance of microbiology, Microbial taxonomy and phylogeny, Archaea, Bacteria, fungi, slime molds, water molds, algae, protozoa, helminths, the future of microbiology.

Unit-2 BACTERIA

An account of typical eubacteria, chlamydiae&rickettsiae (obligate intracellular parasites), mycoplasma, and Archaea. Applications of bacteria and Archaea in industry, environment and food.

Unit-3 VIRUSES, VIROIDS AND PRIONS

An introduction to viruses with special reference to the structure and replication of the following: Poxvirus, Poliovirus, HIV, T4 and λ phage, lytic and lysogenic cycles.

Unit-4 ALGAE

History of phycology; General characteristics of algae including occurrence, thallus organization, algae cell ultrastructure, pigments, flagella, eyespot food reserves and vegetative, asexual and sexual reproduction. Applications of Algae in agriculture, industry, environment and food.

Unit-5 FUNGI AND PROTOZOAN

Historical developments in the field of Mycology, significant contributions of eminent mycologists. General characteristics of fungi including habitat, distribution, nutritional requirements, fungal cell ultra- structure, thallus organization and aggregation, fungal wall structure and synthesis, asexual reproduction, sexual reproduction, heterokaryosis, heterothallism and parasexual mechanism. Economic Importance of Fungi in Agriculture, environment, Industry, medicine, food, biodeterioration, mycotoxins, General characteristics with special reference to Amoeba.

Unit-6 RECENT ADVANCES IN FUNDAMENTALS OF MICROBIOLOGY 04 hours

Research article/ Review paper/ MOOC.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

09 hours

08 hours

10 hours

Name of The Course	BIOCHEMISTRY OF METABOLISM	
Course Code	BSBS2004	
Prerequisite	Higher Secondary Examination with Chemistry and Biol Chemistry, Botany and Zoology or Biochemistry and Che from a recognized Board in science stream with a minimum	ogy or mistry n of 50
	% marks in aggregate.	
Corequisite	Students should have understanding of general biology, inc a basic knowledge of the biological molecules, the cell, ge regulation, structure/function, interaction with the environ and evolution.	cluding enetics, nment,
Antirequisite		
		P C
	4 0	0 4

Course Objectives: Students will understand the fundamental concept of biochemistry. It is a large and major inter disciplinary course. It will enhance the knowledge of chemistry within the living organisms. The course will emphasize the metabolism of carbohydrates, lipids, proteins and nucleotides.

Course Outcomes

CO1	Explain the concept of energy production in the living cell.
CO2	Explain the fundamentals of carbohydrate metabolism.
CO3	Illustrate the process of synthesis and degradation of lipids.
CO4	Describe the metabolism of essential and non-essential amino acids.
CO5	Evaluate the metabolism of nucleotides.
CO6	Evaluate the applications of advancement of biochemistry of metabolism

Text Book (s)

- Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W.H. Freeman and Company (New York), ISBN: 13: 978-1-4641-0962-1 / ISBN:10:1-4292-3414- 8.
- Biochemistry, 5th edition Jeremy M Berg, John L Tymoczko, and Lubert Stryer. New York: W H Freeman; 2002. ISBN-10: 0-7167-3051-0.

Reference Book (s)

- Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W.H. Freeman and Company (New York), ISBN: 13: 978-1-4641-0962-1 / ISBN:10:1-4292-3414-8.
- Textbook of Biochemistry with Clinical Correlations (2011) 7th ed., Devlin, T.M., John Wiley & Sons, Inc. (New York), ISBN: 978-0-470-28173-4.
- Biochemistry, 5th edition Jeremy M Berg, John L Tymoczko, and Lubert Stryer. New York: W H Freeman; 2002. ISBN-10: 0-7167-3051-0.

Unit-1 BIOENERGETICS

Gibbs free energy, Entropy, Enthalpy, relationship among Gibbs free energy, Entropy and Enthalpy, Laws of thermodynamics, exergonic and endergonic reactions, coupled reactions. High energy compounds - ATP, synthesis of ATP, ATP-ADP cycle, storage of high energy phosphates.

Unit-2 CARBOHYDRATES METABOLISM

Glycolysis, Krebs cycle, Glycogenesis, glycogenolysis, Gluconeogenesis, Pentose phosphate pathway, uronic acid pathway, Glycogen metabolism and glycogen storage diseases.

08 hours

Unit-3 LIPID METABOLISM

Synthesis and degradation of triacylglycerols, phospholipids, glycolipids, eicosanoids; Biosynthesis of fatty acids; Oxidation of fatty acids; Ketone bodies; Metabolism of cholesterol - biosynthesis, lipoproteins synthesis and significance.

Unit-4 AMINO ACID METABOLISM

Structure and classification of aminoacids; Disorders associated with amino acid metabolism. Urea cycle– steps, regulation and disorders; Biosynthesis of polyamines– putrescine, spermidine and spermine.

Unit-5 NUCLEOTIDE METABOLISM

Purine metabolism – biosynthesis (de novo and salvage pathways), degradation, regulation and disorders of purine metabolism; Pyrimidine metabolism - biosynthesis (de novo and salvage pathways), degradation, regulation and disorders of pyrimidine metabolism.

Unit-6 RECENT ADVANCES IN BIOCHEMISTRY OF METABOLISM 04 hours

Research article/ Review paper/ MOOC.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOLOGICAL SCIENCE- LAB-III				
Course Code	BSBS2014				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
	L T P C				

Course Objectives:

- Supporting or strengthening theoretical knowledge.
- Experiencing the pleasure of discovery and development of their psycho-motor skills.
- Teaching how scientific knowledge may be used in daily life.
- Increasing creative thinking skills.
- Gains in scientific working methods and higher order thinking skills.
- Developing manual dexterity by using tools and equipment and allowing students to apply skills instead of memorizing.

08 hours

08 hours

- CO1 Perform the analysis of DNA and RNA
- **CO2 Perform the isolation, purification and cultivation of virus.**

CO3 Demonstrate the recent techniques of the isolation and analysis protocol

Text Book (s)

- Aneja KR. Experiments in Microbiology, Plant pathology and Biotechnology. 4th Edition, New Age International Publishers, Chennai. 2005
- Horold J Benson. Microbiological Applications. Laboratory Manual in General Microbiology. 7th International Edition, WCB McGraw Hill, Boston. 1998
- James G Cappuccino & Natalie Sherman Microbiology : A Laboratory manual. 6th Edition, Published by Pearson Education. 2004
- Dubey RC and Maheswari DK. Practical Microbiology 1st Edition, S. Chand & Company Ltd., New Delhi. 2004
- Myer's and Koshi's Manual of Diagnostic Procedures in Medical Microbiology and Immunology / Serology. Published by Department of Clinical Microbiology, CMC and Hospital, Vellore, Tamil Nadu. 2001
- Sundararaj T. Microbiology Laboratory Manual. Revised and Published by AswathySundararaj, No.5. 1st Cross Street, Thirumalai Nagar, Perundgudi, Chennai.
- Kannan N Laboratory Manual in General Microbiology. 1st Edition, Palani Paramount Publications, Palani, Tamilnadu. 1996

Reference Book (s)

- ChellamRajamanicam Experiments Protocols in Basic Molecularbiology. Osho Scientific Publications, Madurai.
- Kannan N. Handbook of Laboratory Culture Media, Reagents, Stains and Buffers. Panima Publishing Corporation, New Delhi. 2003
- Kalaichelvan PT. Microbiology and Biotechnology A Laboratory Manual 1st Edition, MJP Publishers, A Unit of Tamil Nadu Book House, Chennai. 2005.

S.N.	Name of Practicals
1.	Isolation of DNA.
2.	Estimation of DNA.
3.	Isolation of RNA.
4.	Estimation of RNA.
5.	Demonstration of isolation of viruses.
6.	Demonstration of purification of viruses.
7.	Demonstration of cultivation of viruses.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOLOGICAL SCIENCE- LAB-IV				
Course Code	BSBS2015				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
	L	Т	Р	С	
	0	0	6	3	

Course Objectives:

- Supporting or strengthening theoretical knowledge.
- Experiencing the pleasure of discovery and development of their psycho-motor skills.
- Teaching how scientific knowledge may be used in daily life.
- Increasing creative thinking skills.
- Gains in scientific working methods and higher order thinking skills.
- Developing manual dexterity by using tools and equipment and allowing students to apply skills instead of memorizing.

Course Outcomes

CO1	Understand the principle component of an ecosystem and its interactions.
CO2	Describe various soil testing methods.
CO3	Determination and estimation of biomolecules.
CO4	Determination and estimation of enzyme activity.
CO6	Demonstrate the different recent techniques

Text Book (s)

- Myer's and Koshi's Manual of Diagnostic Procedures in Medical Microbiology and Immunology / Serology. Published by Department of Clinical Microbiology, CMC and Hospital, Vellore, Tamil Nadu. 2001.
- Kalaichelvan PT. Microbiology and Biotechnology A Laboratory Manual 1st Edition, MJP Publishers, A Unit of Tamil Nadu Book House, Chennai. 2005.

Reference Book (s)

- ChellamRajamanicam Experiments Protocols in Basic Molecular biology. Osho Scientific Publications, Madurai.
- Teresa Thiel, Shirley Bissen&Eilence M Lyons. Biotechnology DNA & Protein A laboratory project in Molecularbiology. International edition, published by Tata Mc. Graw Hill publishing company, 2002.

S.N.	Name of Practicals
1.	Study of all the biotic and abiotic components of any simple ecosystem- natural
	pond or terrestrial ecosystem or human modified ecosystem.
2.	Determination of population density in a terrestrial community or hypothetical
	community by quadrate method and calculation of the Simpson's and Shannon-
	Weiner diversity index for the same community.

3.	Principle of GPS (Global Positioning System).
4.	Study of the life table and fecundity table, plotting of the three types of
	survivorship curves from the hypothetical data.
5.	Study of the types of soil, their texture by sieve method and rapid tests for -pH,
	chlorides, nitrates, carbonates and organic carbon
6.	Study any five endangered/ threatened species- one from each class.
7.	Preparation of buffers
8.	Determination of PKa value for acetic acid
9.	Estimation of proteins by Biuret method
10.	Estimation of proteins by Lowry's method
11.	Separation of sugars by Thin Layer chromatography
12.	Assay of the enzyme acid phosphatase from germinated mungdal or β-amylase
	from
13.	Sweet potato beams
14.	Effect of pH on the activity of an enzyme
15.	Progress curve of an enzyme

Continuous Assessment Pattern

Internal Assessment	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
50	(50	100

Name of The Course	Web based course/seminar-I				
Course Code	BSDB2006				
Prerequisite	Candidate for admission to the first year of B.Sc. I in Biochemistry should passed the Higher Seconda Examination with Chemistry and Biology or Chen and Zoology with a minimum of 50 % marks in ag	Degi ary nisti ggre	ree (ry, E gate	Cours Botan	se y
Corequisite	Students should have understanding of general bio	olog	y.		
Antirequisite					
		L	Т	Р	С
		0	0	0	2

Course Objectives:

- **Students are** directly engage and learn particular subject of their interest. This strengthens the fundamentals of the student in the course.
- It gives the students the opportunities to explore new areas of interest. Also gives students the opportunity to learn in greater depth the subjects they wish to master.
- Promotes the self-learning initiative of the students where their own motivation is what drives them to complete the course. This fosters the habit of keeping oneself updated always by means of self-study.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	ЕТЕ	Total Marks
50		50	100

Name of The Course	PROGRAMMING LANGUAGE IN C AND PYT	'HOI	N				
Course Code	BCSE1020						
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.						
Corequisite	Students should have understanding of general bi a basic knowledge of the biological molecules, the regulation, structure/function, interaction with the and evolution.	iolog he co he ei	;y, ir ell, g nvir	nclud genet onmo	ing ics, ent,		
Antirequisite							
		L	Τ	Р	С		
		4	0	0	4		

SEMESTER-IV

Course Objectives: High-throughput technologies produce massive amounts of data, much too large to analyze by hand. The objectives are -

- To know how to convert a biological question into a computational problem that can be solved using computers.
- To know how to read and understand solutions to computational problems, which will be formalized as a series of tasks (an algorithm).
- To learn about general approaches for solving computational problems, and you will be able to apply these approaches to new problems you encounter.
- To know how implement the algorithms by writing computer programs in Python, which can be run and understood by others.

Course Outcomes

CO1	Understand and explain the basics of computer and its components
CO2	Explain the data input and output, control systems and function
CO3	Explain the arrays, structure and union
CO4	Explain the use of pointer and interpret the file
CO5	Apply the Classes in C++
CO6	Evaluate the applications of programming languages

Text Book (s)

- P Kanetkar Yashvant, Let us C, BPB Publications, New Delhi, Seventh Edition.
- E. Balagurusami, Programming in ANSI C, Tata McGraw Hill, Fourth Edition.
- Schaum Outline Series, Programming in C.
- Herbtz Schildt, "C++: The Complete Reference", Fourth Edition, McGrawHill.
- John R. Hubbard, "Programming with C++", Schaum's Series, 2nd Edition, 2000.
- Programming in ANSI C (4th Ed.) by E. Balagurusamy. Tata McGrawHill Publishing Company Limited. 2007
- Object Oriented Programming using C++ (4th Ed.) by Lafore, R. Sams Publishers. 2002
- Beginning PERL for Bioinformatics by James Tisdall. O'Reilly publications.2001.

Reference Book (s)

- P.K. Yashvant, Let us C, BPB Publications, New Delhi, Seventh Edition.
- E. Balagurusami, Programming in ANSI C, Tata McGraw Hill, Fourth Edition.

- Schaum Outline Series, Programming in C. •
- H. Schildt, "C++: The Complete Reference", Fourth Edition, McGrawHill. •
- J.R. Hubbard, "Programming with C++", Schaum's Series, 2nd Edition, 2000.

Unit-1 INTRODUCTION TO COMPUTERS

Introduction to computers: Units of computers, Block Diagram, Generation of Computers, Characteristics of Computers, Phases of Computers, Different types of Memory, Input and Output Devices.

Logic Development and Program Development Tools: Data Representation, Flowcharts, Problem Analysis, Decision Trees/Tables, Pseudo Code and Algorithms, Program Debugging, Compilation and Execution.

Fundamentals: Character Set, Identifiers and Key Words, Data Types, Constants, Variables, Expressions, Statements, Symbolic Constants.

Operations and Expressions: Arithmetic Operators, Unary Operators, Relational Operators, Logical Operators, Assignment and Conditional Operators, Library functions.

Unit-2 DATA INPUT AND OUTPUT

Data Input and Output: Single Character Input, Single Character Output, Entering Input Data, More About Scan Functions, Writing Output Data, More About Print Functions, Gets and Puts Functions, Interactive Programming,

Control Structures: Introduction, Decision Making with If – Statement, If Else and Nested If, While And Do-While, For Loop. Jump Statements: Break, Continue, Goto, Switch Statement.

Functions: Introduction To Functions, Function Declaration, Function Categories, Standard Functions, Parameters And Parameter Passing, Pass – By Value/Reference, Recursion, Global and Local Variables, Storage Classes.

Unit-3 ARRAYS

Arrays: Introduction to Arrays, Array Declaration, Single and Multidimensional, Array, Memory Representation, Matrices, Strings, String Handling Functions,

Structure and Union: Declaration of Structure, Accessing Structure Members, Structure Initialization, Arrays of Structure, Nested Structures, Unions.

Unit-4 POINTERS

Pointers: Introduction To Pointers, Address Operator And Pointers, Declaring and Initializing Pointers, Assignment through Pointers, Pointers and Arrays.

Files: Introduction, Creating a Data File, Opening and Closing a Data File, Processing a Data File.

Unit-5 USING CLASSES IN C++

Principles of Object-Oriented Programming, Defining & Using Classes, Class Constructors, Constructor Overloading, Function overloading in classes, Class Variables &Functions, Objects as parameters, Specifying the Protected and Private Access, Copy Constructors, Overview of Template classes and their use. Introduction to Inheritance and Polymorphism.

Unit-6 RECENT ADVANCES IN PROGRAMMING LANGUAGE IN C AND PYTHON 04 hours

Research article/ Review paper/ MOOC.

10 hours

10 hours

10 hours

10 hours

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOTECHNOLOGY				
Course Code	BSDB2010				
Prerequisite	Higher Secondary Examination with Chemistry	and	Bio	ology	or
	Chemistry, Botany and Zoology or Biochemistry	and	l Ch	emis	try
	from a recognized Board in science stream with a	min	imu	m of	50
	% marks in aggregate.				
Corequisite	Students should have understanding of general biology, including				
	a basic knowledge of the biological molecules, the cell, genetics,				
	regulation, structure/function, interaction with the environment,				
	and evolution.				
Antirequisite					
		L	Τ	Р	С
		4	0	0	4

Course Objectives: The objective of the course is to familiarize the students with the basic concepts in biotechnology; to acquaint the students to versatile tools and techniques employed in genetic engineering and recombinant DNA technology; and to appraise them about applications genetic engineering.

Course Outcomes

CO1	Brief account of plant tissue culture and advantages of somatic hybridization
CO2	Interpret the basic techniques of cell culture
CO3	Demonstrate the different methods of DNA sequencing
CO4	Describe the type and process of genetic exchange
CO5	Evaluate the various categories of transposable element
CO6	Evaluate the applications of advancement of biotechnology

Text Book (s)

- Principles of Gene Manipulations 1994 by Old and Primrose Blackwell Scientific Publications.
- DNA Cloning: A Practical Approach by D.M. Glower and B.D. Hames, IRL Press, Oxford. 1995.
- Molecular Biotechnology 2nd Edition by S.B. Primrose. Blackwell Scientific Publishers, Oxford. 1994.
- Genetic Engineering and Introduction to Gene Analysis and Exploitation in Eukaryotes by S.M. Kingsman and A.J. Kingsman, Blackwell Scientific Publications, Oxford 1998.
- PCR Technology Principles and Applications for DNA Amplification by Henry A. Erlich (Ed.) Stockton Press. 1989.

Reference Book (s)

- Biotechnology: A Guide to Genetic Engineering by Peters.
- Genetic Engineering 2000 by Nicholl.
- Recombinant DNA and Biotechnology: Guide for Teachers. 2nd Edition by Helen Kreuz. 2001. ASM Publications.
- Molecular Biotechnology: Principles and Applications of Recombinant DNA. 2 nd Edition. 1998 by Bernard R. Glick and Jack J. Pastemak, ASM Publications.

Unit-1 INTRODUCTION TO PLANT BIOTECHNOLOGY

08 hours

Basic introduction to animal and plant biotechnology; types of plant tissue culture, Somatic hybridization

rol the vario

Unit-2 INTRODUCTION TO ANIMAL BIOTECHNOLOGY

Animal Biotechnology - organ culture; cell culture and initiation of cell culture; evolution of continuous cell lines.

Unit-3 CONSTRUCTION OF DNA LIBRARIES

Isolation and purification of nucleic acid (genomic/plasmid DNA and RNA), Quantification and storage of nucleic acids, Construction of cDNA library, Construction of Genomic library, Screening and preservation of DNA libraries, DNA Sequencing and cloning strategies.

Unit-4 GENE TRANSFER TECHNIQUES

Gene transfer techniques: biological methods; chemical methods; physical or mechanical methods.

Unit-5 TRANSGENICS

Plant Genetic Engineering: Restriction enzymes; Transformation of plant cells; different type of vectors including viral vectors and their benefits; Screening and selection of transformants, PCR and hybridization methods; Application of transgenic science in plant and animal improvement.

Unit-6 RECENT ADVANCES IN BIOTECHNOLOGY

Research article/ Review paper/ MOOC.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	SYSTEM PHYSIOLOGY					
Course Code	BSBS2007					
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.					
Corequisite	Students should have understanding of general bid a basic knowledge of the biological molecules, th regulation, structure/function, interaction with th and evolution.	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution				
Antirequisite						
		L	Τ	Р	С	
		4	0	0	4	

Course Objectives:

• The major aims of this course are to provide students with a basic understanding of the fundamental processes and mechanisms that serve and control the various functions of the body.

10 hours

10 hours

04 hours

08 hours

- It should be noted that, although introductory, this course in System Physiology is comprehensive in scope. Areas treated in detail include both relatively simple cellular mechanisms as well as more complex interactions between whole organ systems.
- The major areas of study include excitable tissues, muscle, blood, the cardiovascular system and neurophysiology.
- To learn to properly and safely use animals and modern laboratory equipment to conduct research.

Course Outcomes

CO1	Understand the cellular movement and transportation of nutrients
CO2	Explain the gaseous exchange and generation and utilization of energy
CO3	Demonstrate the regulatory physiology in plants and animals
CO4	Explain the sensory physiology in plant and animals
CO5	Understand the role of plant hormones and their effect
CO6	Evaluate the applications of advancement of system physiology

Text Book (s)

- Knut Schmidt-Nielsen, Animal Physiology, Cambridge University Press.
- David Randall, Eckert's Animal Physiology, W.H. Freeman and Co.
- Philips Withers; Comparative Animal Physiology. Books Cole Publishers

Reference Book (s)

- Reddy, P. (2015). Dr.P.B. Reddy's Text Book of Animal Physiology. 10.13140/RG.2.1.4807.9441.
- P.S. Verma, V.K. Agarwal and B.S. Tyagi (2000). Anima Physiology by S. Chand Publication, India.

Unit-1 MOVEMENTS AND BULK TRANSPORT

12 hours

Cellular movements, ciliary and flagellar structure and function; Introduction to musculo skeletal system; Terrestrial, aquatic and aerial locomotion; Locomotory cost; Long distance transport of water and nutrients in plants (xylem and phloem transport); General plan and physiology of circulatory system in vertebrates and invertebrates.

Unit-2 GAS EXCHANGE IN ORGANISM; GENERATION AND UTILIZATION OF ENERGY 15 hours

Exchange in unicellular organisms and plants; Respiratory organs in aquatic and terrestrial systems; Physiology of aquatic breathing and aerial breathing; Feeding patterns, digestive tract systems; Digestion of food.

Unit-3 REGULATORY PHYSIOLOGY

Mechanism of opening and closing of stomata. Regulation of water and solutes in aquatic and terrestrial animals; Osmoregulatory organs. Transpiration in plants; Excretion of nitrogenous wastes in animals; Patterns of Thermoregulation: Ectotherms and Endotherms; Structural and functional adaptation to stress.

Unit-4 SENSORY PHYSIOLOGY

10 hours

15 hours

An overview of neuronal structure and function; Sensory physiology -mechano, chemo, thermo, photo and electro receptors.

Unit-5 INTEGRATIVE PHYSIOLOGY

08 hours

Endocrine systems in animals and their physiological effects; Plant hormones and their physiological effects; Regulation of metabolism and response to environmental cues.

Unit-6 RECENT ADVANCES IN SYSTEM PHYSIOLOGY

04 hours

Research article/ Review paper/ MOOC.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	PROTEIN AND ENZYMES				
Course Code	BSBS2008				
Prerequisite	Higher Secondary Examination with Chemistry	and	l Bio	ology	or
	Chemistry, Botany and Zoology or Biochemistry	and	l Ch	iemis	try
	from a recognized Board in science stream with a	ı mir	nimu	ım of	50
	% marks in aggregate.				
Corequisite	Students should have understanding of general biology, including				
	a basic knowledge of the biological molecules, the cell, genetics, regulation structure/function interaction with the environment				
	and evolution.				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

The students should be able to demonstrate advanced knowledge and understanding in the following core areas-

- The principles of globular protein structure, as well as the techniques used for elucidation of structures and approaches to their prediction from sequence.
- Intermediates in enzyme.
- Identification/quantitation of polypeptide similarity. Identification of polypeptide families & superfamilies. Large scale sequencing projects, data analysis including comparative analysis.
- Protein synthesis mechanisms, especially with respect to ribosome structure-function and accuracy of translation, considered mainly in prokaryotes.

Course Outcomes

CO1	Understand about the biomolecules and its distributions
CO2	Explain the structure and function of proteins
CO3	Demonstrate the classification of characteristic of enzymes
CO4	Explain the isolation of enzymes
CO5	Understand the role of metal in life
CO6	Evaluate the applications of advancement of protein and enzymes

Text Book (s)

- Nelson, D. L. and Cox, M.M. (2008). Lehninger, Principles of Biochemistry, 5th Edition, W.H. Freeman and Company, N.Y., USA.
- Voet, D. and Voet, J.G. (2004). Biochemistry, 3rd Edition, John Wiley & Sons, Inc. USA.

Reference Book (s)

- Berg, J. M., Tymoczko, J. L. and Stryer, L. Biochemistry. Freeman, 7th edition, 2011.
- Mathews, C. K. & Van Holde, K. E. & Ahern, K. G. Biochemistry. Addison Wesley, 4th edition, 2012.
- Wilson, K. & Walker, J. Principles and Techniques of Biochemistry and Molecular Biology. CUP, 7th edition.

Unit-1 BIOMOLECULES: DIVERSITY AND DISTRIBUTION

Lipids: Role of lipids in cellular architecture and functions. Definition and classification of lipids. Structure and function of fatty acids, triacylglycerols, phospholipids and sterols. Carbohydrates: Biological roles of carbohydrates. Structure of monosacharides- Hexoses and pentoses. Disacharides-Sucrose, lactose, maltose. Storage and structural polysacharides-Glycogen, starch and cellulose. Nucleic acids: Role of nucleic acids in living system. Composition of nucleic acids-the purine and pyrimidine bases.

Unit-2 PROTEINS

Classification of proteins on the basis of composition, conformation and function-functional diversity of proteins. The amino acid building blocks-classification, structure and physical properties of the standard amino acids. Proteinaceous and non-proteinaceous, essential and non-essential amino acids. Primary, secondary, tertiary and qua ternary structure of proteins. Structure of myoglobin and hemoglobin. Molecular physiology of myoglobin and hemoglobin, Bohr effect, Hill's coefficient. Concerted and sequential models for allosteric proteins.

Unit-3 ENZYMES

Enzymes as biological catalysts. Enzyme classification and nomenclature. Chemical nature of enzymes, ribozymes. Concept of active site, specificity. Coenzymes, cofactors and prosthetic groups. Kinetics of enzyme catalyzed reactions – Michaelis Menten equation. Determination of Km and Vmax. Factors influencing the rate of enzyme catalyzed reactions. Enzyme inhibitions-competitive, non-competitive and uncompetitive inhibitions. Catalytic

mechanism of lysozyme or chymotrypsin. Regulation of enzyme activity allosteric enzymes, feedback inhibition with ATcase as an example.

Unit-4 ISOLATION AND PURIFICATION OF ENZYMES

Methods of enzyme isolation and purification. Introduction to enzyme immobilization.

Unit-5 ROLE OF METAL IONS IN BIOLOGY

Metalloprotein, Metalloenzymes, metal base drug interaction and inhibition; metallo porphyrins, Redox. Carriers in mitochondrial electron transport chain.

Unit-6 RECENT ADVANCES IN PROTEIN AND ENZYMES

Research article/ Review paper/ MOOC.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

10 hours

04 hours

15 hours

15 hours

15 hours

Name of The Course	BIOLOGICAL SCIENCE- LAB-V				
Course Code	BSBS2017				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Τ	Р	С
		0	0	6	3

Course Objectives:

- This will enable the students to understand all the subjects of biological sciences as these tools and techniques will be used therein.
- Also acquire the basic knowledge of the developmental biology and immunological techniques to be applied in the laboratory.

Course Outcomes

CO1	Demonstrate the knowledge of laboratory practices in developmental biology
CO2	Demonstrate the knowledge of laboratory practices in molecular biology and
	immunology.
CO3	Demonstrate the advanced techniques in the biological science lab V

Text Book (s)

- Aneja KR. Experiments in Microbiology, Plant pathology and Biotechnology. 4th Edition, New Age International Publishers, Chennai. 2005.
- Horold J Benson. Microbiological Applications. Laboratory Manual in General Microbiology. 7th International Edition, WCB McGraw Hill, Boston. 1998.
- James G Cappuccino & Natalie Sherman Microbiology: A Laboratory manual. 6th Edition, Published by Pearson Education. 2004.
- Dubey RC and Maheswari DK. Practical Microbiology 1st Edition, S. Chand & Company Ltd., New Delhi. 2004

Reference Book (s)

- James G Cappuccino & Natalie Sherman Microbiology: A Laboratory manual. 6th Edition, Published by Pearson Education. 2004 .
- Dubey RC and Maheswari DK. Practical Microbiology 1st Edition, S. Chand & Company Ltd., New Delhi. 2004

S.N.	Name of Practicals
1.	Study of whole mounts of frog and chick- early developmental stages
2.	Study of chick development from live eggs (window viewing)
3.	Study of section of chick embryo through selective developmental stages
4.	Videos showing selective embryonic events like cleavage; gastrulation.
5.	To perform ELISA experiment.

6.	Grouping of blood and Rh typing.
7.	To perform Agglutination inhibition Assay.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50		50	100

Name of The Course	PROGRAMMING LANGUAGES IN C AND PYTH	ON			
Course Code	BCSE1031				
Prerequisite	Higher Secondary Examination with Chemistry a Chemistry, Botany and Zoology or Biochemistry and a recognized Board in science stream with a minimum in aggregate.	and Che n of :	Bio mist 50 %	logy Try fro 6 mai	or om rks
Corequisite	Students should have understanding and a basic k computing	now	ledg	e of 1	the
Antirequisite					
		L	Т	Р	С
		0	0	6	3

Course Objective:

Students are able to understand the basic data structures used in programming (such as arrays and array lists).

Text / References Books:

- 9. E Balaguruswamy, "Object Oriented Programming with C++", Tata McGraw-Hill Education, 2008.
- 10. Paul Deitel, Harvey Deitel, "C++ How to Program", 8th Edition, Prentice Hall, 2011.
- 11. John R. Hubbard, "Programming with C++", Schaum's Series, 2nd Edition, 2000.
- 12. Harry, H. Chaudhary, "Head First C++ Programming: The Definitive Beginner's Guide", First Create space Inc, O-D Publishing, LLC USA.

19. Write a program to find greatest of three numbers.				
20. Write a program to find gross salary of a person				
21. Write a program to find grade of a student given his marks.				
22. Write a program to find divisor or factorial of a given number.				
23. Write a program to print first ten natural numbers.				
24. Write a program to print first ten even and odd numbers.				
25. Write a program to find grade of a list of students given their marks.				
26. Create Matrix class. Write a menu-driven program to perform following Matrix operations (2-D array implementation):				
a) Sum b) Difference c) Product d) Transpose				

Continuous Assessment Pattern							
Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks				
50		50	100				

Name of The Course	Research Methodology and Statistics				
Course Code	BBS09T2411				
Prerequisite	Students should qualify 10+2 or equivalent exami Science stream	inati	on iı	1	
Corequisite	Students should have fundamental knowledge of mathematics, physics and chemistry	subj	ects	like	
Antirequisite	-				
		L	Τ	Р	С
		2	-	-	2

Course Objective: The objective of the course is to impart research based knowledge to the students. They would be taught the various ways of data collection, research methodologies adopted in different settings, and statistical methods.

Course Outcome:

CO1	Students will get separately familiar with terms research and methodology,
	respectively.
CO2	Identifying different type of research sampling and research design.
CO2	Students will understand raw data, primary data, secondary data and their
	different methods of collection.
CO4	Students will appraise the application of sampling through statistics.
CO5	Students will get familiar with different descriptors of statistics to analyse data
	both quantitatively and qualitatively.
CO6	Students will develop the statistical analysis indulges in modern research for
	drug designing.

Course Contents:

Module I: Introduction to Research Methodology	6-
Lectures	
Definition, concept and research in science; Introduction to Research Methodology,	Research
methodology in science.	
Module II: Research in Scientific and Social Settings	5-
Lectures	
Research Design: Research Sampling, rationale for using a particular sampling procedure	è,
Probability.	
Module III: Tools of Data Collection	5-
Lectures	
Data and its types, Methods for Collecting Data, Observation method, Questionnaire, Othe	r Methods

Module IV: Introduction to Statistics

Lectures

Introduction to statistics (Biostatistics); Sample and Population, parametric and non parametric statistics.

Module V: Descriptive Statistics

Lectures

Measures of central tendency; Measures of dispersion and deviation; graphical representation of the data. Correlation and Regression

Unit 6: Recent research advances

3 hrs

Descriptors, Quantitative structure-activity relationship (QSAR) , Quantitative structure-property relationship(QSPR), Drug designing.

Text & References:

- Broota, K. D., Experimental designs in psychological research, Wiley eastern, New York, 1992.
- Guilford, Statistics in Psychology and Education, McGraw Hill, New York, 1986.
- J T Walker, Statistics in Criminology and Criminal Justice analysis and Interpretation
- Leo, A., & Hoekman, D. H. (1995). Exploring QSAR. American Chemical Society.
- Chanin Nantasenamat, Chartchalerm Isarankura-Na-Ayudhya, Thanakorn Naenna, Virapong Prachayasittikul, A Practical Overview of Quantitative Structure- Activity Relationship. EXCLI Journal 2009;8:74-88.
- Wiktor Pronobis, Alexandre Tkatchenko, and Klaus-Robert Muller, J. Chem. Theory Comput. 2018, 14, 2991–3003

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Continuous Assessment Pattern

SEMESTER-V

Name of The Course	MINOR PROJECT				
Course Code	BSBS3001				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general bid a basic knowledge of the biological molecules, the regulation, structure/function, interaction with the and evolution.	olog ne co ne ei	y, ir ell, g nvir	nclud genet onme	ing ics, ent,
Antirequisite					
		L	Т	Р	С
		0	0	0	3

4-

5-

COURSE CONTENTS:

Minor Project is considered as a special course involving application of knowledge in solving / analyzing /exploring a real life situation / difficult problem. The duration of Minor project is 1 month (4-6 weeks). A Minor Project may be given in lieu of a discipline specific elective paper/Biological Science. This should be done in consultation with the faculty supervisor and agency supervisor under whom he / she is getting trained. The project report should be around 20 pages and chaptered as follows:

Chapter I: Introduction Chapter II: Review of Literature Chapter -3: Methodology Chapter IV: Results&Discussion Chapter V: Summary and Conclusion

The research should be original and should be action oriented in that the results should be able to throw light on some of the important unexplored areas that would be of practical use to the microbiologists.

Students are expected to decide on the specific project area and title, and carry out substantial portion of the literature survey during the end of their 4th semester. After the end of their 4thsemester ETEs, each student will be asked to make presentation about the project including literature available, objective sought and work plan including methodologiesto the Student Project Monitoring Committee constituted by the HOD.

The Project Work may be a work based on theoretical analysis, modeling& simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, etc. or a combination of these. The final project report will be evaluated by a panel of examiners consisting of HOD, Guide and Co-guide (wherever applicable) and an External Examiner. Viva-voce examination for the same will be conducted.

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50		50	100

Continuous Assessment Pattern

Name of The Course	INHERITANCE BIOLOGY						
Course Code	BSDB3003						
Prerequisite	Higher Secondary Examination with Chemistry and Biology or						
	Chemistry, Botany and Zoology or Biochemistry	and	d Ch	nemis	stry		
	from a recognized Board in science stream with a	miı	nimu	ım of	č 50		
	% marks in aggregate.						
Corequisite	Students should have understanding of general bio	olog	gy, ir	nclud	ing		
	a basic knowledge of the biological molecules, th	ne co	ell, g	genet	ics,		
	regulation. structure/function. interaction with th	ne e	nvir	onm	ent.		
	and evolution.			-	,		
Antirequisite							
		L	Т	Р	С		
		4	0	0	4		

Course Objectives: Students are able to understand the basic concept of inheritance and genetics. Course Outcomes

CO1	Understand Introduction of genetics and Mendelian principles
CO2	Interpret extensions of Mendelian principles
CO3	Demonstrate Extra chromosomal inheritance
CO4	Illustrate the Microbial genetics
CO5	Illustrate the Mutation
CO6	Evaluate the applications of advancement of inheritance biology

Text Book (s)

- Snustad, D.P. and Simmons, M.J. (2009). Principles of Genetics. V Edition, John Wiley and Sons Inc.
- Gardner, E.J., Simmons, M.J., Snustad, D.P. (2008). Principles of Genetics. VIII Edition. Wiley India.
- Benjamin A. Pierce. 2003. Genetics: A Conceptual Approach. W.H, Freeman and Company, New York.

Reference Book (s)

- Klug, W.S., Cummings, M.R., Spencer, C.A. (2012). Concepts of Genetics. X Edition. Benjamin Cummings.
- Russell, P. J. (2009). Genetics- A Molecular Approach. III Edition. Benjamin Cummings.
- Griffiths, A.J.F., Wessler, S.R., Lewontin, R.C. and Carroll, S.B. Introduction to Genetic Analysis. IX Edition. W. H. Freeman and Co.

Unit-1 INTRODUCTION OF GENETICS AND MENDELIAN PRINCIPLES 08 hours

Concept of gene: Allele, multiple alleles, pseudoallele, complementation tests, genotype, phenotype. Mendelian principles; Dominance, segregation, independent assortment.

Unit-2 EXTENSIONS OF MENDELIAN PRINCIPLES

Codominance, incomplete dominance, gene interactions, pleiotropy, genomic imprinting, penetrance and expressivity, phenocopy, linkage and crossing over, sex linkage, sex limited and sex influenced characters.

Unit-3 EXTRA CHROMOSOMAL INHERITANCE

Inheritance of Mitochondrial and chloroplast genes, maternal inheritance. Quantitative genetics: Polygenic inheritance, heritability and its measurements, QTL mapping.

Unit-4 MICROBIAL GENETICS

Methods of genetic transfers – transformation, conjugation, transduction and sex-duction, mapping genes by interrupted mating, fine structure analysis of genes.

Unit-5 MUTATION

Types, causes and detection, mutant types – lethal, conditional, biochemical, loss of function, gain of function, germinal verses somatic mutants, insertional mutagenesis. Structural and numerical alterations of chromosomes: Deletion, duplication, inversion, translocation, ploidy and their genetic implications. Recombination: Homologous and non-homologous recombination.

Unit-6 RECENT ADVANCES IN INHERITANCE BIOLOGY

Research article/ Review paper/ MOOC.

04 hours

10 hours

08 hours

08 hours

Continuous Assessment Pa	ttern		
Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	GROWTH AND REPRODUCTION							
Course Code	BSBS3004							
Prerequisite	Higher Secondary Examination with Chemistry and Biology or							
-	Chemistry, Botany and Zoology or Biochemistry	y an	d C	hemi	stry			
	from a recognized Board in science stream with a	a mi	nim	um o	of 50			
	% marks in aggregate.							
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.							
Antirequisite								
		L	Т	Р	С			
		0	0	0	4			

Course Objectives: Students are able to understand the basic concept of animal and plant growth and reproduction.

Course Outcomes

CO1	Understand the growth pattern of plant and animals
CO2	Interpret growth kinetics and kinematics of plant
CO3	Explain Pre Fertilization Changes
CO4	Illustrate the post fertilization events
CO5	Explain cell differentiation
CO6	Evaluate the applications of advancement of growth and reproduction

Text Book (s)

1. Gilbert S: Developmental Biology 9th Ed.

2. Carlson B.M. Patterns; Foundations of Embryology.

Reference Book (s)

1. Gilbert S: Developmental Biology 9th Ed.

2. Carlson B.M. Patterns; Foundations of Embryology.

Unit-1 INTRODUCTION

General growth patterns in animals and plants: the plant cell as a model of growing system; biophysical basis of plant cell growth; the role of cell wall in cell growth; extension growth of multicellular organs in plants. Juvenile, vegetative and reproductive phases in growth:

Unit-2 PLANT GROWTH AND AGEING

Primary meristem: concept of stem cell; shoot apical meristem- dynamics of shoot apical meristem; homeobox genes and meristem identity; root apical meristem as an organized structure; Post - embryonic meristems in plants with special reference to Arabidopsis embryogenesis. Analysis of plant growth: kinetics and kinematics. Senescence, ageing, abscission and programmed cell death: a general account, with special reference to hyperplasia and hypertrophy in animals and tumours in plants.

Unit-3 PRE FERTILIZATION CHANGES

10 hours

10 hours

Alternation of generations and reproductive patterns in animals and plants; Asexual and sexual reproduction- an overview (regeneration, archegonium, heterospory, siphonogamy, apogamy, apospory, apomixis etc.). Pre- fertilization events- gametogenesis- spermatogenesis and oogenesis, types of eggs in animals; relative sexuality in plants and heterothallism in fungi.

Unit-4 POST FERTILIZATION CHANGES AND EARLY DEVELOPMENT 15 hours

Post Fertilization Events; Types of Cleavages; Blastula; Fate Maps, Morphogenetic movements during gastrulation; Gastrulation in frog and chick and humans; Fate of Germ layers; Neural tube formation, brief account on embryonic induction, Extra Embryonic membranes in chick and mammal, Placenta: Functions and types.

Unit-5 DIFFERENTIATION

05 hours

Organogenesis: Formation of CNS, Organogenesis of secondary girth.

Unit-6 RECENT ADVANCES IN GROWTH AND REPRODUCTION 04 hours

Research article/ Review paper/ MOOC.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	EVOLUTIONARY BIOLOGY					
Course Code	BSDB3005					
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.					
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.					
Antirequisite						
		L	Т	Р	С	
		4	0	0	4	

Course Objectives:

- To define genotype, allele, phenotype, biological (Darwinian) fitness.
- To define and explain the connections between mutations, variation, genotype, phenotype, environment, survival, reproduction, allele frequencies, individuals, population and fitness.
- To explain why selection works on individuals, but evolution works on populations. To explain what it means if two different genotypes differ in relative fitness.
- To explain how natural selection results in altered allele frequencies in subsequent generations.

Course Outcomes

CO1	Understand introduction genotype, allele, phenotype, biological (Darwinian)
	fitness.

Interpret the connections between mutations, variation, genotype, phenotype, environment, survival, reproduction, allele frequencies, individuals, population
and inness
Demonstrate selection works on individuals, but evolution works on populations.
Illustrate the role of genotypes in relative fitness.
Illustrate the role of natural selection in determining the allele frequencies in
subsequent generations.
Evaluate the applications of advancement in evolutionary biology

Text Book (s)

- Ridley, M. (2004) Evolution. III Edition. Blackwell Publishing
- Barton, N. H., Briggs, D.E.G., Eisen, J. A., Goldstein, D. B. and Patel, N. H. (2007). Evolution. Cold Spring
- Pevsner, J. (2009) Bioinformatics and functional genomics. II Edition. Wiley-Blackwell •
- Rastogi, V.B. organic evolution. •

Reference Book (s)

- Barton, N. H., Briggs, D.E.G., Eisen, J. A., Goldstein, D. B. and Patel, N. H. (2007). Evolution. Cold Spring
- Harbour Laboratory Press. •

Unit-1 THEORIES OF ORGANIC EVOLUTION

Lamarckism, Darwinism, Development and concept of synthetic theory, Natural selection in action (industrial melanism, antibiotic and DDT resistance), type of natural selection; Stabilizing selection, Directional selection, Diversifying selection, cyclic selection, k selection and r selection, selection pressure.

Unit-2 EVIDENCE OF ORGANIC EVOLUTION

Evidence of Organic evolution from morphology and comparative anatomy (tectology); Homology and homologous organs, types of homology; phylogenetic homology, sexual homology, serial homology. Analogy and analogous organs, Divergent evolution, Convergent evolution, vestigial organs, Evidence of evolution from Comparative embryology, recapitulation theory, Evidence from Palaeontology, Evidence from Biochemistry and physiology, Evidence from Zoogeography.

Unit-3 POPULATION GENETICS AND GENETIC DRIFT

Concept of Deme, gene pool, gene frequency, genotype frequency, genetic equilibrium and Hardy weinbergs law of equilibrium, genetic load and genetic death, mutational and segregation load, silent feature of Genetic drift, Sewall wright effect, Bottle neck phenomenon, founder effect, concept of polymorphism, balanced polymorphism, transient polymorphism.

Unit-4 PRODUCTS OF EVOLUTIONARY CHANGE

Species concept, speciation, phyletic speciation, quantum speciation, gradual speciation, allopatric speciation, sympatric speciation, parapatric speciation, Isolating mechanisms and modes of speciation. Adaptation and evolution: Structural adaptation, coadaptation, radaptation, k adaptation, Divergent evolution (adaptive radiation) adaptive radiation in finches, parallel evolution (convergent evolution).

Unit-5 GEOLOGICAL TIME SCALE

08 hours

10 hours

10 hours

10 hours

The Eras, Azoic era, archeozoic era, Proterozoic area, 493alaeozoic era, Mesozoic era, Cenozoic era, Different periods and its characteristics, Ordovician period, Silurian period, Devonian period, Dinasaurs and its type distribution and extinction.

Unit-6 RECENT ADVANCES IN EVOLUTIONARY BIOLOGY

04 hours

Research article/ Review paper/ MOOC.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

SEMESTER-VI

Name of The Course	DISSERTATION				
Course Code	BSBS9997				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	Р	С
		0	0	0	12

Course Objectives: To gainknowledge and understanding of research problems and related principles to manage projects in multidisciplinary research areas.

Course Outcome

CO1	Demonstrate the use of knowledge of basic and applied sciences in project based learning.
CO2	Organizes experiments and researches, perform analysis and interpret data for the designed project.
CO3	Cooperate effectively as an individual and as a member in the research team.
CO4	Systematize the articulated ideas, comprehend and write effective reports, documentation and to communicate effectively.
CO5	Demonstrate knowledge and understanding of research problems and related principles to manage projects in multidisciplinary research areas.
CO6	Study the applications of advancement in the field of biological science

COURSE CONTENTS:

Project work/Dissertation is considered as a special course involving application of knowledge in solving / analyzing /exploring a real life situation / difficult problem. The duration of the Project work/Dissertation is 6 months. A Project/Dissertation work may be given in lieu of a discipline specific elective

paper/Biological Science. This should be done in consultation with the faculty supervisor and agency supervisor under whom he / she is getting trained. The project report should be around 100 pages and chaptered as follows:

> **Chapter I: Introduction Chapter II: Review of Literature Chapter -3: Methodology Chapter IV: Data Analysis and Results Chapter V: Discussion of Results Chapter VI: Summary and Conclusion**

The research should be original and should be action oriented in that the results should be able to throw light on some of the important unexplored areas that would be of practical use to the forensic experts.

Students are expected to decide on the specific project area and title, and carry out substantial portion of the literature survey during the end of their 5thsemester.After the end of their 5thsemester ETEs, each student will be asked to make presentation about the project including literature available, objective sought and work plan including methodologiesto the Student Project Monitoring Committee constituted by the HOD. The Project Work may be a work based on theoretical analysis, modeling& simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, etc. or a combination of these. The final project report will be evaluated by a panel of examiners consisting of HOD. Guide and Co-guide (wherever applicable) and an External Examiner. Viva-voce examination for the same will be conducted.

Reference Book (s)	Reference Book (s)
Zeroth Review	Project scopes and Proposal
Review I	Methods of project Implementation
Review II	Technical Achievement
Review -3:	Innovation and contribution
Final Evaluation	Overall achievement
(External evaluation)	Project Report Evaluation

The following weightage is assigned at each stage of Student Project evaluation. -

Continuous Assessment Pattern

- -

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50		50	100

Name of The Course	Web based course/seminar-II		
Course Code	BSDB3010		
Prerequisite Candidate for admission to the first year of B.Sc. Degree Co			
_	in Biochemistry should passed the Higher Secondary		
	Examination with Chemistry and Biology or Chemistry, Bota		
	and Zoology with a minimum of 50 % marks in aggregate.		
Corequisite	Students should have understanding of general biology.		
Antirequisite			
	L T P C		

0 0 0 2

Course Objectives:

- **Students are** directly engage and learn particular subject of their interest. This strengthens the fundamentals of the student in the course.
- It gives the students the opportunities to explore new areas of interest. Also gives students the opportunity to learn in greater depth the subjects they wish to master.
- Promotes the self-learning initiative of the students where their own motivation is what drives them to complete the course. This fosters the habit of keeping oneself updated always by means of self-study.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	ETE	Total Marks
50		50	100

ELECTIVES GROUP-I

Name of The Course	BIOINFORMATICS				
Course Code	BSDB2011				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the computer science.				
Antirequisite					
L T P C					С
					4

Course Objectives: Students are able to understand the basic concept of bioinformatics. Course Outcomes

CO1	Describe the Introduction of Computer Fundamentals
CO2	It Interpret the Introduction of Bioinformatics and Biological Databases
CO3	Demonstrate Sequence Alignments, Phylogeny and Phylogenetic trees
CO4	Evaluate Genome organization and analysis
CO5	Evaluate Protein Structure Predictions
CO6	Evaluate the applications of advancement of bioinformatics

Text Book (s)

- Saxena Sanjay (2003) A First Course in Computers, Vikas Publishing House
- Pradeep and Sinha Preeti (2007) Foundations of Computing, 4th ed., BPB Publications
- Lesk M.A. (2008) Introduction to Bioinformatics . Oxford Publication, 3rd International Student Edition
- Rastogi S.C., Mendiratta N. and Rastogi P. (2007) Bioinformatics: methods and applications, genomics, proteomics and drug discovery, 2nd ed. Prentice Hall India Publication
- Primrose and Twyman (2003) Principles of Genome Analysis & Genomics. Blackwell

Reference Book (s)

- Saxena Sanjay (2003) A First Course in Computers, Vikas Publishing House
- Pradeep and Sinha Preeti (2007) Foundations of Computing, 4th ed., BPB Publications
- Lesk M.A. (2008) Introduction to Bioinformatics . Oxford Publication, 3rd International Student Edition
- Rastogi S.C., Mendiratta N. and Rastogi P. (2007) Bioinformatics: methods and applications, genomics, proteomics and drug discovery, 2nd ed. Prentice Hall India Publication
- Primrose and Twyman (2003) Principles of Genome Analysis & Genomics. Blackwell

Unit-1 INTRODUCTION TO COMPUTER FUNDAMENTALS

RDBMS - Definition of relational database, Mode of data transfer (FTP, SFTP, SCP), advantage of encrypted data transfer.

Unit-2 INTRODUCTION TO BIOINFORMATICS AND BIOLOGICAL DATABASES 10 hours

Biological databases - nucleic acid, genome, protein sequence and structure, gene expression databases, Database of metabolic pathways, Mode of data storage - File formats - FASTA, Genbank and Uniprot, Data submission & retrieval from NCBI, EMBL, DDBJ, Uniprot, PDB.

Unit-3 SEQUENCE ALIGNMENTS, PHYLOGENY AND PHYLOGENETIC TREES 09 hours

Local and Global Sequence alignment, pairwise and multiple sequence alignment. Scoring an alignment, scoring matrices, PAM & BLOSUM series of matrices. Types of phylogenetic trees, Different approaches of phylogenetic tree construction -UPGMA, Neighbour joining, Maximum Parsomony, Maximum likelihood.

Unit-4 GENOME ORGANIZATION AND ANALYSIS

08 hours

12 hours

Diversity of Genomes: Viral, prokaryotic & eukaryotic genomes; Genome, transcriptome, proteome, 2-D gel electrophoresis, Maldi Toff spectroscopy; Major features of completed genomes: *E.coli, S.cerevisiae, Arabidopsis*, Human.

Unit-5 PROTEIN STRUCTURE PREDICTIONS

08 hours

Hierarchy of protein structure - primary, secondary and tertiary structures, modelling; Structural Classes, Motifs, Folds and Domains; Protein structure prediction in presence and absence of structure template; Energy minimizations and evaluation by Ramachandran plot Protein structure and rational drug design.

Unit-6 RECENT ADVANCES IN BIOINFORMATICS

04 hours

Research article/ Review paper/ MOOC.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOSTATISTICS				
Course Code	BSDB2012				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite Students should have understanding of general biology, includir a basic knowledge of the statistics.				ing	
Antirequisite					
L T P C					
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of biostatistics. **Course Outcomes**

CO1	Understand Measures of central tendency, Correlation and Regression
CO2	Interpret Mean and Variance, namely Binomial, Poisson
CO3	Demonstrate parametric and non-parametric statistics.
CO4	Illustrate the Sampling Distributions, Standard Error, Testing of Hypothesis
CO5	Illustrate the Large Sample Test based and Small sample test
CO6	Evaluate the applications of advancement of biostatistics

Text Book (s)

Init_1

- 5. Edmondson and D. Druce: Advanced Biology Statistics, Oxford University Press; 1996.
- 6. W. Danial : Biostatistics: A foundation for Analysis in Health Sciences, John Wiley and Sons Inc; 2004

Reference Book (s)

- 1. Edmondson and D. Druce: Advanced Biology Statistics, Oxford University Press; 1996.
- 2. W. Danial : Biostatistics: A foundation for Analysis in Health Sciences, John Wiley and Sons Inc; 2004

Unit-1 12 hours
Measures of central tendency, Measures of dispersion; skewness, kurtosis; Elementary Probability and basic laws; Discrete and Continuous Random variable, Mathematical Expectation; Curve Fitting Correlation and Regression. Emphasis on examples from Biological Sciences.
Unit-2 10 hours
Mean and Variance of Discrete and Continuous Distributions namely Binomial, Poisson, Geometric Weibull, Logistic and Normal distribution. Fitting of Distributions.
Unit-3 09 hours
Statistical methods: Scope of statistics: utility and misuse. Principles of statistical analysis o biological data. Sampling parameters. Difference between sample and Population, Sampling Errors Censoring, difference between parametric and non-parametric statistics.
Unit-4 08 hours
Sampling Distributions, Standard Error, Testing of Hypothesis, Level of Significance and Degree of Freedom.

Unit-5

08 hours

Large Sample Test based on Normal Distribution, Small sample test based on t-test, Z- test and F test; Confidence Interval; Distribution-free test - Chi-square test. Basic introduction to Multivariate statistics, etc.

Unit-6 RECENT ADVANCES IN BIOSTATISTICS

04 hours

Research article/ Review paper/ MOOC.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOPHYSICS				
Course Code	BSDB2013				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general b a basic knowledge of the physics.	iolog	gy, ir	nclud	ing
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of biophysics.

Course Outcomes

CO1	Understand numerical models with non-linear algebraic equations, numerical
	integration.
CO2	Describe the principle and working of crystallography.
CO3	Interpret the applications of numerical methods in biological systems.
CO4	Demonstrate the use of quantum biology.
CO5	Understand the theoretical modeling of biomolecules.
CO6	Evaluate the applications of advancement of biophysics

Text Book (s)

- 11. A Textbook of Biophysics: For Medical Science and Biological Science Students by RN Roy
- 12. Introduction to Biophysics by Pranab Kumar Banerjee
- 13. An Introduction to Biophysics by David Burns
- 14. Fundamentals and Techniques of Biophysics and Molecular Biology by Pranav Kumar
- 15. Biological Physics: Energy, Information, Life by Philip Nelson

Reference Book (s)

- 11. A Textbook of Biophysics: For Medical Science and Biological Science Students by RN Roy
- 12. Introduction to Biophysics by Pranab Kumar Banerjee
- 13. An Introduction to Biophysics by David Burns
- 14. Fundamentals and Techniques of Biophysics and Molecular Biology by Pranav Kumar
- 15. Biological Physics: Energy, Information, Life by Philip Nelson
- 16.

Unit-1 NUMERICAL METHODS

Introduction to numerical methods, solutions to non-linear algebraic equations by the method of iteration and Newton aphson method, numerical integration by trapezoidal rule and simpson's rule, numerical solution of ordinary differential equations by picard's method of successive approximation, Euler's method and Runge-Kutta method.

Unit-2 ELEMENTARY CRYSTALLOGRAPHY

Introduction, symmetry in crystals, lattices and unit cells, crystal systems, Bravais lattices, elements of symmetry- rotation axis, mirror planes and center of inversion, point group symmetry- monoaxial point groups, polyaxial point groups, translational symmetry- screw axis and glide planes, space group, equivalent points, X-ray diffraction and Bragg equation.

Unit-3 MATHEMATICAL METHODS AND THEIR APPLICATIONS IN BIOLOGICAL SYSTEMS 09 hours

Ordinary differential equations of the first degree and first order (variable separable method, linear equation), linear differential equations of the second order with constant coefficients, the Laplace Transform, Inverse Laplace transform, application of Laplace transform to solutions of differential equations, Fourier series and their applications.

Unit-4 QUANTUM BIOLOGY AND ITS USES

08 hours

Classical mechanics, Newton, Lagrange and Hamilton's equations, Schrodinger's equation and its complete solution for S.H.O, central force and angular momentum.

Unit-5 THEORETICAL MODELING OF BIOMOLECULAR SYSTEMS 08 hours

Basic principles of modeling, modeling by energy minimization technique, concept of rotation about bonds, energy minimization by basic technique for small molecules, Ramachandran plot, torsional space minimization, energy minimization in cartesian space, molecular mechanicsbasic principle, molecular dynamics basic principles.

Unit-6 RECENT ADVANCES IN BIOPHYSICS

04 hours

Research article/ Review paper/ MOOC.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	ORGANIC FARMING
Course Code	BSDB2014
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry
	from a recognized Board in science stream with a minimum of 50 % marks in aggregate.
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.

12 hours

Reference Book (s)

7. Sathe, T.V. 2004 Vermiculture and Organic Farming. Daya publishers.

8. Kumaresan, V. 2005, Biotechnology, Saras Publications, New Delhi.

8. Subha Rao, N.S. 2000, Soil Microbiology, Oxford & IBH Publishers, New _Delhi.

7. Dubey, R.C., 2005 A Text book of Biotechnology S.Chand & Co, New Delhi.

9. Vayas, S.C, Vayas, S. and Modi, H.A. 1998 Bio-fertilizers and organic _Farming Akta Prakashan, Nadiad

9. John Jothi Prakash, E. 2004. Outlines of Plant Biotechnology. Emkay -Publication, New Delhi.

Green manuring and organic fertilizers, Recycling of biodegradable municipal, agricultural and Industrial wastes – biocompost making methods, types and method of vermicomposting – field Application.

Unit-2 ORGANIC PLANT NUTRIENT MANAGEMENT

Organic farming systems, soil tillage, land preparation and mulching, Choice of varieties. Propagation-seed, planting materials and seed treatments, water management Green manuring, composting- principles, stages, types and factors, composting methods, Vermi composting, Bulky organic manures, concentrated organic manures, organic preparations, organic amendments and sludges

Unit-3 ORGANIC PLANT PROTECTION

Plant protection- cultural, mechanical, botanical pesticides, control agents, Weed management, Standards for organic inputs- plant protection.

Unit-4 ORGANIC CROP PRODUCTION PRACTICES

Organic crop production methods- rice, coconut. Organic crop production methodsvegetables- okra, amaranthus, cucurbits. Livestock component in organic farming. Sustainable Agriculture-Apiculture, Mushroom cultivation.

Unit-5 ORGANIC CERTIFICATION

Farm economy: Basic concept of economics- demand & supply, economic viability of a farm. Basic production principles, reducing expenses, ways to increase returns, cost of production

Text Book (s)

Antirequisite				
	L	Τ	P	С
	4	0	0	4

Course Objectives: To provide a broad foundation in organic farming. Course Outcomes

Course	Outcomes
CO1	To understand the basic concept of organic farming.
CO2	To describe the concept of green manuring.
CO3	To identify the different methods of organic plant protection
CO4	To explain various types of organic crop production methods.
CO5	To understand the basic concept of farm economy.
CO6	Evaluate the applications of advancement of organic farming

Unit-1 INTRODUCTION TO ORGANIC FARMING

09 hours

08 hours

08 hour

10 hour

system. Benefit/ cost ratio, marketing, imports and exports. Policies and incentives of organic production. Farm inspection and certification. Terrace farming.

Unit-6 RECENT ADVANCES IN ORGANIC FARMING

04 hours

Research article/ Review paper/ MOOC.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

ame of The Course	BIOFERTILIZERS AND PESTICIDES		
Course Code	BSDB2015		
Prerequisite	Higher Secondary Examination with Chemistry and Biology or		
	from a recognized Board in science stream with a minimum of 50 % marks in aggregate.		
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.		
Antirequisite			
	L T P C		

Course Objectives: To provide a broad foundation to .

Course Outcomes

CO1	To understand the basic concept of biofertilizer.
CO2	To identify the role of azospirillium as biofertilizer.
CO3	To explain the process of nitrogen fixation.
CO4	To explain various types of mycorrhizal association.
CO5	To elucidate the basic concept of pest and pest management.
CO6	Evaluate the applications of advancement of biofertilizers and pesticides

Text Book (s)

1. Palaniappan SP & Anandurai K. 1999. Organic Farming–Theory and Practice. Scientific Publishers, Jodhpur

2. Joshi, M. 2014. New Vistas of Organic Farming 2nd Ed. Scientific Publishers, Jodhpur.

3. Farming system: Theory and Practice - S.A.Solaimalai

Reference Book (s)

- 5. Organic Farming: Theory and Practice- S.P.Palaniappan and K.A. Annadurai
- 6. A hand book of Organic Farming by A.K.Sharma

Unit-1 INTRODUCTION TO BIOFERTILIZERS

General account about the microbes used as biofertilizer – Rhizobium – isolation, identification, mass multiplication, carrier based inoculants, Actinorrhizal symbiosis.

Unit-2 AZOSPIRILLUM

10 hour

08 hour

Azospirillum: isolation and mass multiplication – carrier based inoculant, associative effect of different microorganisms. Azotobacter: classification, characteristics – crop response to Azotobacter inoculum, maintenance and mass multiplication

Unit-3 CYANOBACTERIA

Cyanobacteria (blue green algae), Azolla and Anabaena azollae association, nitrogen fixation, factors affecting growth, blue green algae and Azolla in rice cultivation.

Unit-4 MYCORRHIZAL ASSOCIATION

Mycorrhizal association, types of mycorrhizal association, taxonomy, occurrence and distribution, phosphorus nutrition, growth and yield – colonization of VAM – isolation and inoculum production of VAM, and its influence on growth and yield of crop plants.

Unit-5 PEST & PEST MANAGEMENT

Classification of pesticides on chemical nature and according to target species, mode of action, Methods of pest controls – Classification: Natural & applied control [Physical, mechanical, cultural, biological, genetic, regulatory, chemical controls] Integrated pest management.

Unit-6 RECENT ADVANCES IN BIOFERTILIZERS AND PESTICIDES 04 hours

Research article/ Review paper/ MOOC.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	NANOBIOTECHNOLOGY			
Course Code	BSDB3011			
Prerequisite	Higher Secondary Examination with Chemistry and Biology or			
	Chemistry, Botany and Zoology or Biochemistry and Chemistry			
	from a recognized Board in science stream with a minimum of 50			
	% marks in aggregate.			
Corequisite	Students should have understanding of general biology, including			
	a basic knowledge of the biological molecules, the cell, genetics,			
	regulation, structure/function, interaction with the environment,			
	and evolution.			
Antirequisite				
	L T P C			

GROUP-II

Course Objectives: Students are able to understand the basic concept of nanotechnology. Course Outcomes

CO1	Understand the fundamentals of nanotechnology
CO2	Demonstrate the physical and chemical methods of synthesis of nanomaterials
CO3	Demonstrate the biological methods of synthesis of nanomaterials
CO4	Generalize the use of nanomaterials in biotechnology
CO5	Illustrate the applications of nanobiotechnology
CO6	Evaluate the applications of advancement of nanotechnology

09 hours

10 hours

Text Book (s)

- 9. Nanobiotechnology: Concepts, Applications and Perspectives (2004), Christ of M.Niemeyer (Editor), Chad A. Mirkin (Editor), Wiley VCH.
- 10. Nanobiotechnology II more concepts and applications. (2007) Chad A Mirkin and Christof M. Niemeyer (Eds), Wiley VCH.
- 11. Pradeep T., "A Textbook of Nanoscience and Nanotechnology", Tata McGraw Hill Education Pvt. Ltd., 2012.
- 12. Hari Singh Nalwa, "Nanostructured Materials and Nanotechnology", Academic Press, 2002.

Reference Book (s)

- 9. Nanobiotechnology: Concepts, Applications and Perspectives (2004), Christ of M.Niemeyer (Editor), Chad A. Mirkin (Editor), Wiley VCH.
- 10. Nanobiotechnology II more concepts and applications. (2007) Chad A Mirkin and Christof M. Niemeyer (Eds), Wiley VCH.
- 11. Pradeep T., "A Textbook of Nanoscience and Nanotechnology", Tata McGraw Hill Education Pvt. Ltd., 2012.
- 12. Hari Singh Nalwa, "Nanostructured Materials and Nanotechnology", Academic Press, 2002.

Unit-1 INTRODUCTION TO NANOTECHNOLOGY

Historical perspectives, Existence of nanostructures in nature, Nanoscale Properties (Electrical, Optical, Chemical) Nanomaterials - Quantum Dots, Wells and Wires, nanotubes, graphene, nanogold, nanosilver and metal oxides, Nanopolymers.

Unit-2 SYNTHESIS OF NANOMATERIALS

Physical Methods: Ball Milling, Electrodeposition, DC/RF Magnetron Sputtering, Molecular Beam Epitaxy (MBE).Chemical Methods: Metal Nanocrystals by Reduction, Solvothermal Synthesis, Photochemical Synthesis, Chemical Vapor Deposition (CVD), Metal Oxide -Chemical Vapor Deposition (MOCVD).

Unit-3 BIOLOGICAL SYNTHESIS OF NANOMATERIALS

Synthesis using Microorganisms, Synthesis using Biological templates, synthesis using plants and plant extracts.

Unit-4 NANOMATERIAL IN BIOTECHNOLOGY

Biological nanomaterials and Biomimetic synthesis of nanomaterials – magnetosomes, spider milk, bone, shell. Device based on assemblies of nanoparticles and biomaterials – Bioelectronic devices, nanocircuitry, nanomechanical devices, computational devices.

Unit-5 APPLICATIONS OF NANOBIOTECHNOLOGY

Nanobiosensors, molecular imaging using nanoparticles, targeted drug delivery. Applications in health and disease - infectious and chronic. Nanobiotechnological applications in Environment and food - detection and mitigation.

Unit-6 RECENT ADVANCES IN NANOBIOTECHNOLOGY

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

08 hours

10 hours

10 hours

10 hours

08 hours
Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIORESOURCE MANAGEMENT				
Course Code	BSDB3012				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a	and and mir	l Bio l Ch nimu	ology nemis ım of	or try 50
Corequisite	Students should have understanding of general bia a basic knowledge of the biological molecules, the regulation, structure/function, interaction with the and evolution.	iolog he co he ei	gy, in ell, g nvir	nclud genet onme	ing ics, ent,
Antirequisite					
		L	Τ	Р	С
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of bioresource management. Course Outcomes

CO1	Illustrate the different types of aquaculture
CO2	Summarize the purpose of culturing economically important organisms
CO3	Illustrate the importance of vermiculture
CO4	Describe the origin and importance of cultivated plants
CO5	Generalize the economic uses of various plant products
CO6	Evaluate the applications of advancement of bioresource management

Text Book (s)

- 5. ManjuYadav, Economic Zoology- Discovery publishing house, New Delhi
- 6. Lee R E, Phycology 1999

Reference Book (s)

- 5. ManjuYadav, Economic Zoology- Discovery publishing house, New Delhi
- 6. Lee R E, Phycology 1999

Unit-1 AQUACULTURE

Introduction to aquaculture; Prawn culture, Methods of prawn fishing, Preservation and processing of prawn; Pearl culture and status of pearl culture in India; Economically important fishes of India. Setting up of a fish farm, Monoculture and composite fish culture, Bundh breeding, Induced breeding, methods of fishing, Fish preservation and processing; Identification of fish diseases and their control; Snakes and snake venoms.

Unit-2 ECONOMIC ZOOLOGY

Overview of Sericulture, Apiculture, Lac culture, Poultry culture, Dairy industry.

Unit-3 VERMICULTURE

08 hours

08 hours

10 hours

Introduction and scope, Species of earthworm, Characteristics features ofearthworm. Overview of methods of vermicomposting, Role of earthworm in solid waste management. Vermiwash- its importance, Vermicompost as bio-fertilizer.

Unit-4 CULTIVATED PLANTS

Cultivated Plants: origin and importance with particular reference to the works of A. de Candolle and Vavilov (especially centers of diversity, primary and secondary centers, multiple origin); a brief account of Harlan and Hawkes theories; examples of major introductions; practices of floriculture, agroforestry, sericulture. BT crops (brief account).

Unit-5 ECONOMIC USE OF PLANT PRODUCTS

Definition, Classification, Names, Morphology and economic uses of important cereals, legumes (pulses and fodders), fruits and vegetables, spices and condiments, beverages, oils and fats, essential oils, medicinal plants, hallucinogens (psychotropic drugs), timber plants, fibre plants, natural rubber, resins, raw materials for paper. A brief account of crop improvement technologies, biosafety considerations, natural products.

Unit-6 RECENT ADVANCES IN BIORESOURCE MANAGEMENT

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOSAFETY AND INTELLECTUAL PROPERT	ry r	RIGI	HTS	
Course Code	BSDB3013				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a % marks in aggregate.	and and min	l Bio l Cl nimu	ology nemis ım of	or try 50
Corequisite	Students should have understanding of general bi a basic knowledge of the biological molecules, the regulation, structure/function, interaction with the and evolution.	iolog he co he e	gy, in ell, g nvir	nclud genet onme	ing ics, ent,
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of biosafety and intellectual property rights

Course Outcomes

CO1	Understand the fundamentals of biosafety
CO2	Summarize the guidelines of biosafety
CO3	Understand the concepts of intellectual property
CO4	Describe the grant of patents, agreements and treaties
CO5	Evaluate the applications of advancement of biosafety and IPR

10 hours

04 hours

10 hours

Text Book (s)

- 1. Bare Act, 2007.Indian Patent Act 1970 Acts & Rules, Universal Law Publishing Co. Pvt.Ltd., New Delhi.
- 2. Kankanala C (2007). Genetic Patent Law & Strategy, 1st Edition, Manupatra Information Solution Pvt. Ltd. New Delhi.
- 3. Mittal, D.P. (1999). Indian Patents Law, Taxmann, Allied Services (p) Ltd.
- 4. Singh K K (2015). Biotechnology and Intelectual Property Rights: Legal and Social Impliocations, Springer India.
- 5. Goel D & Prashar S (2013). IPR, Biosafety and Bioethics. Pearson
- 6. Senthil Kumar Sadhasivam and Mohammed Jaabir, M. S. 2008. IPR, Biosafety and biotechnology Management. Jasen Publications, Tiruchirappalli, India.

Reference Book (s)

- 1. Bare Act, 2007.Indian Patent Act 1970 Acts & Rules, Universal Law Publishing Co. Pvt.Ltd., New Delhi.
- 2. Kankanala C (2007). Genetic Patent Law & Strategy, 1st Edition, Manupatra Information Solution Pvt. Ltd. New Delhi.
- 3. Mittal, D.P. (1999). Indian Patents Law, Taxmann, Allied Services (p) Ltd.
- 4. Singh K K (2015). Biotechnology and Intelectual Property Rights: Legal and Social Impliocations, Springer India.
- 5. Goel D & Prashar S (2013). IPR, Biosafety and Bioethics. Pearson
- 6. Senthil Kumar Sadhasivam and Mohammed Jaabir, M. S. 2008. IPR, Biosafety and biotechnology Management. Jasen Publications, Tiruchirappalli, India.

Unit-1 INTRODCUTION TO BIOSAFETY

Biosafety: Introduction; biosafety issues in biotechnology; Biological Safety Cabinets & their types; Primary Containment for Biohazards; Biosafety Levels of Specific Microorganisms.

Unit-2 BIOSAFETY GUIDELINES

Biosafety Guidelines: Biosafety guidelines and regulations (National and International);GMOs/LMOs- Concerns and Challenges; Role of Institutional Biosafety Committees (IBSC), RCGM, GEAC etc. for GMO applications in food and agriculture; Environmental release of GMOs; Risk Analysis; Risk Assessment; Risk management and communication; Overview of International Agreements - Cartagena Protocol. Guidelines for using radioisotopes in laboratories and precautions.

Unit-3 INTRODUCTION TO INTELLECTUAL PROPERTY

10 hours

10 hours

07 hours

10 hours

Introduction to Intellectual Property: Patents, Types, Trademarks, Copyright & Related Rights, Industrial Design and Rights, Traditional Knowledge, Geographical Indicationsimportance of IPR –patentable and non patentables – patenting life – legal protection of biotechnological inventions – World Intellectual Property Rights Organization (WIPO).

Unit-4 GRANT OF PATENT, AGREEMENTS AND TREATIES

Grant of Patent and Patenting Authorities: Types of patent applications: Ordinary, PCT, Conventional,Divisional and Patent of Addition; An introduction to Patent Filing Procedures; Patent licensing andagreement; Patent infringement- meaning, scope, litigation, case studies, Rights and Duties of patentowner. Agreements and Treaties: GATT, TRIPS, WIPO, Budapest Treaty on international recognition of the deposit of microorganisms etc.

Unit-5 RECENT ADVANCES IN BIOSAFETY AND INTELLECTUAL PROPERTY RIGHTS 04 hours

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	MUSHROOM CULTIVATION TECHNOLOGY	7			
Course Code	BSDB3015				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a % marks in aggregate.	and and a min	l Bio d Cł nimu	ology nemis ım of	or stry 50
Corequisite	Students should have understanding of general b a basic knowledge of the biological molecules, t regulation, structure/function, interaction with t and evolution.	iolog he c he e	gy, in ell, g nvir	nclud genet onme	ing ics, ent,
Antirequisite					
		L	Τ	Р	С
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of mushroom cultivation technology.

Course Outcomes

CO1	Understand the values of mushroom.
CO2	Describe the technology used for cultivation of mushroom
CO3	Demonstrate the concepts of mushroom bed preparation.
CO4	Demonstrate the process of storage and its nutritional value.
CO5	Understand the concepts of types of foods prepared from mushroom.
CO6	Evaluate the applications of advancement of mushroom cultivation technology

Text Book (s)

- 9. Marimuthu, T. Krishnamoorthy, A.S. Sivaprakasam, K. and Jayarajan. R (1991) Oyster Mushrooms, Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore.
- 10. Swaminathan, M. (1990) Food and Nutrition. Bappeo, The Bangalore Printing and Publishing Co. Ltd., No. 88, Mysore Road, Bangalore 560018.
- 11. Tewari, Pankaj Kapoor, S.C., (1988). Mushroom cultivation, Mittal Publications, Delhi.
- 12. Nita Bahl (1984-1988) Hand book of Mushrooms, II Edition, Vol. I & Vol. II.

Reference Book (s)

- 9. Marimuthu, T. Krishnamoorthy, A.S. Sivaprakasam, K. and Jayarajan. R (1991) Oyster Mushrooms, Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore.
- 10. Swaminathan, M. (1990) Food and Nutrition. Bappeo, The Bangalore Printing and Publishing Co. Ltd., No. 88, Mysore Road, Bangalore 560018.
- 11. Tewari, Pankaj Kapoor, S.C., (1988). Mushroom cultivation, Mittal Publications, Delhi.
- 12. Nita Bahl (1984-1988) Hand book of Mushrooms, II Edition, Vol. I & Vol. II.

Unit-1 INTRODUCTION TO MUSHROOM CULTIVATION

Introduction, history. Nutritional and medicinal value of edible mushrooms; Poisonous mushrooms. Types of edible mushrooms available in India - Volvariellavolvacea, Pleurotuscitrinopileatus, Agaricusbisporus.

Unit-2 CULTIVATION TECHNOLOGY - I

Infrastructure: substrates (locally available) Polythene bag, vessels, Inoculation hook, inoculation loop, low cost stove, sieves, culture rack, mushroom unit (Thatched house) water sprayer, tray, small polythene bag. Pure culture: Medium, sterilization, preparation of spawn, multiplication.

Unit-3 CULTIVATION TECHNOLOGY-II

Mushroom bed preparation - paddy straw, sugarcane trash, maize straw, banana leaves. Factors affecting the mushroom bed preparation - Low cost technology, Composting technology in mushroom production.

Unit-4 STORAGE AND NUTRITION

Short-term storage (Refrigeration - upto 24 hours) Long term Storage (canning, pickels, papads), drying, storage in saltsolutions. Nutrition - Proteins - amino acids, mineral elements nutrition - Carbohydrates, Crude fibre content - Vitamins.

Unit-5 FOOD PREPARATION

Types of foods prepared from mushroom. Research Centres - National level and Regional level. Cost benefit ratio - Marketing in India and abroad, Export Value.

Unit-6 RECENT ADVANCES IN MUSHROOM CULTIVATION TECHNOLOGY 04 hours

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	PARASITOLOGY
Course Code	BSDB3016
Prerequisite	Higher Secondary Examination with Chemistry and Biology or
	Chemistry, Botany and Zoology or Biochemistry and Chemistry
	from a recognized Board in science stream with a minimum of 50
	% marks in aggregate.
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.
Antirequisite	

08 hours

08hours

10 hours

06 hours

08 hours

Course Objectives: Students are able to understand the basic concept of parasitology **Course Outcomes**

CO1	Describe the basic concept Parasitology
CO2	Interpret about the Parasitic Protists and disease caused by it
CO3	Interpret Parasitic Platyhelminthes
CO4	Elucidate Parasitic Nematodes
CO5	Illustrate Parasitic Arthropoda and Parasitic Vertebrates
CO6	Evaluate the applications of advancement of parasitology

Text Book (s)

- 17. Arora, D. R and Arora, B. (2001) Medical Parasitology. II Edition. CBS Publications and Distributors
- 18. E.R. Noble and G.A. Noble (1982) Parasitology: The biology of animal parasites. V Edition, Lea &Febiger
- 19. Ahmed, N., Dawson, M., Smith, C. and Wood, Ed. (2007) Biology of Disease. Taylor and Francis Group
- 20. Parija, S. C. Textbook of medical parasitology, protozoology & helminthology (Text and colour Atlas), II Edition, All India Publishers & Distributers, Medical Books Publishers, Chennai, Delhi
- 21. Rattan Lallchhpujani and Rajesh Bhatia. Medical Parasitology, III Edition, Jaypee Brothers Medical Publishers (P) Ltd., New Delhi
- 22. Meyer, Olsen & Schmidt's Essentials of Parasitology, Murray, D. Dailey, W.C. Brown Publishers
- 23. Thomas C. Cheng (1986). General Parasitology, II Edition, Academic Press Inc
- 24. K. D. Chatterjee (2009). Parasitology: Protozoology and Helminthology. XIII Edition, CBS Publishers & Distributors (P) Ltd. DSE

Reference Book (s)

- 17. Arora, D. R and Arora, B. (2001) Medical Parasitology. II Edition. CBS Publications and Distributors
- 18. E.R. Noble and G.A. Noble (1982) Parasitology: The biology of animal parasites. V Edition, Lea &Febiger
- 19. Ahmed, N., Dawson, M., Smith, C. and Wood, Ed. (2007) Biology of Disease. Taylor and Francis Group
- 20. Parija, S. C. Textbook of medical parasitology, protozoology & helminthology (Text and colour Atlas), II Edition, All India Publishers & Distributers, Medical Books Publishers, Chennai, Delhi
- 21. Rattan LalIchhpujani and Rajesh Bhatia. Medical Parasitology, III Edition, Jaypee Brothers Medical Publishers (P) Ltd., New Delhi
- 22. Mever, Olsen & Schmidt's Essentials of Parasitology, Murray, D. Dailey, W.C. Brown Publishers
- 23. Thomas C. Cheng (1986). General Parasitology, II Edition, Academic Press Inc
- 24. K. D. Chatterjee (2009). Parasitology: Protozoology and Helminthology. XIII Edition, CBS Publishers & Distributors (P) Ltd. DSE

Unit-1 INTRODUCTION TO PARASITOLOGY

Brief introduction of Parasitism, Parasite, Parasitoid and Vectors (mechanical and biological vector) Host parasite relationship.

Unit-2 PARASITIC PROTISTS

Study of Morphology, Life Cycle, Prevalence, Epidemiology, Pathogenicity, Diagnosis, intestinalis, **Prophylaxis** and Treatment of Entamoebahistolytica, Giardia Trypanosomagambiense, Leishmaniadonovani, Plasmodium vivax.

Unit-3 PARASITIC PLATYHELMINTHES

12 hours

04 hours

08 hours

Study of Morphology, Life Cycle, Prevalence, Epidemiology, Pathogenicity, Diagnosis, Prophylaxis and Treatment of Fasciolopsisbuski, Schistosomahaematobium, Taeniasolium and Hymenolepis nana.

Unit-4 PARASITIC NEMATODES

12 hours

Study of Morphology, Life Cycle, Prevalence, Epidemiology, Pathogenicity, Diagnosis, Prophylaxis and Treatment of Ascarislumbricoides, Ancylostomaduodenale, Wuchereriabancrofti and Trichinellaspiralis. Study of structure, life cycle and importance of Meloidogyne (root knot nematode), Pratylencus (lesion nematode).

Unit-5 PARASITIC ARTHROPODA AND PARASITIC VERTEBRATES 08 hours

Biology, importance and control of ticks, mites, Pediculushumanus (head and body louse), Xenopsyllacheopis and Cimexlectularius, A brief account of parasitic vertebrates; Cookicutter Shark, Candiru, Hood Mockingbird and Vampire bat.

Unit-6 RECENT ADVANCES IN PARASITOLOGY

04 hours

Research article/ Review paper/ MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

(Established under Galgotias University Uttar Pradesh Act No. 14 of 2011)

School of Basic and Applied Sciences Department of Life Sciences Division of Biomedical Science

Program: B.Sc. (Hons.) Biomedical Science

Scheme: 2020 – 2022

Vision

"To be known globally for value-based education, research, creativity and innovation"

Mission

- 13. Establish state-of-the-art facilities for world class education and research.
- 14. Collaborate with industry and society to align the curriculum,
- 15. Involve in societal outreach programs to identify concerns and provide sustainable ethical solutions.
- 16. Encourage life-long learning and team-based problem solving through an enabling environment.

School of Basic and Applied Sciences

Vision:

To be recognized globally as a center of excellence in imparting value-based education in Basic and Applied Sciences by creating innovation in fundamental and multidisciplinary research.

Mission

- M1: To excel in imparting contemporary knowledge and skills by developing an educational ecosystem with diverse interests and talents.
- M2: To perform cutting edge research leading to innovation in sciences through national and international collaborations.
- M3: To develop solutions for the emerging challenges in Basic and Applied Science to cater the needs of society.
- M4: To attract best quality faculty to facilitate knowledge and develop confidence in our graduates to succeed in the world.

Salient features of Biomedical Sciences

B.Sc. Biomedical Sciences is a undergraduate course. The duration of B.Sc. Biomedical Sciences programme is of three years duration and is divided into six parts, Part I to part II and part III. Each part has two Semesters. Biomedical Sciences is the branch of the science that deals with the study of biological sciences and medical sciences. This is basically application of biological science in medical sciences. The purpose of the biomedical sciences to develop drug designing and discovery of drug. Pharmacology, Medicinal chemistry, Medical microbiology, and Physiology subjects are core subjects and backbone of biomedical sciences but biochemistry, molecular biology and immunology, bioinstrumentation are also necessary to fulfill the purpose of biomedical sciences.

Aim of the programme:

The programme aims:

1. To help the student to develop the knowledge, skills, attitude and ethical values required providing patient-centred care and working safely and effectively in the NHS as a biomedical scientist.

2. To apply scientific principles and theories underpinning biomedical science to patient care.

3. To enable students to carry out competently diagnostic investigations relevant to the role of a biomedical scientist.

4. To develop the student's ability to apply scientific methods and approaches to research, development and innovation.

5. To help the student develop a range of transferable academic skills required for effective life-long learning, communication, team working and leadership.

6. To give the student an opportunity to gain work experience in a biomedical laboratory.

7. To prepare the student for employment in a biomedical science laboratory.

8. To provide the student with the skills required for postgraduate studies in biomedical and health sciences.

Eligibility

Candidate for admission to the first year of B.Sc. Biomedical Sciences shall be required to have 10+2 in any Biology stream, or an equivalent in a science stream with a minimum of 50 % marks in aggregate from a recognized board.

Scope of the Proposed Programme

The B.Sc. Programme of three years is designed to assist all students to get good quality education in the field of Biomedical sciences so that they can pursue higher education and find employment in India and abroad. The purpose of biomedical sciences education is to develop biomedical scientist in various research institute and universities. They can research in various fields of life science in hospitals and R&D in Biopharmaceuticals multinational company. After completing B.Sc. in biomedical sciences student can join M.Sc. in Biomedical sciences and after M.Sc. students may pursue M. Tech in Biomedical engineering also and serve as Biomedical Engineer. Students may also work as technical officer and EEG technician/ technical officer in various neuroscience research institutes like NIMHANCE and Brain Research Center, Gurgaon.

The ultimate aim is to enable the students to develop an integrated approach for understanding the various life science problems at the molecular level. In addition, the present curriculum gives scope for the students entering different modules to update their knowledge depending upon the employment opportunities in each area. Various practical courses have been designed not only to enable the students to appreciate scientific basis of various life processes but also to train them for self-employment.

There is a greater demand for Biomedical researcher in the area of life sciences. After completion of the course candidate may work as Biochemist, Geneticist, and Medical Microbiologist, in Multinational Companies, Public Sectors, Quality Control Labs, Biopharmaceuticals companies. The course will provide solid foundation for all the students

regardless of background and will gain a comprehensive understanding of the Biomedical tools & techniques and allied areas, including clinical and research aspects with the special attention to current development in the discipline.

Program Educational Objectives (PEO)

PEO1: The graduates shall be successful professionals in Academia, Industry, Government and Entrepreneurship.

PEO2: The graduates shall pursue higher education/research at institute of national and international repute.

PEO3: The graduate shall effectively address the challenges of the society and undertake the projects for bridging the gap between industry and societal needs.

Programme Outcomes (POs)

- PO1: Apply the principles and conceptual knowledge of basic and applied science to understand and solve the complex biological problems.
- PO2: Employ critical thinking and the scientific knowledge to design, carry out, record and analyze the results of biological reactions.
- PO3: Create, select and apply appropriate techniques, resources and modern science and research tools within a defined specification that meet specified needs with appropriate consideration for public health and safety.

PO4: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal issues and the consequent responsibilities relevant to the professional

biologist.

PO5: Understand the impact of professional life sciences solutions in communal and environmental contexts and demonstrate knowledge and need for sustainable development.

- PO6: Articulate ideas, comprehend and write effective reports, documentation and to communicate effectively with the basic and applied sciences community and with society at large, professionally and ethically.
- PO7: Demonstrate knowledge and understanding of science and technical principles to manage projects in multidisciplinary research areas and function effectively as an individual, and as a member or leader in diverse resource teams.
- PO8: Seeking stimulation and to exploring numerous opportunities to engage in independent and life-long learning in the broadest context of technological change.

Programme Specific Outcome (PSO)

- **PSO1:** Igniting young minds, from different backgrounds to understand the science of biomedicine through application-based learning.
- **PSO2:** Equip students with analytical and technical skills to practice evidence based biomedical science for industrial applications.

Curriculum

Semester I

SI.	Course Code	Name of the Course	Assessment Patter					attern	
No			L	Т	Р	С	IA	MTE	ETE
1	BSDB1001	Chemistry	4	0	0	4	30	20	50
2	BSDB1002	Fundamentals of Cell Biology	4	0	0	4	30	20	50
3	BSDB1003	Biochemistry	4	0	0	4	30	20	50
4	BSBM1004	Human Physiology- I	4	0	0	4	30	20	50
5	BSBA1061	Hands on Workshop on Basic	0	0	4	2	50		50
		Analytical Techniques and							
		Measurements							
6	BSBM1012	Biomedical Science Lab-I	0	0	6	3	50		50
7	хххх	Liberal Art				0.5			
8	хххх	Soft Skill				0			
9	хххх	Environmental Science		-	-	0.5			
10	хххх	AI and Machine learning				2			
11	хххх	BEC- B1				3			
12	хххх	Computer awareness				0			
				Total		27			

	Semester II										
SI No	Course	Name of the Course					Assessment Pattern				
	Code		L	Т	Р	С	IA	MTE	ETE		
1	BSBD1007	Bioinstrumentation-I		0	0	4	30	20	50		
2	BSBM 1008	Human Physiology -II	4	0	0	4	30	20	50		
3	BSBM 1009	Toxicology and Pharmacology		0	0	4	30	20	50		
4	BSDB1011	Concept of immunology	4	0	0	4	30	20	50		
5	BSBM1013	Biomedical Science Lab-II	0	0	6	3	50		50		
6	Хххх	BEC-B2				3					
7	7 xxxx ***Two week social internship (during summer)										
				Total		22					

	Semester III											
SI No	Course	Name of the Course					Assessment Pattern					
	Code			Т	Р	С	IA	MTE	ETE			
1		Fundamentals of Molecular	4	0	0	4	30	20	50			
	BSDB2001	Biology										
2	BSDB2002	Bioinstrumentation-II	4	0	0	4	30	20	50			
3	BSBC2003	Fundamentals of Microbiology	4	0	0	4	30	20	50			
4	BSBC2004	Metabolism of Biomolecules-I	4	0	0	4	30		50			
5	BSBM2005	5 Biomedical Science Lab-III 0		0	6	3	50		50			
6	BSBM2007	Biomedical Science Lab-IV	0	0	6	3	50	-	50			

					Semest	er V								
	SI No	Cours	е	Name of the Course						A	Asses	sment Pa	attern	
		Code				L	Т	Р	C	1	Α	MTE	ETE	
	1	BSBC3	8001	Minor Project*		0	-	-	3	5	50		50	
	2	BSDB	8003	Inheritance Biology		4	-	-	4	3	30	20	50	
	3	BSDB	3004	Medical Microbiology		4	-	-	4	3	30	20	50	
	4	BSDB	3005	Evolutionary Biology		4	-	0	4		30	20	50	
	5									5	50	20	50	
		BSDB	кххх	Elective (Group-II, DSE)		4		-	4					
	6	BSBM	3010	Biomedical Science Lab-VI		0	0	6	3	Ľ,	50		50	
	7	BSBM	3011	Biomedical Science Lab-VII		0	0	6	3		50	-	50	
	8	xxxx		Campus to corporate					2					
							Total		27					
7	BSDB	2006	Web	based Course/Seminar-I	0	0	0		2	50		5	50	
						Tot	al	2	4					

		Seme	ster IV						
SI No	Course	Name of the Course					Assessment Patterr		
	Code		L	Т	Р	С	IA	MTE	ETE
1		Programming Language C and					30	20	50
	BCSE1020	Python	4	0	0	4			
2	BSDB2010	BSDB2010 Biotechnology		0	0	4	30	20	50
3	BSDB2009	Medical Biochemistry	4	0	0	4	30	20	50
4	BSBM2007	Medicinal Chemistry	4	0	0	4	30	20	50
5		Elective (Group-I, GE)	4	0	0	4	30	20	50
6	BSBM2016	Biomedical Science Lab -IV	0	0	6	3	50		50
7		Programming Languages C and					50		50
	BCSE1031	Python Laboratory	0	0	6	3			
8	Хххх	IPR				0.5			
9	хххх	Foreign Language				0.5			
10	XXXXX	Waste Manaement			2	1	50		50
	XXXX	Research methodology	2				2		
			Т	otal cred	lit	30			

	Semester VI									
SI No	Course	Name of the Course	Assessment Patter							
	Code		L	Т	Р	С	IA	MTE	ETE	
1	BSBC9999	Dissertation	0	0	0	12	50		50	
2	BSDB3010	Web based Course/Seminar-I	0	0	0	2	50		50	
					Total	14				
				Total						
				credit		142				

		List of Electives							
Group									
I									
SI No	Course	Name of the Electives					Assessment		
	Code						Pattern		
			L	Т	Р	С	IA	MTE	ETE
1	BSDB2011	Bioinformatics	4	0	0	4	30	20	50
2	BSDB2012	Biostatistics	4	0	0	4	30	20	50
3	BSDB2013	Biophysics	4	0	0	4	30	20	50
4	BSDB2014	Organic Farming	4	0	0	4	30	20	50
5	BSDB2015	Biofertilizers and Pesticides	4	0	0	4	30	20	50
Group									
II									
SI No	Course	Name of the Elective					Assessment		
	Code						Pattern		
			L	Т	Р	С	IA	MTE	ETE
1	BSDB3011	Nanobiotechnology	4	0	0	4	30	20	50
2	BSDB3012	Bioresource Management	4	0	0	4	30	20	50
3	BSDB3013	Biosafety and IPR	4	0	0	4	30	20	50
4	BSDB3015	Mushroom Culture					30	20	50
		Technology	4	0	0	4			
5	BSDB3016	Parasitology	4	0	0	4	30	20	50

SEMESTER-I

Name of The Course	CHEMISTRY							
Course Code	BSDB1001							
Prerequisite	Higher Secondary Examination with Chemistry an Chemistry, Botany and Zoology or Biochemistry a from a recognized Board in science stream with a % marks in aggregate.	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.						
Corequisite	Students should have understanding of general bid a basic knowledge of the biological molecules, the regulation, structure/function, interaction with the and evolution.	olog cell, e env	y, in gen viroi	cludi etics, nmen	ng It,			
Antirequisite								
		L	Т	P	C			
		4	0	0	4			

Course Objectives: To provide a broad foundation in chemistry that stresses scientific reasoning and analytical problem solving with a molecular perspective.

Course Outcomes

CO1	Understand atomic structure with various Bohrs, Aufbau, Pauli's principles.
CO2	Demonstrate chemical thermodynamics, law of thermodynamics.
CO3	Interpret chemical bonding and molecular forces.
CO4	Express the knowledge Stereochemistry.
CO5	Interpret the ionic equilibria.
CO6	Evaluate the significance of Chemistry

Text Book (s)

- 6. J.D. Lee : A New Concise Inorganic Chemistry, E.L.B.S.
- 7. P.W. Atkins : Physical Chemistry, Oxford University Press

Reference Book (s)

- 3. R.T. Morrison & R.N.Boyd : Organic Chemistry, Prentice Hall
- 4. James E.Huheeyetl. : Inorganic Chemistry : Principles of Structure and reactivity

Unit-1: ATOMIC STRUCTURE

Recapitulation of Bohr's theory and its limitations, dual behavior of matter and radiation, de-Broglie's relation, Heisenberg Uncertainty principle. Quantum numbers and their significance. Shapes of s, p, d and f orbitals. Discovery of spin, spin quantum number (s) and magnetic spin quantum number (ms). Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Pauli's exclusion principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations, Variation of orbital energy with atomic number.

Unit-2: CHEMICAL THERMODYNAMICS

10 hours

10 hours

Introduction of thermodynamics, state of system, state variables, thermodynamic equilibrium, thermodynamic properties, various types of systems and processes.Laws of Thermodynamics.

Unit-3: CHEMICAL BONDING AND MOLECULAR FORCES 09 hours

Introduction to ionic interactions and covalent bond, inter-molecular and intra-molecular forces, types of intermolecular forces and their characteristics: ion-dipole, dipole-dipole, dipole-induced dipole and dispersion (London) forces, hydrogen bond (intra-molecular and inter-molecular), effect of inter/intra-molecular forces on structure of different biomolecules.

Unit-4: STEREOCHEMISTRY

08 hours

Optical isomerism: Optical activity, specific rotation, enantiomerism, D and L designation, racemic modification, R and S sequence rules, diasteroisomers. Conformational isomers: conformation of ethane and butane, interconversion of projection formula, cyclohexane (mono-and di-substituted), resolution, optical purity, Walden inversion, enantiotopic and diastereotopichydrogens and prochiral centers. Geometrical isomerism: Definition, nomenclature– E and Z.

Unit-5: IONIC EQUILIBRIA

08 hours

Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionizationconstant and ionic product of water. Ionization of weak acids and base, pH scale, common ion effect, Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts.Buffer solutions. Qualitative treatment of acid base titration curves. Theory of acid – base indicators.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	FUNDAMENTAL OF CELL BIOLOGY				
Course Code	BSDB1002				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a % marks in aggregate.	and and mir	l Bio l Ch nimu	ology iemis im of	or try 50
Corequisite	Students should have understanding of general bid a basic knowledge of the biological molecules, the regulation, structure/function, interaction with the and evolution.	olog cell, e env	y, in gen viro	cludi etics, nmen	ng .t,
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

1. Students will understand the structures and purposes of basic components of prokaryotic and eukaryotic cells, especially macromolecules, membranes, and organelles.

2. These can include responses to environmental or physiological changes, or alterations of cell function brought about by mutation.

Course Outcomes

CO1	Identify cell types, structure, functions and differentiate between various cell organelles.
CO2	Interpret the membrane biochemistry and transport of ions across the membrane.
CO3	Summarize the different types Cell-Cell Interaction and cellular communication.
CO4	Demonstrate protein sorting and transport.
CO5	Express the knowledge cell aging and death.
CO 6	Evaluate the significance of fundamental of Cell biology

Text Book(s)

- 8. The Cell: A Molecular Approach (2009) 5th ed., Cooper, G.M. and Hausman, R.E., ASM Press & Sunderland (Washington DC), Sinauer Associates, MA, ISBN:978-0-87893-300-6.
- Molecular Cell Biology (2012) 7th ed., Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell. J., W.H. Freeman & Company (New York), ISBN:13:978-1-4641-0981-2 / ISBN:10: 1-4641-0981-8.

Reference Book (s)

2. Molecular Biology of the Cell (2008) 5th ed., Alberts, B., Johnson, A., Lewis, J., and Enlarge, M., Garland Science (Princeton), ISBN:0-8153-1619-4.

Jnit-2:STRUCTURE OF CELL 7 hours
ntroduction to the cell, its chemical composition, Cell types - organization of prokaryotic and ukaryotic cells, Plant and animal cells: variation in structure and function, cell theory. Structure nd functions of cell organelles – Nucleus, mitochondria, chloroplast, ribosome, lysosomes.
Unit-2:MEMBRANE BIOCHEMISTRY 7 hours
Aembrane: chemical composition and its structural plan; molecular model of cell membrane - luid mosaic model and membrane fluidity; Overview of types of transport systems and nacromolecule transport: Exocytosis; Endocytosis; Pinocytosis and phagocytosis.
Juit-3:CELLULAR COMMUNICATION7 hours
Cell Wall: Eukaryotic cell wall, Extracellular matrix and cell matrix interactions, Cell-Cell nteractions - adhesion junctions, tight junctions, gap junctions, and plasmodesmata. Cytoskeleton: Structure and organization of actin filaments, association of actin filaments with plasma membrane, cell surface protrusions, intermediate filaments, microtubules.
Jnit-4:PROTEIN SORTING AND TRANSPORT12 hours
Endoplasmic Reticulum – Structure, targeting and insertion of proteins in the ER, protein olding, processing and quality control in ER, smooth ER and lipid synthesis, export of proteins nd lipids Golgi Apparatus – Organization, protein glycosylation, protein sorting and export rom Golgi Apparatus.
Jnit-5:CELL CYCLE AND CELL DEATH10 hours
Cell cycle - phases of cell cycle; cell division - mitosis and meiosis; Cell cycle regulation; Cell aging nd death - necrosis and apoptosis; Stem cells. Types: Embryonic stem cell, induced pluripotent tem cells.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOCHEMISTRY				
Course Code	BSDB1003				
Prerequisite	Higher Secondary Examination with Chemistry a Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a % marks in aggregate.	and and min	Bio Ch uimu	ology emis m of	or try 50
Corequisite	Students should have understanding of general bio a basic knowledge of the biological molecules, the regulation, structure/function, interaction with the and evolution.	olog e ce e er	y, in ell, g ivire	cludi geneti onme	ing ics, nt,
Antirequisite					
]	L	Т	Р	С
		4	0	0	4

Course Objectives: The course objectives are as following -

- Demonstrate knowledge and understanding of the molecular machinery of living cells;
- Demonstrate knowledge and understanding of the principles that govern the structures of macromolecules • and their participation in molecular recognition.

Course Outcomes

CO1	Understand Chemical and physical foundations of biomolecules like carbohydrates.
CO2	Identify major classes of storage and structural lipids.
CO3	Understand the properties of amino acids, proteins and nucleic acids
CO4	Interpret basic concepts in enzymology and Vitamins function.
CO5	Express the knowledge in the area Bioenergetics.
CO6	Evaluate the application and significance of biochemistry

Text Book (s)

- 3. Campbell, MK (2012) Biochemistry, 7th ed., Published by Cengage Learning
- 4. Campbell, PN and Smith AD (2011) Biochemistry Illustrated, 4th ed., Published by Churchill Livingstone

Reference Book (s)

- 3. Tymoczko JL, Berg JM and Stryer L (2012) Biochemistry: A short course, 2nd ed., W.H.Freeman
- 4. Berg JM, Tymoczko JL and Stryer L (2011) Biochemistry, W.H.Freeman and Company

Unit-1:CARBOHYDRATES 07 hours Chemical and physical foundations of biomolecules, Carbohydrates: structure of sugars, classification, properties, chemical reactions, stereoisomerism and optical isomers of sugars, carbohydrate derivatives. **Unit-2: LIPIDS** 07 hours Definition and major classes of storage and structural lipids. Storage lipids. Fatty acids structure and functions. Essential fatty acids, Lipids with specific biological functions, micelles and liposomes 12 hours

Unit-3: AMINO ACIDS, PROTEINS AND NUCELIC ACIDS

Amino acids; classification, chemical reactions and physical properties; biosynthesis and catabolism; Nucleotides; biosynthesis and catabolism.

Unit-4: ENZYMES AND VITAMINS

Basic concepts in enzymology, enzyme classification, Enzyme kinetics, Enzyme inhibition: competitive, noncompetitive and uncompetitive inhibition, allosteric enzymes, Vitamins and cofactors: structure, distribution and biological properties

Unit-5: BIOENERGETICS

08 hours

10 hours

First and second laws of Thermodynamics. Definitions of Gibb's Free Energy, enthalpy and Entropy and mathematical relationship among them, Standard free energy change and equilibrium constant, Coupled reactions and additive nature of standard free energy change, Energy rich compounds: Phosphoenolpyruvate, 1,3- Bisphosphoglycerate, Thioesters, ATP

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	Human Physiology-I				
Course Code	BSBM1008				
Prerequisite	Higher Secondary Examination with Chemistry a Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a % marks in aggregate	and E and min	Biolo Che imu	ogy or mistr m of	У 50
Corequisite	Basic knowledge of physiology.				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of Physiology and they can apply the knowledge of physiology in understanding the various diseases and keeping the body in healthy state. Course Outcomes

CO1	Understand and interpret the Digestive system.
CO2	Interpret the about composition of blood and its function circulatory system of
	human
CO3	Interpret the about circulatory system in human
CO4	Evaluate the respiratory system
CO5	Understand and Analyze the excretory system.
CO6	Evaluate the significance of human physiology

Text Book (s)

- 1. Guyton A.C, Hall J.E, Textbook of Medical Physiology, 11th Ed., Saunders Company, 2005.
- 2. Widmaier E. P, Raff H, Strang K. T. Vander's, Human Physiology : The mechanism of Body Function, 9th Ed. Mc. Graw Hill, 2003.
- 3. Ganong W. E, Review of Medical Physiology, 21st Ed., Mc. Graw Hill, 2003.

Reference Book (s)

1. Guyton A.C, Hall J.E, Textbook of Medical Physiology, 11th Ed., Saunders

Company, 2005.

2. Widmaier E. P, Raff H, Strang K. T. Vander's, Human Physiology : The mechanism of Body Function, 9th Ed. Mc. Graw Hill, 2003

UNIT I

Digestive system – Homeostasis, structure of stomach and intestine, Digestive gland and Hormones, Digestion of food in different parts of alimentary canal, absorption and assimilation.

Unit-2

Blood and circulation - Blood corpuscles, hemopoieses and formed elements, plasma function, blood volume, WBC and platelets function. Anemia, thalassemia, Leukemia, Polycythemia, Hemostasis and blood coagulation mechanism, blood groups and blood banking. hematocrits value

Unit-3

Cardiovascular System: Comparative anatomy of heart structure, myogenic heart, specialized tissue, ECG – its principle and significance, cardiac cycle, heart as a pump, blood pressure, neural and chemical regulation.

Unit-4

Respiratory system – structure of lungs and surfactant function, Mechanism of breathing, anatomical considerations, alveolar ventilation, vital capacity of lungs, transport of gases, exchange of gases, waste elimination, neural and chemical regulation of respiration.

Unit-5

Excretory system - Comparative physiology of excretion, kidney, urine formation, urine concentration, waste elimination, micturition, regulation of water balance, blood volume, blood pressure, electrolyte balance, acid-base balance.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	Hands on Workshop on Basic Analytical Techniq Measurements	ues a	and		
Course Code	BSBA1061				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a % marks in aggregate.	y and y and a mir	l Bio 1 Ch 1imu	ology nemis ım of	or try 50
Corequisite	Students should have understanding of general b a basic knowledge of the biological molecules, t regulation, structure/function, interaction with t and evolution.	iolog he c he e	gy, ir ell, g nvir	nclud genet onme	ing ics, ent,
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives:

- To provide the knowledge of the scientific instruments in life sciences and biotechnology along with the applications.
- This will enable the students to understand all the subjects of biological sciences as these tools and techniques will be used therein.
- Also acquire the basic knowledge of the microbiological techniques to be applied in the laboratory.
- To know the general microbiological techniques for isolation of pure cultures of microorganisms.

Course Outcomes

CO1	Demonstration of principle and application of different types of microscope
CO2	Analysis and preparation of nano-particles
CO3	Preparation of solution and calculation of molarity, normality and surface tension of given solution
CO4	Soldering and assembling of electric circuits
CO5	Demonstration of measurement with Vernier calipers, Screw, spherometer and oscilloscope
CO6	Lab report

Referred Books:

- 9. Georg Stehli , The Microscope And How to Use It, English edition, 1970.
- 10. M.Sayer and A. Mansingh, PHI Learning. Measurement, Instrumentation and Experiment Design in Physics & Engineering, 2005.
- 11. Aliofkhazraei, Mahmood, Handbook of Nanoparticles, Springer, 2016
- 12. Huheey, J.E., Keiter, E.A., Keiter, R.L. & Medhi, O.K. Inorganic Chemistry: Principles of Structure and Reactivity, Pearson Education India, 2006.

21. Different types of microscopes and its applications.
22. Direct analysis of nanoparticles.
23. Preparation of nano- particles.

24. Preparation of solution and molarity and normality calculation.
25. Measurement of surface tension and viscosity of given liquid.
26. Soldering of electrical circuits
27. Measurement with Vernier calipers, Screw gauge and spherometer
28. Operation of oscilloscope
29. Familiarization with linear, logarithmic and polar graphs for plotting of experimental data
30. Assembling of elementary electric circuits using breadboard.

Continuous Assessment Pattern

Internal Assessment Lab (IA)	Mid Term Lab (MTE)	End Term Lab (ETE)	Total Marks
50		50	100

Name of The Course	BIOMEDICAL SCIENCE LAB I				
Course Code	BSBM1012	BSBM1012			
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution				
Antirequisite					
	L T P C				
		0	0	6	3

Course Objectives:

- Supporting or strengthening theoretical knowledge.
- Experiencing the pleasure of discovery and development of their psycho-motor skills.
- Teaching how scientific knowledge may be used in daily life.
- Increasing creative thinking skills.
- Gains in scientific working methods and higher order thinking skills.
- Developing manual dexterity by using tools and equipment and allowing students to apply skills instead of memorizing.

Course Outcomes

CO1	Demonstrate the basic principle and applications of important instruments
CO2	Handle and maintenance of glassware
CO3	Preparation of microbiological media
CO4	Qualitative analysis of biomolecules
CO5	Demonstration of different cell cycle

CO6 Evaluation in research advances in laboratory experiments

Text Books

- 7. Cappucino J and Sherman N. (2010). Microbiology: A Laboratory Manual. 9th edition. Pearson
- 8. Wiley JM, Sherwood LM and Woolverton CJ. (2013) Prescott's Microbiology. 9th Edition. McGrawHill International.
- 9. Atlas RM. (1997). Principles of Microbiology. 2nd edition. M.T.BrownPublishers.Education Limited.

S.N.	\Name of Practicals
1.	Study of the life history of the following scientists and their contributions with the
	help of their photographs: Anton von Leeuwenhoek, Linus Pauling, KaryMullis,
	Robert Hooke and Alexander Fleming.
2.	To study the principle and applications of important instruments (Microscope,
	Spectrophotometer, autoclave, Centrifuge) used in the microbiology laboratory.
3.	Qualitative analysis of carbohydrates present in the given solution.
4.	Qualitative analysis of amino acid and protein present in the given solution.
5.	Qualitative analysis of lipid present in the given solution.
6.	To understand the principle of Osmosis and Diffusion
7.	Demonstration of different stages of mitosis.
8.	Demonstration the different stages of meiosis.

Continuous Assessment Pattern

Internal Assessment Lab (IA)	Mid Term Lab (MTE)	End Term Lab (ETE)	Total Marks
50		50	100

ame of The Course	BIOINSTRUMENTATION-I					
Course Code	BSDB1007					
Prerequisite	Candidate for admission to the first year of B.Sc. Degree Course in Biochemistry should passed the Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany					
Corequisite	and Zoology with a minimum of 50 % marks in aggregate.					
Corequisite	environmental science.					
Antirequisite						
	L T P C					
		4	0	0	4	

Course Objectives: Students will understand the principle and application of basic instruments and the fundamental concept of microscopy, spectroscopy and radioisotopic techniques.

CO1	Describe different types of microscopes for the study of cell, identification of cellular
	changes within organs
CO2	Explain various kind centrifugation techniques for study of separation of different
	cells and cellular organs
CO3	Describe the Principles and applications of chromatography, separation techniques
	based on chromatography, types of chromatography and application in industry
CO4	Explains absorbance based techniques like Visible and UV spectroscopy, Basic concepts
	and applications of MS and NMR.
CO5	Explain basic concepts of crystallography and its application

CO6 Evaluate the application of Bioinstrumentation in various aspects like analysis of sample and research and development

Text Book (s)

- 7. Principles and Techniques of Practical Biochemistry Wilson, K., Walker, J. (eds.); Cambridge University Press, Cambridge, 2000, 784 pp., ISBN 0-521-65873.
- 8. An Introduction to Practical Biochemistry (1998) 3rd ed., Plummer D. T., Tata McGraw Hill Education Pvt. Ltd. (New Delhi), ISBN:13: 978-0-07-099487-4 / ISBN:10: 0-07-099487-0.

Reference Book

- 4. Physical Biochemistry: Principles and Applications (2010) 2nd ed., Sheehan, D., Wiley Blackwell (West Sussex), ISBN:978-0-470-85602-4 / ISBN:978-0-470-85603-1.
- 4. Physical Biochemistry: Applications to Biochemistry and Molecular Biology (1982) 2nd ed., Freifelder, D., W.H. Freeman and Company (New York), ISBN:0-7167-1315-2/ISBN:0-7167-1444-2.

Unit-1 : Separation techn	Unit-1 : Separation techniques (08hours)						
Different methods of protein precipitation: Precipitation using inorganic salts (salting out) and							
organic solvents, isoelectri	organic solvents, isoelectric precipitation, Dialysis, Ultrafilteration, Lyophilization						
Unit-2 MICROBIAL TECHNIQUES (8 hours)							
Buffer, Principle and wor	king of pH meter, Lamin	nar-air flow. Decontan	nination, sterilisation				
and disinfection technique	es, media preparation tecl	hnique, Culture of Hui	nan, Plant & Animal				
cells. Preparation of micro	obial, animal and plant sa	mples for microscopy.	•				
Unit-3 MICROSCOPY		()	10 hours)				
Basic principles and appl	lications of - Light mici	oscopy, Bright & Dai	rk Field microscopy,				
Fluorescence microscopy	y, Phase Contrast mic	croscopy, TEM, SEI	M, Confocal Laser				
microscopy, Radio Micros	scopy.						
Unit-4 : CENTRIFUGAT.	Unit-4: CENTRIFUGATION (10 nours)						
Basic Principle of Centri	tugation, Types of centri	tuge machines, prepar	rative and analytical				
centrifuges, differential ce	ntrifugation, sedimentation	on velocity, Factors aff	ecting Sedimentation				
velocity, Standard Sedim	entation Coefficient, Ce	ntrifugation of associ	ating systems, Rate-				
Zonal centrifugation, sedin	mentation equilibrium Co	entrifugation, density g	gradient methods and				
their applications							
Unit-5 : COLORIMETR	Y AND SPECTROSCOR	PY (10)	hours)				
Simple theory of the absor	rption of light by molecul	es, Beer-Lambert law,	, Principle and use of				
study of absorption spectra of biomolecules.Visible and UV spectroscopy.Colorimetry,							
turbidometry, Spectrofluorimetry, nephelometry and luminometry.							
Continuous Assessment Pattern							
Internal Assessment	Internal AssessmentMid Term TestEnd Term TestTotal Marks						
(IA)	(MTE)	(ETE)					
30	20	50	100				

Name of The	HUMAN PHYSIOLOGY-II			
Course Code	BSBM1008			
Prerequisite	Higher Secondary Examination with Chemistry and E Chemistry, Botany and Zoology or Biochemistry and from a recognized Board in science stream with a min % marks in aggregate.	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.		
Corequisite	Basic knowledge of human physiology			
Antirequisite				
	L	Т	Р	С
	4	0	0	4

Course Objectives:Students are able to understand the basic concept of Physiology and they can apply the knowledge of physiology in understanding the various diseases and keeping the body in healthy state. Text Books

- 1. Guyton A.C, Hall J.E, Textbook of Medical Physiology, 11th Ed., Saunders Company, 2005.
- 2. Widmaier E. P, Raff H, Strang K. T. Vander's, Human Physiology : The mechanism of Body Function, 9th Ed. Mc. Graw Hill, 2003.
- 3. Ganong W. E, Review of Medical Physiology, 21st Ed., Mc. Graw Hill, 2003.

Reference Books

Guyton A.C, Hall J.E, Textbook of Medical Physiology, 11th Ed., Saunders Company, 2005. 2. Widmaier E. P, Raff H, Strang K. T. Vander's, Human Physiology : The mechanism of Body Function, 9th Ed. Mc. Graw Hill, 2003.

Course Outcomes

Students are able to

CO1	Describe Structure of Neurons, action potential, Neurotransmitter
CO2	Explain Mechanism of Muscle contraction in skeletal tissue
CO3	Describe Structure and functional anatomy of eye and ear
CO4	Explains Endocrinology including hormones and their action
CO5	Explain Reproductive processes
CO6	Evaluate the application of exercise physiology in treatment of various disease

 Unit-1 Nervous system
 (12 hours)

 Nervous system: Structure of Neurons, action potential, Neurotransmitter, gross neuroanatomy of the brain and spinal cord, central and peripheral nervous system, Structure of cerebrum and function of different area of cerebral cortex, memory and cognition, Thermoregulation, mechanism of thermo sensation pathways.

 Unit-2 Muscle physiology
 (6 hours)

 Muscle physiology: Mechanism of Muscle contraction in skeletal tissue, structural and function difference between skeletal muscle and cardiac muscle. Structure of actin and myosin filament, Tetany, muscular dystrophy.

 Unit-3 Sensory system: Functional anatomy of eye, Structure and functional anatomy of retina, Structure of rod and cone cells and their pigments, Molecular mechanism of rhodopsin,

mechanism of Vision, hyperpolarization of rod receptor potential, Functional anatomy of ear; structure and function of organ of corti, Inner hair cells (IHC) and outer hair cells (OHC) stereocilia, mechanism of Hearing. Common disorders of the following sensations: Vision, Hearing, Taste, Smell and Touch

Unit-4 Endocrinology

(10 hours)

Endocrinology: Endocrine glands: Pituitary gland and hormone, thyroid gland and its hormone, adrenal gland and its hormone function, basic mechanism of hormone action, hormones and diseases.

Unit-5 Reproductive system

(8 hours)

Reproductive system: Reproductive processes, gametogenesis, ovulation, neuroendocrine regulation, Menstrual cycle, Hormones related to ovulation and reproductive cycle.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	TOXICOLOGY AND PHARMACOLOGY				
Course Code	BSBM1009				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate				
Corequisite	Basic knowledge of chemistry and biology				
Anthequisite		T	т	D	C
		L	1	r	U
		4	0	0	4

Course Objectives:Students are able to apply knowledge of toxicology and pharmacologyin drug designing and application of knowledge of drug action can be used in research analysis and drug development.

Course Outcomes

CO1	Analyze Toxic agents and Evaluation of toxicity
CO2	Explain the basic concepts xenobiotics
CO3	Illustrate the evaluation of toxicology
CO4	Interpret Pharmacokinetics and Pharmacodynamics of drugs
CO5	Discuss the Classification of drugs and its mechanism.
CO6	Evaluate the application of Toxicology and Pharmacology in drug development and
	toxicology research

Text Book (s)

- 1. Essentials of Medical Pharmacology, 7thedition (2010), K.D. Tripathi, Jaypee Brothers, ISBN: 9788184480856.
- 2. Pharmacology, 7th edition (2011), H.P. Rang, M.M. Dale, J.M. Ritter and P.K. Moore, Churchill Livingstone. ISBN: 9780702045042.

- 3. Hand book of Experimental Pharmacology, 4thedition (2012), S.K. Kulkarni, VallabhPrakashan, 2012. ISBN 13: 9788185731124.
- 4. Introduction to Toxicology, 3rd edition (2001), John Timbrell, Taylor and Francis Publishers. ISBN-13: 978-0415247627.
- 5. Cassarett and Doull's "Essentials of Toxicology", 2nd edition (2010), Klaassen and Whatkins, McGraw Hill Publisher. ISBN-13: 978-0071622400.
- 6. Principles of Toxicology, 2nd edition (2006), Stine Karen and Thomas M Brown, CRC Press.ISBN-13: 978-0849328565.

Reference Book (s)

- 1. Introduction to Toxicology, 3rd edition (2001), John Timbrell, Taylor and Francis Publishers. ISBN-13: 978-0415247627.
- 2. Cassarett and Doull's "Essentials of Toxicology", 2nd edition (2010), Klaassen and Whatkins, McGraw Hill Publisher. ISBN-13: 978-0071622400.
- 3. Principles of Toxicology, 2nd edition (2006), Stine Karen and Thomas M Brown, CRC Press.ISBN-13: 978-0849328565.

UNIT-I Introduction to Toxicology (6 hours) History and Scope of toxicology; Modern Toxicology; Terminologies in toxicology; Toxic exposure and response - Effect of duration, frequency, route and site of exposure of xenobiotics on its toxicity; Characteristic and types of toxic response; Tolerance and addiction; Types of toxicity. Unit II: Xenobiotics and eco-toxicology 12 hours) Xenobiotic compounds, Metabolism of xenobiotics (biotransformation, Phase- I reactions including oxidations, hydrolysis, reductions and phase II conjugation reactions), Mechanism of action and toxic effects of - Metals (lead, arsenic, mercury), Pesticides (organophosphates, carbamates, organochlorine, bipyridyl compound pesticides). **Eco-toxicology** bioaccumulation, biomagnification, acid rain and its effect on ecosystems, concept of BOD and COD. Unit III: Evaluation of toxicity and Organ toxicity (8hours) Evaluation of toxicity - Dose response relationships and its types, Concept of LD50, LC50, TD50 and therapeutic index. WHO and OECD guidelines for evaluation of acute and chronic toxicity. Organ toxicity - Toxic responses of blood, liver, respiratory system and nervous system.

Unit IV: Introduction to Pharmacology

(8 hours)

History and scope of pharmacology; Nature and Source of drugs; Routes of drug administration and their advantages; Pharmacokinetics - Membrane transport, Absorption, Distribution, Metabolism and Excretion (ADME) of drugs, bioavailability; Pharmacodynamics - Mechanism of drug action, Factors affecting drug action, receptors and receptors subtypes, Drug-drug interactions.

Unit-5: Classification of drugs

(10 hours)

Introduction and classification of drugs acting on - Central and autonomic nervous system, cardiovascular system, Kidney. Introduction and classification of drugs - Anti-inflammatory and analgesic drugs and their related toxicity, Endocrine drugs, Antimicrobial chemotherapeutic drugs

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Continuous Assessment Pattern

Name of The Course	BASIC CONCEPTS IN IMMUNOLOGY				
Course Code	BSDB1011				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a % marks in aggregate.	and and mir	Bio Ch Bimu	ology iemis im of	or try 50
Corequisite	Students should have understanding of general bi a basic knowledge of the biological molecules, th regulation, structure/function, interaction with th and evolution.	iolog he co he ei	y, ir ell, g nvir	nclud genet onme	ing ics, ent,
Antirequisite					
		L	Τ	Р	С
		4	0	0	4

Course Objectives:

- To provide students with a foundation in immunological processes
- To provide students with knowledge on how the immune system works building on their previous knowledge from biochemistry, genetics, cell biology and microbiology

Course Outcome:

CO1	Describe the basic concept of immunology
CO2	It describeshow immuneresponse work in our body and explain defense mechanisms by CTL and NK cells
CO3	Demonstrate complementary system, organ transplantation, Antigen processing and presentation by MHC complex
CO4	Elucidate immunological disorders autoimmunity, hypersensitivity and immunodeficiency.
CO5	Evaluate vaccine production, Immunization, immunotherapy
CO6	Evaluate the application and significance of Immunology

Text Book (s)

- 7. Immunology, 6th edition, (2006), J. Kuby et al, W.H. Freeman and Company, New York. ISBN-13: 978-1429202114.
- 8. Roitt"s Essential Immunology, 12th edition, (2011), Wiley-Blackwell Science. ISBN-13: 978-1405196833.
- 9. Cellular and Molecular Immunology, 7th edition, (2011). Abul K. Abbas, Andrew H. Lichtman, Shiv Pillai. Saunders. ISBN-13: 978-1437715286.

Reference Book (s):

9. Murphy K, Travers P, Walport M. (2008). Janeway'sImmunobiology. 7th edition Garland Science Publishers, New York.

- 10. Peakman M, and Vergani D. (2009). Basic and Clinical Immunology. 2nd edition Churchill
- 11. Livingstone Publishers, Edinberg.
- 12. Richard C and Geiffrey S. (2009). Immunology. 6th edition. Wiley Blackwell Publication.

Unit -1: INTRODUCTION TO IMMUNE SYSTEM

Types of immunity; organs and cells involved in immune system; Antigen, haptens, adjuvants, antigenicity, antigenic determinants and epitopes; Antibody structure and functions; Theories of antibody formation; Antibody diversity.

Unit -2: IMMUNE RESPONSE

Primary and Secondary Immune Response: Generation of Humoral Immune Response (Plasma and Memory cells); Generation of Cell Mediated Immune Response (Self MHC restriction, T cell activation, Co- stimulatory signals); Killing Mechanisms by CTL and NK cells, Introduction to tolerance.

Unit -3: COMPLEMENT SYSTEM AND MAJOR HISTOCOMPATIBILITY COMPLEX10 hours

Components of the Complement system; Activation pathways (Classical, Alternative and Lectin pathways); Biological consequences of complement Activation. MHC - Organization of MHC locus (Mice & Human); Structure and Functions of MHC I & II molecules; Antigen processing and presentation (Cytosolic and Endocytic pathways). Transplantation - types, genetics of transplantation, graft versus host reactions.

Unit -4: IMMUNOLOGICAL DISORDERS

12 hours

Types of AutoimmUnity and Hypersensitivity with examples; Immunodeficiencies - Animal models (Nude and SCID mice), SCID, DiGeorge syndrome, Chediak- Higashi syndrome, Leukocyte adhesion deficiency, CGD; Types of tumors, tumor Antigens, causes and therapy for cancers.

Unit -5: VACCINES AND IMMUNOLOGICAL TECHNIQUES. 10 hours

Vaccines - Types and their characteristics; Immunization practices-immunoprophylaxis and immunotherapy.Immunological techniques -Principles of Precipitation, Agglutination, Immunodiffusion, Immunoelectrophoresis, ELISA, Western blotting, Immunofluoresence, Flow cytometry, Immunoelectron microscopy.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOMEDICAL SCIENCE LAB II
Course Code	BSBM1013
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.

8 hours

10 hours

Antirequisite					
	L		Т	Р	С
		I	0	6	3

Course Objective:Students are able to prepare the microbial medium, describe the principle of pH meter, centrifugation and microscopy.

Course Outcome

CO1	Preparation of pure culture by different methods
CO2	Understanding and usage of different component of compound microscope
CO3	Understanding and usage of different component of centrifuge
CO4	Understanding and usage of different component of pH meter and determination of pH of milk and different water
CO5	Preparation of gram's staining and mobility for bacteria
CO6	Evaluation in research advances in laboratory experiments

1	. Isolation of microorganisms by streak plate method.
2	. To isolate the microorganisms by spread plate method.
3	. Estimation of CFU count by spread plate method/pour plate method.
4	. Understanding the different components and working principle of light microscope using pre- prepared slide.
5	. Preparation of onion cell slide to study cell morphology using light microscope.
6	. To perform the isoelectric precipitation of casein present in milk.
7	. To determine the pH of 0.1 M NaOH and tap water using pH meter.
8	. Demonstrating the basic principle of centrifugation and calculating the relation between RCF and RPM during centrifugation.
9	. To perform gram staining of given sample.
1	0. Motility by hanging drop method.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks	
(IA)	(MTE)	(ETE)		
50	0	50	100	

SEMESTER -III

Name of The Course	MOLECULAR BIOLOGY
Course Code	BSDB2001
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.
Antirequisite	

L	Т	Р	С
4	0	0	4

Course Objectives:Students are able to determine the process and regulation of replication, translation and transcription.

Course Outcome:

CO1	Explain the functional and structural organization of genetic material
CO2	Illustrate the different stages of DNA replication and type of DNA repair
CO3	Explain detail process of transcription and its regulation
CO4	Elucidate the mechanism of translation and posttranslational modification
CO5	Summarize the basic concept of gene regulation in pro and eukaryotes
CO6	Evaluate the application of Molecular biology

Text Book (s)

- Molecular Biology of the Gene (2008) 6th ed., Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M. and Losick, R., Cold Spring Harbor Laboratory Press, Cold spring Harbor (New York), ISBN:0-321-50781 / ISBN:978-0-321-50781-5.
- 14. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W. H. Freeman & Company (New York), ISBN:13: 978-1-4292-3414-6 / ISBN:10-14641-0962-1.

References Book (s)

- Molecular Cell Biology (2012) 7th ed., Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell. J., W.H. Freeman & Company (New York), ISBN:13:978-1-4641-0981-2 / ISBN:10: 1-4641-0981-8.
- 4. Molecular biology of the gene, (4thed)J D Watson, Benjamin/Cummings publ. Co Inc.

init - 1: NUCLEIC ACID STRUCTURE AND ORGANIZATION 8 hours
NA and RNA as genetic material, chemical structure, base composition and types of nucleic cids, supercoiling of DNA, DNA reassociation kinetics (cot curve analysis), DNA organization nto chromatin, bacterial and eukaryotic genomic organization.
Init - 2: DNA REPLICATION AND REPAIR8 hours
nzymes and proteins of DNA replication, prokaryotic and eukaryotic replication mechanism eplication in phages and retroviruses, Mutagenesis, DNA damage and repair mechanisms
init - 3: TRANSCRIPTION 10 hours
ranscription in prokaryotes and eukaryotes.Mechanism of transcription, enzymes and canscription factors. Post-transcriptional modifications in mRNA, rRNA andtRNA.
Init - 4: TRANSLATION(12 hours)
enetic code - properties of the genetic code, deciphering of the genetic code.Translation in rokaryotes and eukaryotes; Translational mechanism in prokaryotes and eukaryotes, post ranslational modification and transport of proteins.
init - 5: REGULATION OF GENE EXPRESSION 10 hours
egulation of gene expression in prokaryotes - The operon concept, lac &trypperons.Transcriptional control. Post translational control. Regulation in eukaryotes - Control v promoter, enhancer and silencers. Cis-trans elements DNA methylation & gene expression.

Internal Assessment	ernal Assessment Mid Term Test End Term Test T		Total Marks		
(IA)	(MTE)	(ETE)			
30	20	50	100		

Continuous Assessment Pattern

Name of The Course	BIOINSTRUMENTATION-II				
Course Code	BSDB2002				
Prerequisite	Candidate for admission to the first year of B.Sc. Degree Course in Biochemistry should passed the Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general bio including a basic knowledge of the biological molec cell, genetics, regulation, structure/function, intera environment, and evolution.	ology cules actio	, , the n wi	th the	9
Antirequisite					
		L	Т	Ρ	С
		4	0	0	4

Course Objectives: : Students are able to determine the principle of advanced spectroscopy, chromatographic techniques

CO1	Describe different types of electrophoretic techniques for separation and isolation of biomolecules.
CO2	Explain various kinds of Spectroscopic techniques to characterize and detect structural changes in biomolecules.
CO3	Describe the principle and applications of various chromatographic techniques.
CO4	Explain the different types of radioactive detection techniques.
CO5	Demonstrate the principle of Sanger and Maxam Gilbert method of Nucleotide sequencing.
CO6	Evaluate the application of Bioinstrumentation in various aspects like analysis of sample and research and development

Text Book (s)

- 15. Molecular Biology of the Gene (2008) 6th ed., Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M. and Losick, R., Cold Spring Harbor Laboratory Press, Cold spring Harbor (New York), ISBN:0-321-50781 / ISBN:978-0-321-50781-5.
- 16. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W. H. Freeman & Company (New York), ISBN:13: 978-1-4292-3414-6 / ISBN:10-14641-0962-1.

Reference Book

6. The Cell: A Molecular Approach (2009) 5th Ed. Cooper, G.M. and Hausman, R.E. ASM Press & Sunderland, (Washington DC), Sinauer Associates. (MA). ISBN:978-0-87893-300- 6.

Unit-1 : ELECTROPHORESIS(10 hours)Principle and applications of native polyacrylamide gel electrophoresis, SDS- polyacrylamide
gel electrophoresis, 2D gel electrophoresis Isoelectric focusing, Zymogram preparation and
Agarose gel electrophoresis

Unit-2 : ADVANCED SPE	Unit-2 : ADVANCED SPECTROSCOPY (10 hours)			
Basic concepts - Circular Dichroism (CD) and Optical Rotatory Dispersion (ORD),				
Fluorescence spectroscopy, Infrared spectroscopy, FTIR, NMR spectroscopy. Mass				
spectroscopy- MALDI-TC	DF, Nano-SIMS (10L)			
•				
Unit-3 CHROMATOGR	APHY		(10 hours)	
Principles and application	s of paper chromatogra	ohy (including Descen	ding and 2-D), Thin	
layer chromatography. Co	olumn packing and fract	ion collection. Gel filtr	ation	
chromatography, ionexcha	ange chromatography ar	d affinity chromatogr	raphy, GLC, HPLC.	
Unit-4 : RADIOGRAPHY	7		(10 hours)	
Use of radioisotopes in life sciences, radioactive labeling, principle and application of tracer				
techniques, detection and measurement of radioactivity using ionization chamber,				
proportional chamber, Autoradiography, FISH-MAR, Pulse chase experiment, Liquid				
scintillation counting, Pho	sphor imaging, IRMA, I	Dosimetry		
Unit-5 : ADVANCED TE	CHNIQUES		(08 hours)	
Chemical synthesis of nuc	leotides and peptides, Se	quencing of proteins a	nd nucleic acids,	
Enzyme purification and a	assay techniques.			
Continuous Assessment Par	ttern			
Internal Assessment Mid Term Test End Term Test Total Marks				
(IA)	(MTE)	(ETE)		

Name of The Course	FUNDAMENTALS OF MICROBIOLOGY				
Course Code	BSDB2003				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a % marks in aggregate.	and and a min	l Bio 1 Ch 1imu	ology iemis im of	or try 50
Corequisite	Students should have understanding of general b a basic knowledge of the biological molecules, t regulation, structure/function, interaction with t and evolution.	iolog he c he e	gy, ir ell, g nvir	nclud geneti onme	ing ics, ent,
Antirequisite					
		L	Τ	Р	C
		4	0	0	4

20

50

100

Course Objectives:

30

- Knowledge on Landmark discoveries in Microbiology and different domains classification of living organisms.
- Familiarity with general characters of prokaryotic and Eukaryotic microorganisms for conventional and molecular characterization using modern methods.
- Knowledge of cellular organization, life cycle and economic importance of prokaryotic (Eubacteria, Archaea, Cyanobacteria) and Eukaryotic (Algae, Fungi and protozoans).

Course Outcomes

CO1	Discuss about history, diversity and scope of microbiology.
CO2	Explain microbial nutrition, growth and control of microorganism.
CO3	Describe microbial molecular biology and genetics.
CO4	Demonstrate viruses and microbial pathogenicity.

CO5Interpret various applications of food and industrial microbiology.CO6Evaluate the application of Fundamental of microbiology

Text Book (s)

- Prescott & Dunn's Industrial Microbiology. Ed. E.G. Reed (1987). CBS Publishers, New Delhi.
- Biotechnology: A Text book of Induxctrial Microbiology 2nd Edition. Crueger, W. and Cruger, A. (2000) Panima Publishing Corporation, New Delhi.
- Manual of Industrial Microbiology and Biotechnology 2nd Edition. Ed. Arnold L. Demain and Julian E. Davies (1999) ASM Press Washington D.C.
- Microbiology, Pelczar Jr. M.J.: Chan E.C.S. and Krieg, N. R. (1993) Tata Mc. Graw Hill, New Delhi.

Reference Book (s)

- Prescott & Dunn's Industrial Microbiology. Ed. E.G. Reed (1987). CBS Publishers, New Delhi.
- Biotechnology: A Text book of Induxctrial Microbiology 2nd Edition. Crueger, W. and Cruger, A. (2000) Panima Publishing Corporation, New Delhi.

Unit-1 HISTORY, DIVERSITY AND SCOPE OF MICROBIOLOGY12 hours

Discovery of microorganisms, spontaneous generation, germ theory of disease, members of the microbial world, scope and relevance of microbiology, Microbial taxonomy and phylogeny, Archaea, Bacteria, fungi, slime molds, water molds, algae, protozoa, helminths, the future of microbiology.

Unit-2 BACTERIA

An account of typical eubacteria, chlamydiae&rickettsiae (obligate intracellular parasites), mycoplasma, and Archaea. Applications of bacteria and Archaea in industry, environment and food.

Unit-3VIRUSES, VIROIDS AND PRIONS

09hours

10hours

An introduction to viruses with special reference to the structure and replication of the following: Poxvirus, Poliovirus, HIV, T4 and λ phage, lytic and lysogenic cycles.

Unit-4ALGAE

09hours

History of phycology; General characteristics of algae including occurrence, thallus organization, algae cell ultra structure, pigments, flagella, eyespot food reserves and vegetative, asexual and sexual reproduction. Applications of Algae in agriculture, industry, environment and food.

Unit-5FUNGI AND PROTOZOAN

08hours

Historical developments in the field of Mycology, significant contributions of eminent mycologists. General characteristics of fungi including habitat, distribution, nutritional requirements, fungal cell ultra- structure, thallus organization and aggregation, fungal wall structure and synthesis, asexual reproduction, sexual reproduction, heterokaryosis, heterothallism and parasexual mechanism. Economic Importance of Fungi in Agriculture, environment, Industry, medicine, food, biodeterioration, mycotoxins, General characteristics with special reference to Amoeba.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	METABOLISM OF BIOMOLECULES-I				
Course Code	BSDB2004				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a % marks in aggregate.	and and mir	l Bio l Ch nimu	ology iemis im of	or try 50
Corequisite	Students should have understanding of general bi a basic knowledge of the biological molecules, the regulation, structure/function, interaction with the and evolution.	iolog he co he e	gy, ir ell, g nvir	nclud geneti onme	ing ics, ent,
Antirequisite					
		L	Τ	Р	С
		4	0	0	4

Course Objectives: Students will understand the fundamental concept of biochemistry. It is a large and major inter disciplinary course. It will enhance the knowledge of chemistry within the living organisms. The course will emphasize the metabolism of carbohydrates, lipids, proteins and nucleotides.

Course Outcomes

CO1	Explain the concept of energy production in the living cell.
CO2	Explain the fundamentals of carbohydrate metabolism.
CO3	Illustrate the process of synthesis and degradation of lipids.
CO4	Describe the metabolism of essential and non-essential amino acids.
CO5	Evaluate the metabolism of nucleotides.
CO6	Evaluate the application of Biochemistry of metabolism

Text Book (s)

- Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W.H. Freeman and Company (New York), ISBN: 13: 978-1-4641-0962-1 / ISBN:10:1-4292-3414- 8.
- Biochemistry, 5th edition Jeremy M Berg, John L Tymoczko, and LubertStryer.New York: W H Freeman; 2002. ISBN-10: 0-7167-3051-0.

Reference Book (s)

- Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W.H. Freeman and Company (New York), ISBN: 13: 978-1-4641-0962-1 / ISBN:10:1-4292-3414- 8.
- Textbook of Biochemistry with Clinical Correlations (2011) 7th ed., Devlin, T.M., John Wiley & Sons, Inc. (New York), ISBN: 978-0-470-28173-4.
- Biochemistry, 5th edition Jeremy M Berg, John L Tymoczko, and LubertStryer.New York: W H Freeman; 2002. ISBN-10: 0-7167-3051-0.

Unit-1 BIOENERGETICS 10 hours

Gibbs free energy, Entropy, Enthalpy, relationship amongGibbs free energy, Entropy and Enthalpy, Laws of thermodynamics, exergonic and endergonic reactions, coupled reactions. High energy compounds - ATP, synthesis of ATP, ATP-ADP cycle, storage of high energy phosphates.

Unit-2 CARBOHYDRATES METABOLISM

08 hours

3. Biochemistry, 5th edition Jeremy M Berg, John L Tymoczko, and LubertStryer.

Glycolysis, Krebs cycle, Glycogenesis, glycogenolysis, Gluconeogenesis, Pentose phosphate pathway, uronic acid pathway, Glycogen metabolism and glycogen storage diseases.

Unit-3LIPID METABOLISM

Synthesis and degradation of triacylglycerols, phospholipids, glycolipids, eicosanoids; Biosynthesis of fatty acids; Oxidation of fatty acids; Ketone bodies; Metabolism of cholesterol - biosynthesis, lipoproteins synthesis and significance.

Unit-4AMINO ACID METABOLISM

Structure and classification of aminoacids; Disorders associated with amino acid metabolism. Urea cycle– steps, regulation and disorders; Biosynthesis of polyamines– putrescine, spermidine and spermine.

Unit-5NUCLEOTIDE METABOLISM

Purine metabolism – biosynthesis (de novo and salvage pathways), degradation, regulation and disorders of purine metabolism; Pyrimidine metabolism - biosynthesis (de novo and salvage pathways), degradation, regulation and disorders of pyrimidine metabolism.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of Thecourse	BIOMEDICAL SCIENCE LAB-III		
Course Code	BSBM2014		
Prerequisite	Higher Secondary Examination with Chemistry and Biology or		
	Chemistry, Botany and Zoology or Biochemistry and Chemistry		
	from a recognized Board in science stream with a minimum of 50		
	% marks in aggregate		
Corequisite			
	Basic knowledge of biology		
Antirequisite			
	L T P C		

Course Objectives:Students can gain experience of hand on experiments and will be helpful for future research.

Text Book (s)

- 1. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W.H. Freeman and Company (New York), ISBN:13: 978-1-4641-0962-1 / ISBN:10:1-4292-3414- 8.
- Textbook of Biochemistry with Clinical Correlations (2011) 7th ed., Devlin, T.M., John Wiley & Sons, Inc. (New York), ISBN:978-0-470-28173-4.
 New York: W H Freeman; 2002. ISBN-10: 0-7167-3051-0.

08 hours

08 hours
3. Biochemistry, 5th edition Jeremy M Berg, John L Tymoczko, and LubertStryer. Reference

Book (s)

- 1. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W.H. Freeman and Company (New York), ISBN:13: 978-1-4641-0962-1 / ISBN:10:1-4292-3414- 8.
- Textbook of Biochemistry with Clinical Correlations (2011) 7th ed., Devlin, T.M., John Wiley & Sons, Inc. (New York), ISBN:978-0-470-28173-4.
 New York: W H Freeman; 2002. ISBN-10: 0-7167-3051-0.

CO1	Isolate DNA and RNA for research and development
CO2	Evaluate DNA and RNA in diagnostic laboratory and hospitals for treatment of
	disease
CO3	Demonstrate the principle of Stereotaxic instrument which is useful for advanced
	neuroscience research
CO4	Demonstrate the recording brain temperature through thermocouple wire and
	perform further research in thermoregulatory area
CO5	Understand principle of GPS (Global Positioning System).
CO6	Evaluation in research advances in laboratory experiments

Practical's

- 2. Isolation and Estimation of DNA.
- 3. Isolation and estimation of of RNA.
- 4. Demonstration the principle of Stereotaxic instrument.
- 5. Demonstration of brain temperature through thermocouple wire.
- 6. Study of all the biotic and abiotic components of any simple ecosystem- natural pond or terrestrial ecosystem or human modified ecosystem.
- 7. Determination of population density in a terrestrial community or hypothetical community by quadrate method and calculation of the Simpson's and Shannon- Weiner diversity index for the same community.
- 8. Principle of GPS (Global Positioning System).
- 9. Study of the life table and fecundity table, plotting of the three types of survivorship curves from the hypothetical data.
- 10. Study of the types of soil, their texture by sieve method and rapid tests for -pH, chlorides, nitrates, carbonates and organic carbon
- 11. Study any five endangered/ threatened species- one from each class.

Name of The Course	Biomedical Science LAB-IV				
Course Code	BSBM2015				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	BSBM2002 and BSBM2003				
Antirequisite					
		L	Т	Р	С
		0	0	6	3

Course Objective:

Student will learntostudy microbial growth and metabolic processes. They will gain knowledge the about techniques used for study and characterization of cellular DNA and proteins. Study structure of viruses and their characterization.

Course Outcome:

CO1	Demonstration of human brain.
CO2	Identification of colour-blindness in humans
CO3	Virtual recording of EPSP and IPSP
CO4	Alcoholic fermentation
CO5	Preparation of isolation, purification and cultivation of viruses
CO6	Lab report

Text Book (s)

- 9. Sambrook J and Russell DW. (2001). Molecular Cloning: A Laboratory Manual. 4th Edition, Cold Spring Harbour Laboratory press.
- 10. Primrose SB and Twyman RM. (2006). Principles of Gene Manipulation and Genomics, 7th edition.
- 11. Blackwell Publishing, Oxford, U.K.
- 12. Carter J and Saunders V (2007). Virology: Principles and Applications. John Wiley and Sons

Reference Book (s):

- 7. Dimmock, NJ, Easton, AL, Leppard, KN (2007). Introduction to Modern Virology. 6th edition, Blackwell Publishing Ltd.
- 8. Brown TA. (2010). Gene Cloning and DNA Analysis. 6th edition. Blackwell Publishing, Oxford, U.K.
- 9. Clark DP and Pazdernik NJ. (2009). Biotechnology: Applying the Genetic Revolution. Elsevier Academic Press, USA.

10.Demonstration of human brain and identification of different areas
11.Identification of colour-blindness in humans
12. Virtual recording of EPSP and IPSP
13.Demonstration of stereotaxic instrument and its application
14.Demonstration of alcoholic fermentation.
15.Study the morphological structures of viruses (DNA and RNA) and their important characters using electron micrographs.
16.Demonstration of isolation of viruses.
17.Demonstration of purification of viruses.
18.Demonstration of cultivation of viruses.

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA) Lab	(MTE)	Lab (ETE)	
50	0	50	100

Name of The Course	Web based course/seminar
Course Code	BSDB2006
Prerequisite	Candidate for admission to the first year of B.Sc. Degree Course
	in Biochemistry should passed the Higher Secondary
	Examination with Chemistry and Biology or Chemistry, Botany
	and Zoology with a minimum of 50 % marks in aggregate.

Corequisite	Students should have understanding of general biology.				
Antirequisite					
		L	Т	P	С
		0	0	0	2

Course Objectives:

- **Students are** directly engage and learn particular subject of their interest. This strengthens the fundamentals of the student in the course.
- It gives the students the opportunities to explore new areas of interest. Also gives students the opportunity to learn in greater depth the subjects they wish to master.
- Promotes the self-learning initiative of the students where their own motivation is what drives them to complete the course. This fosters the habit of keeping oneself updated always by means of self-study.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	ETE	Total Marks
50		50	100

SEMESTER – IV

Name of The Course	Programming Language C and Python				
Course Code	BCSE1020				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of and basic knowledge of the computers.				
Antirequisite	ite				
		L	Т	Р	С
		4	0	0	4

Course Objectives:

Course Outcome:

CO1	Understand about the computers, Logic Development and Program Development Tools,Operations and Expressions.
CO2	Identify Data Input and Output, Interactive Programming. Control Structures and functions.
CO3	Interpret Arrays, Structure and Union.
CO4	Interpret theapplications of Pointers, Initializing Pointers, Creating the data files.
CO5	Express the knowledge in the area of C++.
CO6	Evaluation in research advances in PROGRAMMING LANGUAGES

Text Book (s)

18. P KanetkarYashvant, Let us C, BPB Publications, New Delhi, Seventh Edition.

19. E. Balagurusami, Programming in ANSI C, Tata McGraw Hill, Fourth Edition.

Reference Book (s)

- 4. Schaum Outline Series, Programming in C.
- 5. HerbtzSchildt, "C++: The Complete Reference", Fourth Edition, McGrawHill.
- 6. John R. Hubbard, "Programming with C++", Schaum's Series, 2nd Edition, 2000.

Unit-I

10 hours

Introduction to computers: Units of computers, Block Diagram, Generation of Computers, Characteristics of Computers, Phases of Computers, Different types of Memory, Input and Output Devices.

Logic Development and Program Development Tools: Data Representation, Flowcharts, Problem Analysis, Decision Trees/Tables, Pseudo Code and Algorithms, ProgramDebugging, Compilation and Execution.

Fundamentals: Character Set, Identifiers and Key Words, Data Types, Constants, Variables, Expressions, Statements, Symbolic Constants.

Operations and Expressions: Arithmetic Operators, Unary Operators, Relational Operators, Logical Operators, Assignment and Conditional Operators, Library functions.

Unit-2:

10 hours

Data Input and Output: Single Character Input, Single Character Output, Entering Input Data, More About Scan Functions, Writing Output Data, More About Print Functions, Gets and Puts Functions, Interactive Programming.

Control Structures: Introduction, Decision Making with If – Statement, If Else and Nested If, While And Do-While, For Loop. Jump Statements: Break, Continue, Goto, Switch Statement.

Functions: Introduction To Functions, Function Declaration, Function Categories, Standard Functions, Parameters And Parameter Passing, Pass – By Value/Reference, Recursion, Global and Local Variables, Storage Classes.

Unit-3:

10 hours

Arrays: Introduction to Arrays, Array Declaration, Single and Multidimensional, Array, Memory Representation, Matrices, Strings, String Handling Functions.

Structure and Union: Declaration of Structure, Accessing Structure Members, Structure Initialization, Arrays of Structure, Nested Structures, Unions.

Unit-4:

10 hours

10 hours

Pointers: Introduction To Pointers, Address Operator And Pointers, Declaring and Initializing Pointers, Assignment through Pointers, Pointers and Arrays.

Files: Introduction, Creating a Data File, Opening and Closing a Data File, Processing a Data File.

Unit-5:

Using Classes in C⁺⁺:

Principles of Object-Oriented Programming, Defining & Using Classes, Class Constructors, Constructor Overloading, Function overloading in classes, Class Variables &Functions, Objects as parameters, Specifying the Protected and Private Access, Copy Constructors, Overview of Template classes and their use.Introduction to Inheritance and Polymorphism

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	

50	20	50	100
20	20	50	100

Name of The Course	BIOTECHNOLOGY				
Course Code	BSDB2010				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general b a basic knowledge of the biological molecules, t regulation, structure/function, interaction with t and evolution.	iolog he co he e	gy, in ell, g nvir	nclud genet onme	ing ics, ent,
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objective:

Students will understand the molecular methods and applications of recombinant DNA technology and gene transfer techniques.

Course Outcome:

CO1	Brief account of plant tissue culture and advantages of somatic hybridization
CO2	Explain the basic techniques of cell culture
CO3	Describe the different methods of DNA sequencing
CO4	Describe the type and process of genetic exchange
CO5	Explain the various categories of transposable element
CO6	Evaluate the application of Biotechnology and genetic engineering in research and deployment

Text Book (s)

- 9. Principles of Gene Manipulations 1994 by Old and Primrose Blackwell Scientific Publications.
- 10. DNA Cloning: A Practical Approach by D.M. Glower and B.D. Hames, IRL Press, Oxford. 1995.
- 11. Molecular Biotechnology 2nd Edition by S.B. Primrose. Blackwell Scientific Publishers, Oxford. 1994.
- 12. Genetic Engineering and Introduction to Gene Analysis and Exploitation in Eukaryotes by S.M. Kingsman and A.J. Kingsman, Blackwell Scientific Publications, Oxford 1998.

References Book (s)

- 9. PCR Technology Principles and Applications for DNA Amplification by Henry A. Erlich (Ed.) Stockton Press. 1989.
- 10. Biotechnology: A Guide to Genetic Engineering by Peters.
- 11. Genetic Engineering 2000 by Nicholl.
- 12. Recombinant DNA and Biotechnology: Guide for Teachers. 2nd Edition by Helen Kreuz. 2001. ASM Publications.

Unit -1: INTRODUCTION TO PLANT BIOTECHNOLOGY

Basic introduction to animal and plant biotechnology; types of plant tissue culture, Somatic hybridization

Unit -2: INTRODUCTION TO ANIMAL BIOTECHNOLOGY 8 hours

Animal Biotechnology - organ culture; cell culture and initiation of cell culture; evolution of continuous cell lines.

Unit -3: CONSTRUCTION OF DNA LIBRARIES

Isolation and purification of nucleic acid (genomic/plasmid DNA and RNA), Quantification and storage of nucleic acids, Construction of cDNA library, Construction of Genomic library, Screening and preservation of DNA libraries, DNA Sequencing and cloning strategies.

Unit -4: GENE TRANSFER TECHNIQUES

Gene transfer techniques: biological methods; chemical methods; physical or mechanical methods.

Unit -5: TRANSGENICS

Plant Genetic Engineering: Restriction enzymes; Transformation of plant cells; different type of vectors including viral vectors and their benefits; Screening and selection of transformants, PCR and hybridization methods; Application of transgenic science in plant and animal improvement.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	MEDICAL BIOCHEMISTRY				
Course Code	BSDB2009				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a % marks in aggregate.	and and a mir	l Bio l Ch nimu	ology iemis im of	or try 50
Corequisite	Students should have understanding of general back a basic knowledge of the biological molecules and	iolog thei	gy, ir r dis	ncludi sorde	ing r
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: Students are able to understand the metabolism of biomolecules and their related disorders.

Course Outcomes

CO1	Illustrate the various disorders of Metabolism.
CO2	Interpret the Distribution of enzymes and diagnostic significance
CO3	Evaluate the significance of vitamins and hormones as well as disease associated with it
	•

0

10 hours

10 hours

10 hours

8 hours

CO4	Evaluate the biochemistry of cancer.
CO5	Analyze the molecular diagnostics.
CO6	Evaluate the application of Medical biochemistry in research

Text Book (s)

- 3. Textbook of Biochemistry with Clinical Correlations (2011) 7th ed., Devlin, T.M., John Wiley & Sons, Inc. (New York), ISBN:978-0-470-28173-4.
- 4. Textbook of Biochemistry for Medical Students. D.M. Vasudevan, Sreekumari. S, Kannan Vaidyanathan. JPB.

REFERENCES Books:

- 1. Textbook of Medical Biochemistry, 7thedition (2007), Chatterjea&Shinde, Jaypee Publications, ISBN: 81-8448-134-9.
- 2. Tietz Fundamentals of Clinical Chemistry, 6th edition (2007), Carl A. Burtis, Edward R. Ashwood, and David E. Bruns; WB Saunders Co, ISBN-13: 978-0721638652

Unit-1 DISORDERS OF METABOLISM

Disorders of Carbohydrate Metabolism; Lipids, Lipoproteins and Apolipoproteins; Inborn Errors of Metabolism; Disorders of Electrolytes, Blood Gases and Acid Base Balance; Disorders of Mineral Metabolism; Hormonal Disorders - Adrenocortical steroids, Reproductive endocrinology, Thyroid function; Biochemical Aspects of Hematology -Disorders of erythrocyte metabolism, hemoglobinopathies, thalassemia, and anemias. Prostaglandins- classification, biosynthesis, role of COX-1, COX-2, NSAIDS in synthesis;

Unit 2: Enzymes: Distribution and diagnostic significance 10 hrs

Properties of enzymes used in diagnosis of metabolic disorders, clinical significance of diagnostically important enzymes: creatine kinase, lactate dehydrogenase, alanine- and aspartate aminotransferases, A detailed account on: isoenzymes, their tissue distribution and clinical significance.

Unit-3 VITAMIN AND HORMONES

Vitamins and classification, requirement and recommended allowances, resource of vitamins, Diseases due to deficiency of water-soluble and fat-soluble vitamins. Role of leptin, ghrelin and other hormones in regulation of Obesity, Classification with special reference to epinephrine and thyroid hormones (T3 and T4); functions.

10 hours

Unit-4 BIOCHEMISTRY OF CANCER

10 hours

12 hours

Etiology - Chemical carcinogens, Oncogenic viruses; Molecular basis of cancer - Oncogenes, Antioncogenes, Oncosuppressor genes, Apoptosis, Growth factors; Tumour kinetics - Doubling time, Contact inhibition, Anchorage dependence; Oncofetal antigens; Tumor markers; Cancer therapy - Anticancer drugs, Drug resistance.

Unit-5 MOLECULAR DIAGNOSTICS

10 hours

Hybridization and blotting techniques; DNA finger printing; Restriction fragment length polymorphism (RFLP); Polymerase chain reaction Hybridoma **(PCR);** technology;Transgenesis; DNA sequencing; Mutation detection techniques - single strand conformation polymorphism, heteroduplex conformation sensitive analysis, gel electrophoresis, protein truncation test, denaturation high performance liquid chromatography.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of Thecourse	MEDICINAL CHEMISTRY				
Course Code	BSBM 2007				
Prerequisite	 Higher Secondary Examination with Chemistry at Chemistry, Botany and Zoology or Biochemistry a from a recognized Board in science stream with a % marks in aggregate 	nd E and min	Biolo Che imu	gy or mistr m of	у 50
Corequisite	Basic knowledge of Chemistry and Biochemistry				
Antirequisite					
		L	Т	P	C
		4	0	0	4

Course Objectives: Students are able to understand the composition of drug and its binding affinity with receptor will be helpful to develop new medicine in research laboratories and industries.

Course Outcomes

CO1	Interpret the classification of drug targets.
CO2	Explain the Physiochemical properties of drug action.
CO3	Illustrate the Drug receptor interactions.
CO4	Demonstrate the principles of drug designing.
CO5	Analyze the drug discovery and pharmainformatics.
CO6	Evaluate the application of Medicinal chemistry in research drug development

Text Book (s)

- 1. Introduction to Medicinal Chemistry, 4th edition (2009), Graham I. Patrick, Oxford University Press. ISBN-13: 978-0199234479.
- 2. The Organic Chemistry of Drug Design and Drug Action, 2nd edition (2004), Richard B. Silvermann, Elsevier, Academic Press. ISBN-13: 978-0126437324.
- 3. Medicinal Chemistry: A Molecular and Biochemical Approach, 3rd edition (2005), Thomas Nogrady and Donal F. Weaver, Oxford University Press. ISBN-13: 978-0195104561.DIGITAL BOOKS:
- 4. Introduction to Medicinal Chemistry, 4th edition (2009), Graham I. Patrick, Oxford University Press. ISBN-13: 978-0199234479.
- 5. The Organic Chemistry of Drug Design and Drug Action, 2nd edition (2004), Richard B. Silvermann, Elsevier, Academic Press. ISBN-13: 978-0126437324

Reference Book (s)

1. Introduction to Medicinal Chemistry, 4th edition (2009), Graham I. Patrick, Oxford University Press. ISBN-13: 978-0199234479.

UNIT I

DRUG TARGET CLASSIFICATION

Definition and scope of drug design. Proteins as drug targets: Receptors - receptor role, ion channels, membrane bound enzyme activation, agonist and antagonists, concept of inverse agonist, desensitization and sensitization of receptors, affinity, efficacy and potency. Enzymes - Enzyme inhibitors (competitive, non-competitive, suicide inhibitors), medicinal use of enzyme inhibitors. Nucleic acids as drug targets: Classes of drugs that interact with DNA: DNA intercalators and DNA alkylators.

Unit-2

PHYSICOCHEMICAL PRINCIPLES OF DRUG ACTION

Partition coefficient, drug dissolution, acid-base properties, surface activity, bioavailability, stereochemical aspects of drug action.

Unit-3

DRUG RECEPTOR INTERACTIONS

Kinetic analysis of ligand receptor interactions using scatchard plot, double reciprocal plot, Hill plot, forces involved, relationship between dose and effect (graded and quantal response).

Unit-4

PRINCIPLES OF DRUG DESIGN

Introduction to SAR, strategies in the search for new lead compounds, analogue synthesis versus rational drug design, concept of prodrugs.

Unit-5

DRUG DISCOVERY AND PHARMAINFORMATICS

Drug discovery pipeline, drug target identification and validation for microbial pathogen, selection of gene unique to the pathogen, screening for its presence in other microbes and human host, Drug Databases, PubChem, Calculating drug-like properties, introduction to rational drug design methods, optimization of lead compounds, protein 3D structure and binding site analysis, similarity based virtual screening using online tools.

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of Thecourse	BIOMEDICAL SCIENCES LAB-IV
Course Code	BSBM 2017
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate
Corequisite	Basic knowledge of Biology
Antirequisite	
	L T P C

0 0 6 3	0	6	0	3
---------	---	---	---	---

Course Objectives: Students are able to perform research in the field of life science.

Course Outcomes

CO1	Demonstrate and perform of agarose gel electrophoresis
CO2	Illustrate principle and applications of SDS PAGE which is useful for research
CO3	Demonstrate activity of restriction endonuclease enzyme
CO4	Evaluate qualitative analysis ethanol production through microorganism
CO5	Understand the Southern Blotting, Northern Blotting and Western Blotting techniques
CO6	Evaluation in research advances in laboratory experiments

Text Book (s)

- 1. PRACTICALS AND VIVA IN MEDICAL BIOCHEMISTRY, DANDEKAR, S. P. Ist edition
- 2. Wilson and Walker, Cambridge press.
- 3. PRACTICAL BIOCHEMISTRY Gupta ARC 5th edition

Reference Book (s)

- 1. PRACTICALS AND VIVA IN MEDICAL BIOCHEMISTRY, DANDEKAR, S. P. Ist edition
- 2. Wilson and Walker, Cambridge press.
- 3. PRACTICAL BIOCHEMISTRY Gupta ARC 5th edition

Practical's

- 1. Demonstration of agarose gel electrophoresis
- 2. Demonstration of SDS PAGE.
- 3. Demonstration of native PAGE.
- 4. Demonstration of activity of restriction endonuclease enzyme.
- 5. Demonstration of ethanol production through microorganism.
- 6. To study following techniques through photographs a. Southern Blotting b. Northern Blotting c. Western Blotting
- 7. Demonstration of cardiac perfusion and isolation of rat heart through video.

Continuous	Assessment Pattern
------------	---------------------------

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50		50	100

Name of The Course	Programming Languages C and Python Laboratory				
Course Code	BCSE1031				
Prerequisite	Higher Secondary Examination with Chemistry a Chemistry, Botany and Zoology or Biochemistry and a recognized Board in science stream with a minimum in aggregate.	and Che n of :	Bio mist 50 %	logy ry fro 6 mai	or om rks
Corequisite	Students should have understanding and a basic k computing	now	ledg	e of 1	the
Antirequisite					
		L	Т	Р	С
		0	0	6	3

Course Objective:

Students are able to understand the basic data structures used in programming (such as arrays and array lists).

Text / References Books:

- 13. E Balaguruswamy, "Object Oriented Programming with C++", Tata McGraw-Hill Education, 2008.
- 14. Paul Deitel, Harvey Deitel, "C++ How to Program", 8th Edition, Prentice Hall, 2011.
- 15. John R. Hubbard, "Programming with C++", Schaum's Series, 2nd Edition, 2000.
- 16. Harry, H. Chaudhary, "Head First C++ Programming: The Definitive Beginner's Guide", First Create space Inc, O-D Publishing, LLC USA.

27. Write a program to find greatest of three numbers.
28. Write a program to find gross salary of a person
29. Write a program to find grade of a student given his marks.
30. Write a program to find divisor or factorial of a given number.
31. Write a program to print first ten natural numbers.
32. Write a program to print first ten even and odd numbers.
33. Write a program to find grade of a list of students given their marks.
34. Create Matrix class. Write a menu-driven program to perform following Matrix operations (2-D array implementation):

35. Sum b) Difference c) Product d) Transpose

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50		50	100

Name of The Course	Research Methodology and Statistics
Course Code	BBS09T2411

Prerequisite	Students should qualify 10+2 or equivalent exami	Students should qualify 10+2 or equivalent examination in			
	Science stream				
Corequisite	Students should have fundamental knowledge of s mathematics, physics and chemistry	Students should have fundamental knowledge of subjects like mathematics, physics and chemistry			
Antirequisite	-				
		L	Т	Р	С
		2	-	-	2

Course Objective: The objective of the course is to impart research based knowledge to the students. They would be taught the various ways of data collection, research methodologies adopted in different settings, and statistical methods.

Course Outcome:

CO1	Students will get separately familiar with terms research and methodology,
	respectively.
CO2	Identifying different type of research sampling and research design.
CO2	Students will understand raw data, primary data, secondary data and their
	different methods of collection.
CO4	Students will appraise the application of sampling through statistics.
CO5	Students will get familiar with different descriptors of statistics to analyse data
	both quantitatively and qualitatively.
CO 6	Students will develop the statistical analysis indulges in modern research for drug
	designing.

Course Contents:

Module I: Introduction to Research Methodology	6-Lectures
Definition, concept and research in science; Introduction to Research Metho	dology, Research
methodology in science.	
Module II: Research in Scientific and Social Settings	5-Lectures
Research Design: Research Sampling, rationale for using a particular sampling proced	lure, Probability.
Module III: Tools of Data Collection	5-Lectures
Data and its types, Methods for Collecting Data, Observation method, Questionnaire	, Other Methods
Module IV: Introduction to Statistics	4-Lectures
Introduction to statistics (Biostatistics); Sample and Population, parametric and	non parametric
statistics.	
Module V: Descriptive Statistics	5-Lectures
Measures of central tendency; Measures of dispersion and deviation; graphical repr	resentation of the
data. Correlation and Regression	
Unit 6: Recent research advances	3 hrs
Descriptors, Quantitative structure-activity relationship (QSAR), Quantitative struct	ure-property

relationship(QSPR), Drug designing.

Text & References:

- Broota, K. D., Experimental designs in psychological research, Wiley eastern, New York, 1992.
- Guilford, Statistics in Psychology and Education, McGraw Hill, New York, 1986.
- J T Walker, Statistics in Criminology and Criminal Justice analysis and Interpretation

- Leo, A., & Hoekman, D. H. (1995). Exploring QSAR. American Chemical Society.
- Chanin Nantasenamat, Chartchalerm Isarankura-Na-Ayudhya, Thanakorn Naenna, Virapong Prachayasittikul, A Practical Overview of Quantitative Structure- Activity Relationship. EXCLI Journal 2009;8:74-88.
- Wiktor Pronobis, Alexandre Tkatchenko, and Klaus-Robert Muller, J. Chem. Theory Comput. 2018, 14, 2991–3003

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

SEMESTER - V

Name of The Course	MINOR PROJECT				
Course Code	BSMB3001				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general b a basic knowledge of the biological molecules, t regulation, structure/function, interaction with t and evolution.	iolog he c he e	gy, in ell, g nvir	nclud genet onme	ing ics, ent,
Antirequisite					
		L	Т	Р	С
		4	0	0	4

COURSE CONTENTS:

Minor Project is considered as a special course involving application of knowledge in solving / analyzing /exploring a real life situation / difficult problem. The duration of Minor project is 1 month (4-6 weeks). A Minor Project may be given in lieu of a discipline specific elective paper/Microbiology.This should be done in consultation with the faculty supervisor and agency supervisor under whom he / she is getting trained. The project report should be around 20 pages and chaptered as follows:

Chapter I: Introduction Chapter II: Review of Literature Chapter -3:: Methodology Chapter IV: Results&Discussion Chapter V: Summary and Conclusion

The research should be original and should be action oriented in that the results should be able to throw light on some of the important unexplored areas that would be of practical use to the microbiologists.

Students are expected to decide on the specific project area and title, and carry out substantial portion of the literature survey during the end of their 4th semester. After the end of their 4thsemester ETEs, each student will be asked to make presentation about the project including literature available, objective sought and work plan including methodologies to the Student Project Monitoring Committee constituted by the HOD. The Project Work may be a work based on theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of

data, etc. or a combination of these. The final project report will be evaluated by a panel of examiners consisting of HOD, Guide and Co-guide (wherever applicable) and an External Examiner. Viva-voce examination for the same will be conducted.

Continuous Assessment P	attern		
Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
50		50	100

Name of The Course	INHERITANCE BIOLOGY				
Course Code	BSDB3003				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a % marks in aggregate.	and and and mir	Bio Ch Dimu	ology iemis im of	or try 50
Corequisite	Students should have understanding of general bi a basic knowledge of the biological molecules, the regulation, structure/function, interaction with the and evolution.	iolog he co he ei	y, ir ell, g nvir	iclud geneti onme	ing ics, ent,
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of inheritance and genetics. Course Outcomes

CO1	Understand Introduction of genetics and Mendelian principles
CO2	Interpret extensions of Mendelian principles
CO3	Demonstrate Extra chromosomal inheritance
CO4	Illustratethe Microbial genetics
CO5	Illustrate the Mutation
CO6	Evaluate the application of inheritance biology

Text Book (s)

- Snustad, D.P. and Simmons, M.J. (2009). Principles of Genetics. V Edition, John Wiley and Sons Inc.
- Gardner, E.J., Simmons, M.J., Snustad, D.P. (2008). Principles of Genetics. VIII Edition. Wiley India.
- Benjamin A. Pierce. 2003. Genetics: A Conceptual Approach. W.H, Freeman and Company, New York.

Reference Book (s)

- Klug, W.S., Cummings, M.R., Spencer, C.A. (2012). Concepts of Genetics. X Edition. Benjamin Cummings.
- Russell, P. J. (2009). Genetics- A Molecular Approach. III Edition. Benjamin Cummings.
- Griffiths, A.J.F., Wessler, S.R., Lewontin, R.C. and Carroll, S.B. Introduction to Genetic Analysis. IX Edition. W. H. Freeman and Co.

Unit-1 INTRODUCTION OF GENETICS AND MENDELIAN PRINCIPLES 08 hours

Concept of gene: Allele, multiple alleles, pseudoallele, complementation tests, genotype, phenotype. Mendelian principles; Dominance, segregation, independent assortment.

Unit-2 EXTENSIONS OF MENDELIAN PRINCIPLES 08 hours

Codominance, incomplete dominance, gene interactions, pleiotropy, genomic imprinting, penetrance and expressivity, phenocopy, linkage and crossing over, sex linkage, sex limited and sex influenced characters.

Unit-3EXTRA CHROMOSOMAL INHERITANCE

Inheritance of Mitochondrial and chloroplast genes, maternal inheritance. Quantitative genetics: Polygenic inheritance, heritability and its measurements, OTL mapping.

Unit-4MICROBIAL GENETICS

10 hours

Methods of genetic transfers – transformation, conjugation, transduction and sex-duction, mapping genes by interrupted mating, fine structure analysis of genes.

Unit-5MUTATION

12hours

Types, causes and detection, mutant types – lethal, conditional, biochemical, loss of function, gain of function, germinal verses somatic mutants, insertional mutagenesis. Structural and numerical alterations of chromosomes: Deletion, duplication, inversion, translocation, ploidy and their genetic implications. Recombination: Homologous and non-homologous recombination.

Unit 6 Research advances in inheritance biology **Research article/review/MOOC**

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	MEDICAL MICROBIOLOGY				
Course Code	BSDB3004				
Prerequisite	Higher Secondary Examination with Chemistry an Chemistry, Botany and Zoology or Biochemistry a from a recognized Board in science stream with a % marks in aggregate	nd E and (min	Biolo Che imu	gy or mistr m of	r 'y 50
Corequisite	Basic knowledge of Microbiology				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives::Students are able to understand the concept of medical microbiology and work in hospital and research laboratory. Students are able to research in microorganism and help for treatment. **Course Outcomes**

CO1 Overview of microorganism, routes of transmission, pathogenesis and treatment

08hours

CO2	Demonstrate molecular diagnosis of microbial diseases, study of diagnostic techniques
	PCR, ELISA
CO3	Describe Characteristics, diagnosis, treatment, prevention and control of bacterial
	disease, gastrointestinal and viral disease
CO4	Evaluate about protozoans infection, route of infection and treatment, types of fungus
	and causative agents of fungal disease
CO5	Principle of antibiotics and its application for treatments of various kinds of disease
CO6	Evaluate the application and significance of medical microbiology

Text Book (s)

- 3. Chaechter M. Medoff G. and Eisenstein BC. (1993) Mechanism of Microbial Diseases 2nd edition. Williams and Wilkins, Baltimore.
- 4. Collee, JG. Duguid JP, Fraser AG, Marimon BP. (1989) Mackie and Mc Cartney Practical Medical Microbiology, 13th Edition. Churchill Livingstone.
- 5. Pharmaceutical Microbiology Edit. ByW.B.Hugo&A.D.Russell Sixth edition. Blackwell scientific Publications.
- 6. Analytical Microbiology–Edit by Frederick Kavanagh Volume I & II.Academic Press New York.

Reference Book (s)

- 1. Pharmaceutical Microbiology Edit. ByW.B.Hugo&A.D.Russell Sixth edition. Blackwell scientific Publications.
- 2. Analytical Microbiology-Edit by Frederick Kavanagh Volume I & II. Academic Press New York.

UNIT I

BASICS IN MEDICAL MICROBIOLOGY

Infectious diseases overview. Medically important microbes. Microbial diseases - sources, route of transmission. Host pathogen interaction: Definitions - Infection, Invasion, Pathogen, Pathogenicity, Virulence, Toxigenicity Pathogenesis, Microbial virulence and virulence factors - Signs and symptoms of microbial diseases. Treatment, Prevention and control of microbial infections. Immunity of microbial diseases.

Unit-2

DIAGNOSIS OF MICROBIAL DISEASES

Collection, transport and preliminary processing of clinical pathogens. Clinical, microbiological, immunological and molecular diagnosis of microbial diseases. Modern methods of microbial diagnosis. Principles of different diagnostic tests (ELISA, Immunofluorescence, Agglutination based tests, Complement fixation, PCR, DNA probes).

Unit-3

BACTERIAL DISEASES AND VIRAL DISEASES

Characteristics, diagnosis, treatment, prevention and control of diseases caused by Bacteria,

The following diseases in detail with Symptoms, mode of transmission, prophylaxis and control Respiratory Diseases: *Streptococcus pyogenes*, *Haemophilusinfluenzae*, *Mycobacterium tuberculosis*

Gastrointestinal Diseases: Escherichia coli, Salmonella typhi, Vibrio cholerae, Helicobacter pylori Others: Staphylococcus aureus, Bacillus anthracis, Clostridium tetani, Treponema pallidum, Clostridium difficie.

List of viral diseases of various organ systems and their causative agents.

Symptoms, mode of transmission, prophylaxis and control of Polio, Herpes, Hepatitis, Rabies, Dengue, AIDS, Influenza with brief description of swine flu, Ebola, Chikungunya, Japanese Encephalitis

Unit-4

PROTOZOAN AND FUNGAL DISEASES

List of diseases of various organ systems and their causative agents. The following diseases in detail with Symptoms, mode of transmission, prophylaxis and control Malaria, Kala-azar. Brief description of each of the following types of mycoses and one representative disease to be studied with respect to transmission, symptoms and prevention Cutaneous mycoses: Tinea pedis (Athlete's foot),Systemic mycoses: Histoplasmosis, Opportunistic mycoses: Candidiasis

Unit-5

ANTIBIOTICS, SYNTHETIC ANTIMICROBIAL AGENTS AND ACTION MECHANISM OF ANTIBIOTICS

Antibiotics and synthetic antimicrobial agents, Antifungal antibiotics, antitumor substances. Peptide antibiotics, Chloramphenicol, Sulphonamides and Quinolinone antimicrobial agents. Chemical disinfectants, antiseptics and preservatives, Mechanism of action of antibiotics (inhibitors of cell wall synthesis, nucleic acid and protein synthesis). Bacterial resistance to antibiotics, Penetrating defenses – How the antimicrobial agents reach the targets (cellular permeability barrier, cellular transport system and drug diffusion).

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	EVOLUTIONARY BIOLOGY	
Course Code	BSDB3005	
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.	
Corequisite	Basic knowledge of evolution	
Antirequisite		
	L T P C	

Course Objectives:Students are able to understand the significance of evolution and can work in geography laboratory, engage in research.

Course Outcomes

CO1	Explain the theories of organic evolution
CO2	Analyze Evidence of Organic evolution
CO3	Illustrate the basic concept Population genetics and Genetic drift
CO4	Interpret Products of evolutionary change
CO5	Illustrate the Geological time scale.
CO6	Evaluate the application and significance of Evolution Biology

Text Book (s)

- 1. Ridley, M. (2004) Evolution. III Edition. Blackwell Publishing
- 2. Barton, N. H., Briggs, D.E.G., Eisen, J. A., Goldstein, D. B. and Patel, N. H. (2007). Evolution. Cold Spring Harbour Laboratory Press.
- 3. Hall, B.K. and Hallgrimsson, B. (2008) Evolution. IV Edition. Jones and Bartlett Publishers
- 4. Pevsner, J. (2009) Bioinformatics and functional genomics. II Edition. Wiley-Blackwell
- 5. Rastogi, V.B. organic evolution.

Reference Book (s)

- 1. Ridley, M. (2004) Evolution. III Edition. Blackwell Publishing
- 2. Barton, N. H., Briggs, D.E.G., Eisen, J. A., Goldstein, D. B. and Patel, N. H. (2007). Evolution. Cold Spring Harbour Laboratory Press.
- 3. Rastogi, V.B. organic evolution.

Unit- I

Theories of organic evolution

Lamarckism, Darwinism, Development and concept of synthetic theory, Natural selection in action (industrial melanism, antibiotic and DDT resistance), type of natural selection; Stabilizing selection, Directional selection, Diversifying selection, cyclic selection, k selection and r selection, selection pressure.

Unit-2

Evidence of Organic evolution

Evidence of Organic evolution from morphology and comparative anatomy(tectology); Homology and homologous organs, types of homology; phylogenetic homology, sexual homology, serial homology. Analogy and analogous organs, Divergent evolution, Convergent evolution, vestigial organs, Evidence of evolution fromComparative embryology, recapitulation theory, Evidence from Palaeontology, Evidence from Biochemistry and physiology, Evidence fromZoogeography.

Unit-3

Population genetics and Genetic drift

Concept of Deme, gene pool, gene frequency, genotype frequency, genetic equilibrium and Hardy Weinberg's law of equilibrium, genetic load and genetic death, mutational and segregation load, silent feature of Genetic drift, Sewall wright effect, Bottle neck phenomenon, founder effect, concept of polymorphism, balanced polymorphism, transient polymorphism.

Unit-4

Products of evolutionary change

Species concept, speciation, phyletic speciation, quantum speciation, gradual speciation, allopatric speciation, sympatric speciation, parapatric speciation, Isolating mechanisms and modes of speciation. Adaptation and evolution: Structural adaptation, coadaptation-adaptation, k adaptation, Divergent evolution (adaptive radiation) adaptive radiation in finches, parallel evolution (convergent evolution)

Unit-5

Geological time scale

The Eras, Azoic era, Archaeozoic era, Proterozoic area, Paleozoic era, Mesozoic era, Cenozoic era, Different periods and its characteristics, Ordovician period, Silurian period, Devonian period, Dinosaurs and its type distribution and extinction.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	30	50	100

Name of Thecourse	BIOMEDICAL SCIENCES Lab V				
Course Code	BSBM3010				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or				
	Chemistry, Botany and Zoology or Biochemistry	and	Cne	mistr	y
	from a recognized Board in science stream with a minimum of 50				
	% marks in aggregate				
Corequisite	Basic knowledge of Biology				
Antirequisite					
		L	Т	Р	С
		0	0	6	3

Course Objectives:Students are able to expose in research and gain experience.

Course Outcomes

CO1	Understand the Principles of Colorimetry
CO2	Illustrate principle and applications of of Beer-Lambert's law
CO3	Determination of molar extinction coefficient of NADH
CO4	Separate of Plant pigments/lipids/sugars by different chromatographic techniques
CO5	Separation and amplify DNA using electrophoresis and chromatography
CO6	Evaluation in research advances in laboratory experiments

Text Book (s)

COMPREHENSIBLE VIVA & PRACTICAL BIOCHEMISTRY

Reference Book (s)

COMPREHENSIBLE VIVA & PRACTICAL BIOCHEMISTRY

Practicals

- 1. Principles of Colorimetry
- 2. Verification of Beer-Lambert's law Protein quantification by Biuret's method.
- 3. Determination of molar extinction coefficient of NADH.
- 4. Identification of amino acids by Paper chromatography.
- 5. Separation of Plant pigments/lipids/sugars by Thin layer chromatography.
- 6. Gel Electrophoresis of DNA.
- 7. To amplify DNA using PCR through video
- 8. Restriction digestion of DNA
- 9. Separation of proteins by isoelectric focusing.
- 10. To perform ELISA experiment.
- 11. Grouping of blood and Rh typing.

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	Biomedical sciences LAB-VII				
Course Code	BSB3M011				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	Р	С
		0	0	6	3

Course Objectives:Students are able to understand the basic techniques of medical microbiology and immunology

Course Outcome :

CO1	Understand the preparation of master and replica plates.
CO2	Demonstrate the effect of chemicals and radiation on bacterial cells
CO3	Demonstration of conjugation and Ames test
CO4	Demonstration of different types of fermenters.
CO5	Visit report
CO6	Lab report

Text and Reference Book (s)

- 11. Aneja KR. Experiments in Microbiology, Plant pathology and Biotechnology. 4th Edition, New Age International Publishers, Chennai. 2005
- 12. Horold J Benson. Microbiological Applications. Laboratory Manual in General Microbiology. 7th International Edition, WCB McGraw – Hill, Boston. 1998
- 13. James G Cappuccino & Natalie Sherman Microbiology : A Laboratory manual. 6th Edition, Published by Pearson Education. 2004
- 14. 5. Dubey RC and Maheswari DK. Practical Microbiology 1st Edition, S. Chand & Company Ltd., New Delhi. 2004
- Myer's and Koshi's Manual of Diagnostic Procedures in Medical Microbiology and Immunology / Serology. Published by Department of Clinical Microbiology, CMC and Hospital, Vellore, Tamil Nadu. 2001
 - 8. Preparation of Master and Replica Plates.
 - 9. Study the effect of chemical (HNO2) and physical (UV) mutagens on bacterial cells
 - 10. Study survival curve of bacteria after exposure to ultraviolet (UV) light.
 - 11. Demonstration of Bacterial Conjugation.
 - 12. Demonstration of Ames test.
 - 13. Study different parts of fermenter.
 - 14. A visit to any educational institute/industry to see an industrial fermenter, and other downstream processing operations.

Internal Assessment
(IA)Mid Term Test
(MTE)End Term Test
(ETE)Total Marks302050100

Name of The Course	Dissertation				
Course Code	BSBC9998				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution				
Antirequisite					
		L	Т	Р	С
		0	0	0	14

SEMESTER: VI

Course Objectives:

The aim is to develop an understanding of the processes and skills required to undertake a supervised research project at masters level of study. The objectives are

- To develop research skills commensurate with the accomplishment of a masters degree.
- To develop skills in independent inquiry.
- To produce a coherent and logically argued piece of writing that demonstrates competence in research and the ability to operate independently.
- To address issues of research design, methodology, ethics and theoretical arguments, and apply these to your own research.

Course Outcomes

CO1	Demonstrate the use of knowledge of basic and applied sciences in project based
	learning.
CO2	Organizes experiments and researches, perform analysis and interpret data for the
	designed project.
CO3	Cooperate effectively as an individual and as a member in the research team.
CO4	Systematize the articulated ideas, comprehend and write effective reports,
	documentation and to communicate effectively.
CO5	Demonstrate knowledge and understanding of research problems and related
	principles to manage projects in multidisciplinary research areas.
CO6	Evaluate the research advances in research project

Project work/Dissertation is considered as a special course involving application of knowledge in solving / analyzing /exploring a real life situation / difficult problem. A Project/Dissertation work may be given in lieu of a discipline specific elective paper/Biochemistry.This should be done in consultation with the faculty supervisor and agency supervisor under whom he / she is getting trained. The project report should be around 100 pages and chaptered as follows:

Chapter I: Introduction Chapter II: Review of Literature Chapter III: Methodology Chapter IV: Results Chapter V: Discussion Chapter VI: Summary and Conclusion

The research should be original and should be action oriented in that the results should be able to throw light on some of the important unexplored areas that would be of practical use to the forensic experts.

Students are expected to decide on the specific project area and title, and carry out substantial portion of the literature survey during the end of their 3rd semester. After the end of their 3rdsemester ETEs, each student will be asked to make presentation about the project including literature available, objective sought and work plan including methodologiesto the Student Project Monitoring Committee constituted by the Division Chair. The Project Work may be a work based on theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, etc. or a combination of these. The final project report will be evaluated by a panel of examiners consisting of Dean,DC, PC, supervisor and Co-supervisor (wherever applicable) and an External Examiner. Viva-voce examination for the same will be conducted.

The following weightage is assigned at each stage of Student Project evaluation.

Activity	Remarks
Zeroth Review	Project scopes and Proposal
1 st Review	Methods of project Implementation
2 nd Review	Technical Achievement
3 rd Review (Final)	Innovation and contribution
Submission of Project Report to the	Two weeks before the viva-voce exam
Department	

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
50	0	50	100

Name of The Course	Web based course/seminar-II				
Course Code	BSDB3010				
Prerequisite	Candidate for admission to the first year of B.Sc. Degree Course in Biochemistry should passed the Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biological	ogy	7.		
Antirequisite					
	L		Τ	Р	С
	0)	0	0	2

Course Objectives:

- **Students are** directly engage and learn particular subject of their interest. This strengthens the fundamentals of the student in the course.
- It gives the students the opportunities to explore new areas of interest. Also gives students the opportunity to learn in greater depth the subjects they wish to master.
- Promotes the self-learning initiative of the students where their own motivation is what drives them to complete the course. This fosters the habit of keeping oneself updated always by means of self-study.

Internal Assessment (IA)	Mid Term Test (MTE)	ЕТЕ	Total Marks
50		50	100

ELECTIVES GROUP-I

Name of The Course	BIOINFORMATICS				
Course Code	BSDB2011				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50				
Corequisite	Students should have understanding of general bi a basic knowledge of the computer science.	olog	y, in	cludi	ng
Antirequisite					
		L	Τ	Р	С
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of bioinformatics. Course Outcomes

CO1	Describe the Introduction of Computer Fundamentals
COI	Describe the introduction of Computer Fundamentals
CO2	It Interpret the Introduction of Bioinformatics and Biological Databases
CO3	Demonstrate Sequence Alignments, Phylogeny and Phylogenetic trees
CO4	Evaluate Genome organization and analysis
CO5	Evaluate Protein Structure Predictions
CO6	Evaluate the significance of bioinformatis

Text Book (s)

- 1. Saxena Sanjay (2003) A First Course in Computers, Vikas Publishing House
- 2. Pradeep and Sinha Preeti (2007) Foundations of Computing, 4th ed., BPB Publications
- **3. Lesk M.A. (2008) Introduction to Bioinformatics. Oxford Publication, 3rd International Student** Edition
- **4.** Rastogi S.C., Mendiratta N. and Rastogi P. (2007) Bioinformatics: methods and applications, genomics, proteomics and drug discovery, 2nd ed. Prentice Hall India Publication
- 5. Primrose and Twyman (2003) Principles of Genome Analysis & Genomics. Blackwell

Reference Book (s)

- 1. Saxena Sanjay (2003) A First Course in Computers, Vikas Publishing House
- 2. Pradeep and Sinha Preeti (2007) Foundations of Computing, 4th ed., BPB Publications
- 3. Lesk M.A.(2008) Introduction to Bioinformatics . Oxford Publication, 3rd International Student Edition
- **4.** Rastogi S.C., Mendiratta N. and Rastogi P. (2007) Bioinformatics: methods and applications, genomics, proteomics and drug discovery, 2nd ed. Prentice Hall India Publication
- 5. Primrose and Twyman (2003) Principles of Genome Analysis & Genomics. Blackwell

Unit-1 INTRODUCTION TO COMPUTER FUNDAMENTALS12 hours

RDBMS - Definition of relational database, Mode of data transfer (FTP, SFTP, SCP), advantage of encrypted data transfer.

Unit-2 INTRODUCTION TO BIOINFORMATICS AND BIOLOGICAL DATABASES 10hours

Biological databases - nucleic acid, genome, protein sequence and structure, gene expression databases, Database of metabolic pathways, Mode of data storage - File formats - FASTA, Genbank and Uniprot, Data submission & retrieval from NCBI, EMBL, DDBJ, Uniprot, PDB.

Unit-3 SEQUENCE ALIGNMENTS, PHYLOGENY AND PHYLOGENETIC TREES09hours

Local and Global Sequence alignment, pairwise and multiple sequence alignment. Scoring an alignment, scoring matrices, PAM & BLOSUM series of matrices. Types of phylogenetic trees, Different approaches of phylogenetic tree construction -UPGMA, Neighbour joining, Maximum Parsomony, Maximum likelihood.

Unit-4 GENOME ORGANIZATION AND ANALYSIS

08 hours

Diversity of Genomes: Viral, prokaryotic & eukaryotic genomes; Genome, transcriptome, proteome, 2-D gel electrophoresis, Maldi Toff spectroscopy; Major features of completed genomes: *E.coli, S.cerevisiae, Arabidopsis,* Human.

Unit-5 PROTEIN STRUCTURE PREDICTIONS

08 hours

Hierarchy of protein structure - primary, secondary and tertiary structures, modelling; Structural Classes, Motifs, Folds and Domains; Protein structure prediction in presence and absence of structure template; Energy minimizations and evaluation by Ramachandran plot Protein structure and rational drug design.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOSTATISTICS				
Course Code	BSDB2012				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general bias a basic knowledge of the statistics.	iolog	gy, iı	nclud	ing
Antirequisite					
		L	Т	P	С
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of biostatistics. Course Outcomes

CO1	Understand Measures of central tendency, Correlation and Regression
CO2	Interpret Mean and Variance, namely Binomial, Poisson
CO3	Demonstrate parametric and non-parametric statistics.
CO4	Illustrate the Sampling Distributions, Standard Error, Testing of Hypothesis
CO5	Illustrate the Large Sample Test based and Small sample test
CO6	Evaluate the application of Biostatistics

Text Book (s)

- 7. Edmondson and D. Druce: Advanced Biology Statistics, Oxford University Press; 1996.
- 8. W. Danial: Biostatistics: A foundation for Analysis in Health Sciences, John Wiley and Sons Inc; 2004

Reference Book (s)

- 5. Edmondson and D. Druce: Advanced Biology Statistics, Oxford University Press; 1996.
- 6. W. Danial : Biostatistics : A foundation for Analysis in Health Sciences, John Wiley and Sons Inc; 2004

Unit-1

12 hours

Measures of central tendency, Measures of dispersion; skewness, kurtosis; Elementary Probability and basic laws; Discrete and Continuous Random variable, Mathematical Expectation; Curve Fitting; Correlation and Regression. Emphasis on examples from Biological Sciences.

Unit-2

10 hours

09 hours

08hours

Mean and Variance of Discrete and Continuous Distributions namely Binomial, Poisson, Geometric, Weibull, Logistic and Normal distribution. Fitting of Distributions.

Unit-3

Statistical methods: Scope of statistics: utility and misuse. Principles of statistical analysis of biological data. Sampling parameters. Difference between sample and Population, Sampling Errors, Censoring, difference between parametric and non-parametric statistics.

Unit-4

Sampling Distributions, Standard Error, Testing of Hypothesis, Level of Significance and Degree of Freedom.

Unit-5

Large Sample Test based on Normal Distribution, Small sample test based on t-test, Z- test and F test; Confidence Interval; Distribution-free test - Chi-square test. Basic introduction to Multivariate statistics, etc.

Unit 6: Research Advances in Biostatistics: Research article, Review, MOOC

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOPHYSICS				
Course Code	BSDB2013				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50				
Corequisite	% marks in aggregate. Students should have understanding of general bi	iolog	gy, iı	nclud	ing
	a basic knowledge of the physics.				
Anurequisite				_	~
		L	T	P	C
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of biophysics.

565

08hours

Course Outcomes

CO1	Understand numerical models with non-linear algebraic equations, numerical
	integration.
CO2	Describe the principle and working of crystallography.
CO3	Interpret the applications of numerical methods in biological systems.
CO4	Demonstrate the use of quantum biology.
CO5	understand the theoretical modelling of biomolecules.
CO6	Evaluate the significance of Biophysics

Text Book (s)

- 16. A Textbook of Biophysics: For Medical Science and Biological Science Students by RN Roy
- 17. Introduction to Biophysics by Pranab Kumar Banerjee
- 18. An Introduction to Biophysics by David Burns
- 19. Fundamentals and Techniques of Biophysics and Molecular Biology by Pranav Kumar
- 20. Biological Physics: Energy, Information, Life by Philip Nelson

Reference Book (s)

- 17. A Textbook of Biophysics: For Medical Science and Biological Science Students by RN Roy
- 18. Introduction to Biophysics by Pranab Kumar Banerjee
- 19. An Introduction to Biophysics by David Burns
- 20. Fundamentals and Techniques of Biophysics and Molecular Biology by Pranav Kumar
- 21. Biological Physics: Energy, Information, Life by Philip Nelson

Unit-1 NUMERICAL METHODS

Introduction to numerical methods, solutions to non-linear algebraic equations by the method of iteration and Newton aphson method, numerical integration by trapezoidal rule and simpson's rule, numerical solution of ordinary differential equations by picard's method of successive approximation, Euler's method and Runge-Kutta method.

Unit-2 ELEMENTARY CRYSTALLOGRAPHY

10 hours

12 hours

Introduction, symmetry in crystals, lattices and unit cells, crystal systems, Bravais lattices, elements of symmetry- rotation axis, mirror planes and center of inversion, point group symmetry- monoaxial point groups, polyaxial point groups, translational symmetry- screw axis and glide planes, space group, equivalent points, X-ray diffraction and Bragg equation.

Unit-3MATHEMATICAL METHODS AND THEIR APPLICATIONS IN BIOLOGICAL SYSTEMS 09hours

Ordinary differential equations of the first degree and first order (variable separable method, linear equation), linear differential equations of the second order with constant coefficients, the Laplace Transform, Inverse Laplace transform, application of Laplace transform to solutions of differential equations, Fourier series and their applications.

Unit-4 QUANTUM BIOLOGY AND ITS USES

08hours

Classical mechanics, Newton, Lagrange and Hamilton's equations, Schrodinger's equation and its complete solution for S.H.O, central force and angular momentum.

Unit-5THEORETICAL MODELING OF BIOMOLECULAR SYSTEMS 08hours

Basic principles of modeling, modeling by energy minimization technique, concept of rotation about bonds, energy minimization by basic technique for small molecules, Ramachandran plot,

torsional space minimization, energy minimization in cartesian space, molecular mechanicsbasic principle, molecular dynamics basic principles.

Continuous Assessment Pattern				
Internal Assessment	Mid Term Test	End Term Test	Total Marks	
(IA)	(MTE)	(ETE)		
30	20	50	100	

Name of The Course	BIOFERTILIZERS AND PESTICIDES				
Course Code	BSDB2015				
Prerequisite	Higher Secondary Examination with Chemistry Chemistry, Botany and Zoology or Biochemistry from a recognized Board in science stream with a % marks in aggregate.	and and a min	l Bio l Cł nimu	ology iemis im of	or try 50
Corequisite	Students should have understanding of general b a basic knowledge of the biological molecules, t regulation, structure/function, interaction with t and evolution.	iolog he c he e	gy, in ell, g nvir	nclud genet onme	ing ics, ent,
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: To provide basic understanding of biofertilizer and pesticides.

course	outcomes
CO1	To understand the basic concept of biofertilizer.
CO2	To identify the role of azospirillium as biofertilizer .
CO3	To explain the process of nitrogen fixation.
CO4	To explain various types of mycorrhizal association.
CO5	To elucidate the basic concept of pest and pest management.
CO6	To evaluate the application of Biofertilizer and pesticide

Text Book (s)

1. Palaniappan SP & Anandurai K. 1999. Organic Farming–Theory and Practice. Scientific Publishers, Jodhpur

2. Joshi, M. 2014. New Vistas of Organic Farming 2nd Ed. Scientific Publishers, Jodhpur.

3. Farming system : Theory and Practice - S.A.Solaimalai

Reference Book (s)

- 7. Organic Farming: Theory and Practice- S.P.Palaniappan and K.A. Annadurai
- 8. A hand book of Organic Farming by A.K.Sharma

Unit-1 INTRODUCTION TO BIOFERTILIZERS08 hourGeneral account about the microbes used as biofertilizer – Rhizobium – isolation,
identification, mass multiplication, carrier based inoculants, Actinorrhizal symbiosis.

Unit-2 AZOSPIRILLUM

10 hour

Azospirillum: isolation and mass multiplication – carrier based inoculant, associative effect of different microorganisms. Azotobacter: classification, characteristics – crop response to Azotobacter inoculum, maintenance and mass multiplication

Unit-3 CYANOBACTERIA

09 hours

Cyanobacteria (blue green algae), Azolla and Anabaena azollae association, nitrogen fixation, factors affecting growth, blue green algae and Azolla in rice cultivation.

Unit-4 MYCORRHIZAL ASSOCIATION

10 hours

Mycorrhizal association, types of mycorrhizal association, taxonomy, occurrence and distribution, phosphorus nutrition, growth and yield – colonization of VAM – isolation and inoculum production of VAM, and its influence on growth and yield of crop plants.

Unit-5 PEST & PEST MANAGEMENT

08 hours

Classification of pesticides on chemical nature and according to target species, mode of action, Methods of pest controls – Classification: Natural & applied control [Physical, mechanical, cultural, biological, genetic, regulatory, chemical controls] Integrated pest management..

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test Total Mar	
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	ODCANIC FADMINC				
Name of The Course	UNGAINIC FARMING				
Course Code	BSDB2014	BSDB2014			
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry Botany and Zoology or Biochemistry and Chemistry				
	from a recognized Board in science stream with a	min	imu	im of	f 50
	% marks in aggregate.				
Corequisite	Students should have understanding of general bi a basic knowledge of the biological molecules, th regulation, structure/function, interaction with th and evolution.	iolog he c he e	gy, in ell, g nvir	nclud genet onmo	ling ics, ent,
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: To provide a broad foundation in organic farming.

Course	Outcomes	
Course	Outcomes	

CO1	To understand the basic concept of organic farming.
CO2	To describe the concept of green manuring.
CO3	To identify the different methods of organic plant protection
CO4	To explain various types of organic crop production methods.
CO5	To understand the basic concept of farm economy.
CO6	To Evaluate the application organic farmingin treatment of toxic molecules

Text Book (s)

- 10. Dubey, R.C., 2005 A Text book of Biotechnology S.Chand & Co, New Delhi.
- 11. Kumaresan, V. 2005, Biotechnology, Saras Publications, New Delhi.
- 12. John Jothi Prakash, E. 2004. Outlines of Plant Biotechnology. Emkay -Publication, New Delhi.

Reference Book (s)

- 10. Sathe, T.V. 2004 Vermiculture and Organic Farming. Daya publishers.
- 11. Subha Rao, N.S. 2000, Soil Microbiology, Oxford & IBH Publishers, New _Delhi.
- 12. Vayas, S.C, Vayas, S. and Modi, H.A. 1998 Bio-fertilizers and organic _Farming Akta Prakashan, Nadiad

Unit-1 INTRODUCTION TO ORGANIC FARMING 08 hour Green manuring and organic fertilizers, Recycling of biodegradable municipal, agricultural and Industrial wastes - biocompost making methods, types and method of vermicomposting field Application.

Unit-2 ORGANIC PLANT NUTRIENT MANAGEMENT

10 hour Organic farming systems, soil tillage, land preparation and mulching, Choice of varieties. Propagation-seed, planting materials and seed treatments, water management Green manuring, composting- principles, stages, types and factors, composting methods, Vermi composting, Bulky organic manures, concentrated organic manures, organic preparations, organic amendments and sludges

Unit-3 ORGANIC PLANT PROTECTION

Plant protection- cultural, mechanical, botanical pesticides, control agents, Weed management, Standards for organic inputs- plant protection.

Unit-4 ORGANIC CROP PRODUCTION PRACTICES

10 hours

Organic crop production methods- rice, coconut. Organic crop production methodsvegetables- okra, amaranthus, cucurbits. Livestock component in organic farming. Sustainable Agriculture-Apiculture, Mushroom cultivation.

Unit-5 ORGANIC CERTIFICATION

Farm economy: Basic concept of economics- demand & supply, economic viability of a farm. Basic production principles, reducing expenses, ways to increase returns, cost of production system. Benefit/ cost ratio, marketing, imports and exports. Policies and incentives of organic production. Farm inspection and certification. Terrace farming.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

09 hours

08 hours

GROUP-II

Name of The Course	NANOBIOTECHNOLOGY				
Course Code	BSDB3011				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or				
	from a recognized Board in science stream with a	and a mir	a Ci nimi	iemis	sury f 50
	% marks in aggregate.	• • • • • • • • • • • • • • • • • • • •			
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Τ	Р	С
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of nanotechnology. Course Outcomes

CO1	Understand the fundamentals of nanotechnology
CO2	Demonstrate the physical and chemical methods of synthesis of nanomaterials
CO3	Demonstrate the biological methods of synthesis of nanomaterials
CO4	Generalize the use of nanomaterials in biotechnology
CO5	Illustrate the applications of nanobiotechnology
CO6	Evaluate the research advance in nanotechnology

Text Book (s)

- 13. 1. Nanobiotechnology: Concepts, Applications and Perspectives (2004), ChristofM.Niemeyer (Editor), Chad A. Mirkin (Editor), Wiley VCH.
- 14. Nanobiotechnology II more concepts and applications. (2007) Chad A Mirkin and Christof M. Niemeyer (Eds), Wiley VCH.
- 15. Pradeep T., "A Textbook of Nanoscience and Nanotechnology", Tata McGraw Hill Education Pvt. Ltd., 2012.
- 16. Hari Singh Nalwa, "Nanostructured Materials and Nanotechnology", Academic Press, 2002.

Reference Book (s)

- 13. 1. Nanobiotechnology: Concepts, Applications and Perspectives (2004), ChristofM.Niemeyer (Editor), Chad A. Mirkin (Editor), Wiley VCH.
- 14. Nanobiotechnology II more concepts and applications. (2007) Chad A Mirkin and Christof M. Niemeyer (Eds), Wiley VCH.
- 15. Pradeep T., "A Textbook of Nanoscience and Nanotechnology", Tata McGraw Hill Education Pvt. Ltd., 2012.
- 16. Hari Singh Nalwa, "Nanostructured Materials and Nanotechnology", Academic Press, 2002.

Unit-1 INTRODUCTION TO NANOTECHNOLOGY 10 hours

Historical perspectives, Existence of nanostructures in nature, Nanoscale Properties (Electrical, Optical, Chemical) Nanomaterials - Quantum Dots, Wells and Wires, nanotubes, graphene, nanogold, nanosilver and metal oxides, Nanopolymers.

Unit-2 SYNTHESIS OF NANOMATERIALS

10hours

Physical Methods: Ball Milling, Electrodeposition, DC/RF Magnetron Sputtering, Molecular Beam Epitaxy (MBE).Chemical Methods: Metal Nanocrystals by Reduction, Solvothermal

Synthesis, Photochemical Synthesis, Chemical Vapor Deposition (CVD), Metal Oxide - Chemical Vapor Deposition (MOCVD).

Unit-3BIOLOGICAL SYNTHESIS OF NANOMATERIALS10 hours

Synthesis using Microorganisms, Synthesis using Biological templates, synthesis using plants and plant extracts.

Unit-4 NANOMATERIAL IN BIOTECHNOLOGY

08 hours

Biological nanomaterials and Biomimetic synthesis of nanomaterials – magnetosomes, spider milk, bone, shell. Device based on assemblies of nanoparticles and biomaterials – Bioelectronic devices, nanocircuitry, nanomechanical devices, computational devices.

Unit-5 APPLICATIONS OF NANOBIOTECHNOLOGY 08 hours

Nanobiosensors, molecular imaging using nanoparticles, targeted drug delivery. Applications in health and disease - infectious and chronic. Nanobiotechnological applications in Environment and food - detection and mitigation.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIORESOURCE MANAGEMENT		
Course Code	BSDB3012		
Prerequisite	Higher Secondary Examination with Chemistry and Biology or		
-	Chemistry, Botany and Zoology or Biochemistry and Chemistry		
	from a recognized Board in science stream with a minimum of 50		
	% marks in aggregate.		
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.		
Antirequisite			
	L T P C		

Course Objectives: Students are able to understand the basic concept of bioresource management. Course Outcomes

CO1	Illustrate the different types of aquaculture
CO2	Summarize the purpose of culturing economically important organisms
CO3	Illustrate the importance of vermiculture
CO4	Describe the origin and importance of cultivated plants
CO5	Generalize the economic uses of various plant products
CO6	Evaluate the application of Bioresource management

Text Book (s)

- 7. ManjuYadav, Economic Zoology- Discovery publishing house, New Delhi
- 8. Lee R E, Phycology 1999

Reference Book (s)

- 7. ManjuYadav, Economic Zoology- Discovery publishing house, New Delhi
- 8. Lee R E, Phycology 1999

Unit-1 AQUACULTURE

10 hours

Introduction to aquaculture; Prawn culture, Methods of prawn fishing, Preservation and processing of prawn; Pearl culture and status of pearl culture in India; Economically important fishes of India. Setting up of a fish farm, Monoculture and composite fish culture, Bundh breeding, Induced breeding, methods of fishing, Fish preservation and processing; Identification of fish diseases and their control; Snakes and snake venoms.

Unit-2 ECONOMIC ZOOLOGY

Overview of Sericulture, Apiculture, Lac culture, Poultry culture, Dairy industry.

Unit-3 VERMICULTURE

08hours

08 hours

Introduction and scope, Species of earthworm, Characteristics features ofearthworm. Overview of methods of vermicomposting, Role of earthworm in solid waste management. Vermiwash- its importance, Vermicompost as bio-fertilizer.

Unit-4CULTIVATED PLANTS 10 hours

Cultivated Plants: origin and importance with particular reference to the works of A. de Candolle and Vavilov (especially centers of diversity, primary and secondary centers, multiple origin); a brief account of Harlan and Hawkes theories; examples of major introductions; practices of floriculture, agroforestry, sericulture. BT crops (brief account).

Unit-5ECONOMIC USE OF PLANT PRODUCTS 10 hours

Definition, Classification, Names, Morphology and economic uses of important cereals, legumes (pulses and fodders), fruits and vegetables, spices and condiments, beverages, oils and fats, essential oils, medicinal plants, hallucinogens (psychotropic drugs), timber plants, fibre plants, natural rubber, resins, raw materials for paper. A brief account of crop improvement technologies, biosafety considerations, natural products.

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	BIOSAFETY AND INTELLECTUAL PROPER	ГY F	RIGI	HTS	
Course Code	BSDB3013				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50				
	% marks in aggregate.				•
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution.				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of biosafety and intellectual property rights

Course Outcomes

CO1	Understand the fundamentals of biosafety
CO2	Summarize the guidelines of biosafety
CO3	Understand the concepts of intellectual property
CO4	Describe the grant of patents, agreements and treaties
CO5	Illustrate the concept of biosafety
CO6	Evaluate the significance of Biosafety and intellectual property rights

Text Book (s)

- 1. Bare Act, 2007.Indian Patent Act 1970 Acts & Rules, Universal Law Publishing Co. Pvt.Ltd., New Delhi.
- 2. Kankanala C (2007). Genetic Patent Law & Strategy, 1st Edition, Manupatra Information Solution Pvt. Ltd. New Delhi.
- 3. Mittal, D.P. (1999). Indian Patents Law, Taxmann, Allied Services (p) Ltd.
- 4. Singh K K (2015). Biotechnology and Intelectual Property Rights: Legal and Social Impliocations, Springer India.
- 5. Goel D & Prashar S (2013). IPR, Biosafety and Bioethics. Pearson
- 6. Senthil Kumar Sadhasivam and Mohammed Jaabir, M. S. 2008. IPR, Biosafety and biotechnology Management. Jasen Publications, Tiruchirappalli, India.

Reference Book (s)

- 1. Bare Act, 2007.Indian Patent Act 1970 Acts & Rules, Universal Law Publishing Co. Pvt.Ltd., New Delhi.
- 2. Kankanala C (2007). Genetic Patent Law & Strategy, 1st Edition, Manupatra Information Solution Pvt. Ltd. New Delhi.
- 3. Mittal, D.P. (1999). Indian Patents Law, Taxmann, Allied Services (p) Ltd.
- 4. Singh K K (2015). Biotechnology and Intelectual Property Rights: Legal and Social Impliocations, Springer India.
- 5. Goel D & Prashar S (2013). IPR, Biosafety and Bioethics. Pearson
- 6. Senthil Kumar Sadhasivam and Mohammed Jaabir, M. S. 2008. IPR, Biosafety and biotechnology Management. Jasen Publications, Tiruchirappalli, India.

Biosafety: Introduction; biosafety issues in biotechnology; Biological Safety Cabinets & their types; Primary Containment for Biohazards; Biosafety Levels of Specific Microorganisms.

Unit-2 BIOSAFETY GUIDELINES 10hours

Biosafety Guidelines: Biosafety guidelines and regulations (National and International);GMOs/LMOs- Concerns and Challenges; Role of Institutional Biosafety Committees (IBSC), RCGM, GEAC etc. for GMO applications in food and agriculture; Environmental release of GMOs; Risk Analysis; Risk Assessment; Risk management and communication; Overview of International Agreements - Cartagena Protocol. Guidelines for using radioisotopes in laboratories and precautions.

Unit-3INTRODUCTION TO INTELLECTUAL PROPERTY10hours

Introduction to Intellectual Property: Patents, Types, Trademarks, Copyright & Related Rights, Industrial Design and Rights, Traditional Knowledge, Geographical Indicationsimportance of IPR –patentable and non patentables – patenting life – legal protection of biotechnological inventions – World Intellectual Property Rights Organization (WIPO).

Unit-4GRANT OF PATENT, AGREEMENTS AND TREATIES10 hours

Grant of Patent and Patenting Authorities: Types of patent applications: Ordinary, PCT, Conventional,Divisional and Patent of Addition; An introduction to Patent Filing Procedures; Patent licensing andagreement; Patent infringement- meaning, scope, litigation, case studies, Rights and Duties of patentowner. Agreements and Treaties: GATT, TRIPS, WIPO, Budapest Treaty on international recognition of the deposit of microorganisms etc.

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Continuous Assessment Pattern

Name of The Course	MUSHROOM CULTIVATION TECHNOLOGY		
Course Code	BSDB3015		
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Betany and Zaalagy on Biochemistry and Chemistry		
	from a recognized Board in science stream with a minimum of 50		
	from a recognized board in science stream with a minimum of 50		
	% marks in aggregate.		
Corequisite	Students should have understanding of general biology, including		
_	a basic knowledge of the biological molecules, the cell, genetics,		
	regulation structure/function interaction with the environment		
	and avaluation		
	and evolution.		
Antirequisite			
	L T P C		

Course Objectives: Students are able to understand the basic concept of mushroom cultivation technology.

Course Outcomes		
CO1	Understand the values of mushroom.	
CO2	Describe the technology used for cultivation of mushroom	

CO3	Demonstrate the concepts of mushroom bed preparation.
CO4	Demonstrate the process of storage and its nutritional value.
CO5	Understand the concepts of types of foods prepared from mushroom.
CO6	Evaluate the application of Mashroom cultivation technology

Text Book (s)

- 13. Marimuthu, T. Krishnamoorthy, A.S. Sivaprakasam, K. and Jayarajan. R (1991) Oyster Mushrooms, Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore.
- 14. Swaminathan, M. (1990) Food and Nutrition. Bappeo, The Bangalore Printing and Publishing Co. Ltd., No. 88, Mysore Road, Bangalore - 560018.
- 15. Tewari, Pankaj Kapoor, S.C., (1988). Mushroom cultivation, Mittal Publications, Delhi.
- 16. Nita Bahl (1984-1988) Hand book of Mushrooms, II Edition, Vol. I & Vol. II.

Reference Book (s)

- 13. Marimuthu, T. Krishnamoorthy, A.S. Sivaprakasam, K. and Jayarajan. R (1991) Oyster Mushrooms, Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore.
- 14. Swaminathan, M. (1990) Food and Nutrition. Bappeo, The Bangalore Printing and Publishing Co. Ltd., No. 88, Mysore Road, Bangalore - 560018.
- 15. Tewari, Pankaj Kapoor, S.C., (1988). Mushroom cultivation, Mittal Publications, Delhi.
- 16. Nita Bahl (1984-1988) Hand book of Mushrooms, II Edition, Vol. I & Vol. II.

Unit-1 INTRODUCTION TO MUSHROOM CULTIVATION 06 hours

Introduction, history. Nutritional and medicinal value of edible mushrooms; Poisonous mushrooms. Types of edible mushrooms available in India - Volvariellavolvacea, Pleurotuscitrinopileatus, Agaricusbisporus.

Unit-2 CULTIVATION TECHNOLOGY - I 08 hours

Infrastructure: substrates (locally available) Polythene bag, vessels, Inoculation hook, inoculation loop, low cost stove, sieves, culture rack, mushroom unit (Thatched house) water sprayer, tray, small polythene bag. Pure culture: Medium, sterilization, preparation of spawn, multiplication.

Unit-3CULTIVATION TECHNOLOGY-II

Mushroom bed preparation - paddy straw, sugarcane trash, maize straw, banana leaves. Factors affecting the mushroom bed preparation - Low cost technology, Composting technology in mushroom production.

Unit-4 STORAGE AND NUTRITION

Unit-5 FOOD PREPARATION

Short-term storage (Refrigeration - upto 24 hours) Long term Storage (canning, pickels, papads), drying, storage in saltsolutions. Nutrition - Proteins - amino acids, mineral elements nutrition - Carbohydrates, Crude fibre content - Vitamins.

Types of foods prepared from mushroom. Research Centres - National level and Regional level. Cost benefit ratio - Marketing in India and abroad, Export Value.

575

08hours

10 hours

08 hours
Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Name of The Course	PARASITOLOGY				
Course Code	BSDB3016				
Prerequisite	Higher Secondary Examination with Chemistry and Biology or Chemistry, Botany and Zoology or Biochemistry and Chemistry from a recognized Board in science stream with a minimum of 50 % marks in aggregate.				
Corequisite	Students should have understanding of general biology, including a basic knowledge of the biological molecules, the cell, genetics, regulation, structure/function, interaction with the environment, and evolution				
Antirequisite					
		L	Τ	Р	С
		4	0	0	4

Course Objectives: Students are able to understand the basic concept of parasitology

Course	Outcomes

CO1	Describe the basic concept Parasitology
CO2	Interpret about the Parasitic Protists and disease caused by it
CO3	Interpret Parasitic Platyhelminthes
CO4	Elucidate Parasitic Nematodes
CO5	Illustrate Parasitic Arthropoda and Parasitic Vertebrates
CO6	Evaluate the application of parasitology

Text Book (s)

- 25. Arora, D. R and Arora, B. (2001) Medical Parasitology. II Edition. CBS Publications and Distributors
- 26. E.R. Noble and G.A. Noble (1982) Parasitology: The biology of animal parasites. V Edition, Lea &Febiger
- 27. Ahmed, N., Dawson, M., Smith, C. and Wood, Ed. (2007) Biology of Disease. Taylor and Francis Group
- 28. Parija, S. C. Textbook of medical parasitology, protozoology & helminthology (Text and colour Atlas), II Edition, All India Publishers & Distributers, Medical Books Publishers, Chennai, Delhi
- 29. Rattan LalIchhpujani and Rajesh Bhatia. Medical Parasitology, III Edition, Jaypee Brothers Medical Publishers (P) Ltd., New Delhi
- 30. Meyer, Olsen & Schmidt's Essentials of Parasitology, Murray, D. Dailey, W.C. Brown Publishers
- 31. Thomas C. Cheng (1986). General Parasitology, II Edition, Academic Press Inc
- 32. K. D. Chatterjee (2009). Parasitology: Protozoology and Helminthology. XIII Edition, CBS Publishers & Distributors (P) Ltd. DSE

Reference Book (s)

- 25. Arora, D. R and Arora, B. (2001) Medical Parasitology. II Edition. CBS Publications and Distributors
- 26. E.R. Noble and G.A. Noble (1982) Parasitology: The biology of animal parasites. V Edition, Lea &Febiger
- 27. Ahmed, N., Dawson, M., Smith, C. and Wood, Ed. (2007) Biology of Disease. Taylor and Francis Group
- 28. Parija, S. C. Textbook of medical parasitology, protozoology & helminthology (Text and colour Atlas), II Edition, All India Publishers & Distributers, Medical Books Publishers, Chennai, Delhi
- 29. Rattan LalIchhpujani and Rajesh Bhatia. Medical Parasitology, III Edition, Jaypee Brothers Medical Publishers (P) Ltd., New Delhi
- 30. Meyer, Olsen & Schmidt's Essentials of Parasitology, Murray, D. Dailey, W.C. Brown Publishers

- 31. Thomas C. Cheng (1986). General Parasitology, II Edition, Academic Press Inc
- 32. K. D. Chatterjee (2009). Parasitology: Protozoology and Helminthology. XIII Edition, CBS Publishers & Distributors (P) Ltd. DSE

Unit-1 INTRODUCTION TO PARASITOLOGY 04 hours

Brief introduction of Parasitism, Parasite, Parasitoid and Vectors (mechanical and biological vector) Host parasite relationship.

Unit-2 PARASITIC PROTISTS

12hours

Study of Morphology, Life Cycle, Prevalence, Epidemiology, Pathogenicity, Diagnosis, Prophylaxis and Treatment of Entamoebahistolytica, Giardia intestinalis, Trypanosomagambiense, Leishmaniadonovani, Plasmodium vivax.

Unit-3PARASITIC PLATYHELMINTHES08hours

Study of Morphology, Life Cycle, Prevalence, Epidemiology, Pathogenicity, Diagnosis, Prophylaxis and Treatment of Fasciolopsisbuski, Schistosomahaematobium, Taeniasolium and Hymenolepis nana.

Unit-4PARASITIC NEMATODES

12 hours

Study of Morphology, Life Cycle, Prevalence, Epidemiology, Pathogenicity, Diagnosis, Prophylaxis and Treatment of Ascarislumbricoides, Ancylostomaduodenale, Wuchereriabancrofti and Trichinellaspiralis. Study of structure, life cycle and importance of Meloidogyne (root knot nematode), Pratylencus (lesion nematode).

Unit-5PARASITIC ARTHROPODA AND PARASITIC VERTEBRATES08 hours

Biology, importance and control of ticks, mites, Pediculushumanus (head and body louse), Xenopsyllacheopis and Cimexlectularius, A brief account of parasitic vertebrates; Cookicutter Shark, Candiru, Hood Mockingbird and Vampire bat.

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
30	20	50	100

Program: B.Sc (Hons) in Mathematics

Scheme: 2020-2021

Vision

To be recognized globally as a center of excellence in imparting value-based education in Basic and Applied Sciences by creating innovation in fundamental and multidisciplinary research.

Mission

- M1. To excel in imparting contemporary knowledge and skills by developing an educational ecosystem with diverse interests and talents.
- M2. To perform cutting edge research leading to innovation in sciences through national and international collaborations.
- M3. To develop solutions for the emerging challenges in Basic and Applied Science to cater the needs of society.
- M4. To attract best quality faculty to facilitate knowledge and develop confidence in our graduates to succeed in the world.

Program Educational Objectives

- PEO1: The graduates shall be successful professionals in Academia, Industry, Government and Entrepreneurship.
- **PEO2:** The graduates shall pursue higher education/research at institute of national and international repute.
- **PEO3:** The graduate shall effectively address the challenges of the society and undertake the projects for bridging the gap between industry and societal needs.

Program Specific Objectives

The students shall be able to

PSO1: Apply appropriate knowledge of Mathematics used for Data Science and Artificial Intelligence to solve problems.

PSO2: Apply Advanced Statistical Methods and Tools for forecasting the impact in financial sectors.

Program Outcomes

- PO1: Data Science & Artificial Intelligence: Apply knowledge of Mathematics, Computer Sciences and Modern software tools to provide effective solutions in area of enormous applications of Data Science and Artificial Intelligence.
- PO2: Finance & Banking: Demonstrate knowledge of Mathematics, Optimization Techniques, Statistics and Computing tools for providing solution in the domain of economics, finance and banking.
- PO3: Critical Thinking: Develop the ability to critically evaluate theories, methods, principles, and applications of pure and applied science.

- PO4: Modelling & Simulation: Ability to identify and apply mathematical knowledge to model and simulate various complex problems of our society through experiments, analysis and interpretation of data.
- PO5: Modern Tool Usage: Develop professional skills required for industry through learning of demandable programming languages and software tools
- PO6: Communication: Communicate effectively with the scientific community and with society at large. Be able to comprehend, write and communicate effective reports/ documentation.
- PO7: Society and Teamwork: Perform professionally with social, cultural and ethical responsibility as an individual as well as in multifaceted teams with positive attitude
- PO8: Lifelong Learning: Capable of adapting to new methodologies and Constantly upgrading their skills with an attitude towards independent and lifelong learning

Curriculum

	Semester 1								
SI.	Course Code	Name of the Course					Assess	sment Pa	attern
No	Course Coue	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1	BSCM101	Calculus- I	3	1	0	4	30	20	50
2	BSCM102	Algebra and Number Theory	3	1	0	4	30	20	50
3	BSCM103	Fundamentals of Computer and C-	3	0	0	3	30	20	50
		programming							
4	BSCM111	C-programming Lab	0	0	2	1	50	-	50
5	BSCM202	Analytical Geometry	3	1	0	4	30	20	50
6	BBS14T1001	Elements of Physics	3	1	0	4	30	20	50
7	BBS14P1002	Elements of Physics Lab	0	0	2	1	50	-	50
8		Cambridge university program, BEC(B1)	3	0	0	3			
9		Environmental Science			1	0.5			
10		Liberal Arts				0.5			
11		Soft Skills	0	0	0	0			
12		Computational Awareness				0			
		Total				25			
		Semester II							
Sl	Course Code	Name of the Course					Assess	sment Pa	attern
No	Course Coue		L	Т	Р	С	IA	MTE	ETE
1	BSCM201	Calculus –II	3	1	0	4	30	20	50
2	BSCM211	Calculus –II Lab using Scilab	0	0	2	1	50	-	50
3	BBS14T1003	General Chemistry	3	1	0	4	30	20	50
4	BBS14P1004	General Chemistry Lab	0	0	2	1	50	-	50
5	BSCM203	Abstract Algebra	3	1	0	4	30	20	50
6	BSCM304	Programming using Python	3	0	0	3	30	20	50
7	BSCM311	Python Lab	0	0	2	1	50	-	50
8	BSCM302	Ordinary Differential Equations	3	1	0	4	30	20	50
9		Cambridge university program, BEC(B2)	3	0	0	3			
10		Two weeks Social Internship	0	0	0	0			
		(During Summer Vacation)				25			
		l Iotal				25			
CI		Semester III					A	man a m 4 Da	44.0
SI No	Course Code	Name of the Course	Т	т	D	C	Asses	Sment Pa	
1	PSCM201	Pool Apolysis I	2 2	1 1	1 0		1A 20	20	50
2	BSCM401	Partial Differential Equations	3	1	0	4	30	20	50
3	BSCM401 BSCM303	Linear Algebra	3	1	0		30	20	50
4	BBS14P1005	Linear Algebra using Python	0	0	2	- - 1	50	-	50
5	BSCM205	Discrete Structure	3	1	0	4	30	20	50
6	BSCM104	Probability and Statistics	3	1	0	4	30	20	50
7	BSCM112	Probability and Statistics Lab in R	0	0	2	1	50	-	50
8	BSCM503	Numerical Methods	3	1	0	4	30	20	50
9	BSCM512	Numerical Methods Lab	0	0	2	1	50	-	50
		Total		~	_	27			
		Semester IV	<u> </u>	1	1		1	1	1
SI	a = -						Asses	sment P	attern
No	Course Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1	BSCM403	Transforms and their applications	3	1	0	4	30	20	50

2	BSCM404	Econometrics	3	1	0	4	30	20	50
3	BSCM524	Differential Geometry and Tensor	3		0	4	30	20	50
				1					
4	BBS14T1006	Complex Analysis	3	1	0	4	30	20	50
5	BBS14T1007	Real Analysis –II	3	1	0	4	30	20	50
6	BSCM423	Ring and Module Theory	3	1	0	4	30	20	50
7		IPR				0.5			
8		Foreign Language				0.5			
		Total				25			
		Semester V							
Sl	Course Code	Name of the Course				-	Assess	sment Pa	attern
No	Course Coue	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1	BSCM601	Fuzzy Mathematics	3	1	0	4	30	20	50
2	BSCM502	Operations Research	3	1	0	4	30	20	50
3	BSCM511	Operations Research Lab	0	0	2	1	50	-	50
4	BBS14T1008	Special Functions and Difference	3	1	0	4	30	20	50
		Equations							
5	BBS14T1009	General Mechanics	3	1	0	4	30	20	50
6		Discipline Elective- I	3	1	0	4	30	20	50
7		Campus to Corporate	2	0	0	2			
		Total				23			
		Semester VI	[
Sl	Course Code	Name of the Course					Assess	sment Pa	attern
No	Course Coue	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1	BBS14T1010	Classical Mechanics	3	1	0	4	30	20	50
2		Discipline Elective II	3	0	0	3	30	20	50
3	BSCM612	Project	0	0	0	12			
		Total				19			

List of Electives

Elective-1

Sl	Course Code	Nome of the Electives					Asses	sment Pa	attern
No	Course Coue	Name of the Electives	L	Т	Р	С	IA	MTE	ETE
1	BSCM522	Dynamical Systems	3	1	0	4	30	20	50
2	BSCM523	Financial Mathematics	3	1	0	4	30	20	50
3	BSCM421	Graph Theory	3	1	0	4	30	20	50
4	BBS14T5011	Measure Theory	3	1	0	4	30	20	50
5	BSCM422	Bio-Mathematics	3	1	0	4	30	20	50
6	BBS14T5012	Special Theory of Relativity	3	1	0	4	30	20	50
7	BBS14T5013	Numerical solution of ODE	3	1	0	4	30	20	50
8	BBS14T5014	Information Theory and Coding	3	1	0	4	30	20	50
9	BBS14T5015	Mechanics of solids	3	1	0	4	30	20	50

Elective-2

Sl	Course Code						Assess	sment Pa	ttern
No	Course Code	Name of the Elective	L	Т	Р	С	IA	MTE	ETE
1	BSCM621	Mathematical Modelling & Simulation	3	1	0	4	30	20	50
2	BSCM622	Optimization Techniques	3	1	0	4	30	20	50
3	BSCM623	Cryptography and Network Security	3	1	0	4	30	20	50
4	BBS14T5016	Time Series Analysis	3	1	0	4	30	20	50
5	BSCM624	Applications of Algebra	3	1	0	4	30	20	50
6	BBS14T5017	Introduction to Actuarial Science	3	1	0	4	30	20	50
7	BBS14T5018	Approximation Theory	3	1	0	4	30	20	50
8	BBS14T5019	General Theory of Relativity and Cosmology	3	1	0	4	30	20	50
9	BBS14T5020	Numerical solution of PDE	3	1	0	4	30	20	50

Semester-I

Name of The Course	Calculus-I				
Course Code	BSCM101				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives:

In this course we provide an introduction to calculus. Emphasis is on an understanding of the basic concepts and techniques, and on developing the practical, computational skills to solve problems from a wide range of application areas.

Course Outcomes:

After learning the course, the students should be able to:

CO1	Explain the basic concept of differential calculus, expansion of functions as series and
	concavity & curvature of a curve.
CO2	Plan the tracing of curves in Cartesian and polar co-ordinates and find the limits
	using L'Hospital's rule
CO3	Develop the reduction formulae and use of integral calculus to find volume and
	surface areas of different types of curves
CO4	Explain the concept of vector calculus and its use in finding tangent and normal
	components of acceleration
CO5	Design optimization problems, curvilinear & planetary motion, modelling ballistics
	and applications of calculus in business.
CO6	Translate the conics vertically or horizontally in a plane.

Text Book (s)

- 1. Thomas, G. B., and R. L. Finney, Calculus and Analytic Geometry, 9th ed., Addison Wesley Publishing Company,1995.
- 2. Strauss, M. J., G.L Bradley and K.J Smith, Calculus, 3rd ed., Dorling Kindersley (India) Pvt Ltd. (Pearson Education), Delhi,2007.
- 3. Anton, H., I. Bivens and S. Davis, Calculus, 7th ed., John Wiley and Sons (Asia)Pvt. Ltd., Singapore, 2002.
- 4. Courant, R. and F. John, Introduction to Calculus and Analysis (Vol I and II), Springer Verlag, New York, 1989.

Reference Book (s)

- 1. Narayan, S., Differential Calculus, 10th ed, S. Chand and Company, New Delhi, 1962.
- 2. Narayan, S., Integral Calculus, S. Chand and Company, New Delhi, 2005.
- Iyengar, <u>S.R.K.</u> and R.K. Jain, Advanced Engineering Mathematics, 4th ed., Alpha Science International, Ltd, 2014

Unit-1	11 Hours
Hyperbolic functions, Higher order derivatives, Leibniz	rule and its application to problems
of the type $e^{ax+b}sinx$, $e^{ax+b}cosx$, $(ax+b)^nsinx$, $(ax+b)^nsinx$	(b) ⁿ cosx, Taylor's series, Maclaurin
series, Roll's theorem, Mean Value theorem, convexity	and concavity of a curve, inflection
points, curvature.	
Unit-2	8 Hours

Asymptotes, Curve tracing in Cartesian and polar coordinates, Tracing of standard polar purves, L'Hospital's rule				
Init-3				
Reduction formulae, derivation and illustration of reduction formulae of the type				
$\int sinnxdx \int cosnxdx \int tannxdx \int secnxdx \int (logx)^n dx \int sin^n x sin^m x dx$, Volume				
by slicing, disks and washers methods, quadrature, volume by cylindrical shells, parametric				
equations. Parameterizing a curve, arc length, arc length of parametric curves, area of surface				
f revolution.				
Jnit-4 9 Hours				
Vector Triple product, introduction to vector functions, operations with vector valued				
unctions, Differentiation and integration of vector valued functions, Tangent and normal				
component of acceleration.				
Jnit-5 9 Hours				
Optimization problems, curvilinear motion, Modeling ballistics and planetary motion, Kepler's				
second law, business applications (cost function, the average cost, the revenue function, the				
narginal revenue).				
Jnit-6 7 Hours				
Translations of conics: Equations of conics that have been shifted vertically or horizontally in				
he plane, graph of conics that have been shifted vertically or horizontally in the plane.				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Algebra and Number Theory				
Course Code	BSCM102				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives:

The objective of this course is to provide a first approach to the subject of algebra, which is one of the basic pillars of modern mathematics and to examine the key questions in the theory of numbers whose solutions led to the development of modern abstract algebra. Abstract algebra gives student a good mathematical maturity and enables to build mathematical thinking and skill while conjectures in number theory have stimulated major advances in other fields.

Course Outcomes:

After learning the course, the students should be able to:

CO1	Discuss the anatomy of Polynomials of one variable.
CO2	Work out quadratic and higher degree polynomials and equations having complex
	variables.
CO3	Explain the properties and applications of gcd of two integers and study of primes
CO4	Apply the test of divisibility of two integers via congruency and solvability of linear
	congruence.

CO5	Apply the test for Quadratic congruence and determining the approximations of rational and irrational numbers.
CO6	Analyze the real life applications.

Text Book (s)

- 1. Burton, D. M., Elementary Number Theory, 6thed., Tata McGraw-Hill, Indian reprint, 2007.
- 2. Robinns, N., Beginning Number Theory, 2nd ed., Narosa Publishing House Pvt. Ltd., Delhi, 2007.
- 3. Lipschutz, S., Set Theory and related topics, 2nd ed., McGraw-Hill Education, New York, 1998.
- 4. Chandrasekharan, K., Introduction to Analytic Number Theory, Springer-Verlag, New York, 1968

Reference Book (s)

- 1. Hunter, J., Number Theory, Oliver & Boyd, Edinburgh and London, 1964.
- Rao, V. V., B.V.S.S. Sarma, N. Krishnamurthy, S. Anjaneya Sastry & S. Ranganatham, A Textbook of B.Sc. Mathematics Volume-I, S. Chand Publishing, 2019.

nit-1 10 Hours			
blynomials in one variable and the division algorithm. Synthetic division, Fundamenta			
theorem of algebra Relations between the roots and the coefficients. Transformation of			
unitions Deseartes rule of signs			
htt-2 8 Hours			
e Moivre's theorem for integral indices, De Moivre's theorem for fractional indices, solution			
of equations of complex variable, Solution of cubic and biquadratic (quartic) equations			
nit-3 9 Hours			
Primes, Divisibility and the Fundamental Theorem of Arithmetic, Greatest common divisor,			
uclidean algorithm.			
nit-4 9 Hours			
Congruences, Chinese Remainder Theorem, Hensel's Lemma, Euler's phi function, Fermat's,			
Euler's and Wilson's theorems			
nit-5 12 Hours			
uadratic residues, Legendre and Jacobi symbols Law of quadratic reciprocity, Finit			
ntinued fractions, recurrence relation, Euler's rule, Convergent, infinite continued fractions			
representation of irrational numbers, Periodic continued fractions and quadratic irrationals.			
nit-6 4 Hours			
Applications of abstract algebra in real life and higher mathematics like coding theory,			
pplications of number theory in cryptography.			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Fundamentals of Computer and C-programming				
Course Code	BSCM103				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 1. Basic understanding of computers, the concept of algorithm and creating the ability to analyze a problem, develop an algorithm to solve it.
- 2. Write the program on a computer, edit, compile, debug, correct, recompile and run it.
- 3. The program coding techniques for the implementation of various real-life problems.

Course Outcomes:

After successful completion of this course the students will be able to:

CO1	Define the basic concepts of Computer and acquire various problem-solving
	techniques such as algorithms and flowchart.
CO2	Explain the basic terminology used in programming and able to write, compile and
	debug programs in 'C' programming language and to develop program logics using
	decision structures and loop structures.
CO3	Develop program logics using the concept of arrays and arrays of characters.
CO4	Explain the modular techniques such as functions and difference between call by
	value and call by reference methods.
CO5	Develop and implement the small projects using the concept Structures in C
	programming language.
CO6	Knowledge of macro and pre-processor for code optimization

Text Book (s)

- 1. Kerninghan, B.W. & Ritchie D.M., The C Programming Language, 2nd ed., Prentice Hall, Englewood Cliffs, , 1988.
- 2. Gottfried, S., Programming with C, McGraw-Hill, 2nded., New York, 1990.

Reference Book (s)

1. Rajaraman, V., Fundamental of Computers, Prentice-Hall of India, 6th Edition, 1985

Unit-1	10 Hours		
Introduction to Computers, Characteristics of Computers, Generations of Computer, Block			
Diagram of a Computer, Functions of the Different Units - Input unit, Output unit, Memory			
unit, CPU (Control Unit , ALU). Data vs Informa	tion, Hardware vs Software, flowcharts,		
algorithms			
Unit-2	10 Hours		
Number Systems: Introduction, Types of Number System: Binary, Octal, Decimal,			
Hexadecimal, Conversions from One Base to Another, r's complement, (r-1)'s complement,			
Addition and Subtraction operations in different	number system, Binary-coded Decimals		
(BCD), Gray Code.			
Unit-3	8 Hours		
The C character set identifiers and keywords, data type & sizes, variable names, declaration,			
statement and blocks, scanf, fscanf, printf, fprintf, if-else, switch, Loops - while, for do while,			
break and continue, go to and labels			
Unit-4	10 Hours		
Fundamentals and Program Structures : Basic of functions, Function prototypes, function			
types, functions returning values, functions not	returning values, Call by value and call by		

address, recursion, Storage Class: auto, external,	static and register variables, scope rules, C			
preprocessor, command line arguments.				
Unit-5	10 Hours			
One dimensional arrays, Pointers and functions, Character array and string, array of strings,				
Passing a string to a function, String related functions, Arrays and Pointers :Multidimensional				
arrays cont. Dynamic Memory Allocation, basic of structures, structures and functions, Arrays				
of structures, bit fields, structures and pointers, Structures and functions				
Unit- 6 3 hrs				
Pre-processor -What is preprocessing?, Macro expansions, File inclusions, Conditional				
compilation, The stringification(#)and token passi	ing operator			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	C-programming Lab				
Course Code	BSCM111				
Prerequisite	Good mathematical background and programming skills sufficient enough to learn new languages and software are required.				
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

1. To develop practical data analysis skills, which can be applied to practical problems.

- 2. To develop fundamental knowledge of concepts of C language
- 3. To develop practical skills needed in modern analytics.

4. To explain how math and information sciences can contribute to building better algorithms and software.

5. To develop applied experience with data science software, programming, applications and processes. Course Outcomes:

After successful completion of this course the students will be able to:

CO1	Explain the different data type and variables in C language.
CO2	Demonstrate the mathematical expression or problem in C language platform.
CO3	Apply C code in different type of series expansion.
CO4	Utilize Call By Value & Call By Reference in recursion or non recursion program.
CO5	Apply C code to write a character, string and structure.

Text Book (s)

- 1. Problem Solving and Program Design in C, 4th edition, by jeri R. Hanly and Elli B .Koffman.
- 2. Brain W .Kernighan & Dennis Ritchie, C Programming Language, 2nd edition, PHI.
- 3. A first book of ANSI C by Gray J. Brosin 3rd edition Cengagedelmer Learning.

Reference Book (s)

1. E. Balaguruswamy, Programming in ANSI C 5th Edition McGraw-Hill.

List of Experiments:

Lab 1.

(a) Write a Program to print different data types in 'C' and their ranges.

(b) Write a Program to initialize, assignment & printing variables of different data types.

(c) Write a Program to read radius value from the keyboard and calculate the area of circle and print the result in both floating and exponential notation.

Lab 2.

(a) Write a program for computing the volume of sphere, cone and cylinder assume that dimensions are integer's use type casting where ever necessary.

(b) Write a Program to read marks of a student in six subjects and print whether pass or fail (using ifelse).

Lab 3.

(a) Write a Program to calculate roots of quadratic equation (using if-else).

(b) Write a Program to calculate electricity bill. Read starting and ending meter reading.

The charges are as follows.

No. of Units Consumed	Rate in(Rs)
1-100	1.50 per unit
101-300	2.00 per unit for excess of 100 units
301-500	2.50 per unit for excess of 300 units
501-above	3.25 per unit for excess of 500 units
* 1 4	

Lab 4.

(a) Write a Program to display colors using switch case (VIBGYOR).

(b) Write a program to display multiplication tables from 1 to 10 except 3 and 5.

Lab 5.

(a) Write a program to print the Fibonacci series for given 'N' value.

(b) Write a program to read 2 numbers x and n then compute the sum of the Geometric Progression

 $1 + x + x^2 + \dots + x^n$

Lab 6.

(a) Write a program to count no. of positive numbers, negative numbers and zeros in the array

(b) Write a program to perform matrix multiplication by checking the compatibility.

(c) Write a program to print the transpose of a matrix.

Lab 7.

(a) Write a program to print the given strings in ascending order.

(b) Write a program to verify the given string is palindrome or not (without built-in functions, with using built-in functions).

(c) Write a program to concatenate two strings using arrays

Lab 8.

(a) Write a program to find difference of two numbers using functions without arguments, with return type.

(b) Write a program to find sum of two numbers using functions with arguments &without return type.

(c) Write a program to find product of two numbers using functions with arguments, with return type Lab 9.

(a) Write a program to swap two numbers using (i) Call By Value (ii) Call By Reference.

(b) Write a program to calculate factorial, gcd using recursion and non-recursion functions. Lab 10.

(a) Write a program to create structure called traveler and members of structure are train no, coach no, seat no, source ,destination , gender, age, name and departure date.

(b) Write a program to illustrate passing an entire structure to a function.

Lab 11.

- (a) Write a program which copies the contents of one file to another file using command line arguments.
- (b) Write a program to reverse the first n characters in a file use command line arguments.

Lab 12.

(a) Write a C program that uses functions to perform the following operations:

- (i) Reading a complex number
- (ii) Writing a complex number
- (iii) Addition and subtraction of two complex numbers
- (iv) Multiplication of two complex numbers. Note: represent complex number using a structure.

(b) Create a union containing 6 strings: name, home_address, hostel_address, city, state and zip. Write a C program to display your present address.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
50	-	50	100

Name of The Course	Analytical Geometry				
Course Code	BSCM202				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives:

The aim of this course is to introduce the geometry of lines, surfaces and conics in the Euclidean plane. Students can develop geometry with a degree of confidence and will gain fluency in the basics of Euclidean geometry. In this course, foundational mathematical training is also pursued. This course deals with the concepts of analytic geometry. Some of the most important applications in physical sciences will be presented. However, emphasis is on the fundamentals of analytic geometry as a foundation for the study of calculus. Students may use this course for higher level prerequisite mathematics requirements. Topics include: transformation of rectangular axes, conic sections in Cartesian and polar coordinates, three dimensional surfaces including plane, sphere, cone and cylinder.

Course Outcomes:

After successful completion of this course the students will be able to:

CO1	Define the transformation of rectangular axes and 2D conic section, and discuss the
	tangent and normal properties of 2D conic section.
CO2	Demonstrate the geometrical properties of 2D conic section in polar coordinate.
CO3	Define the direction cosine and direction ratios of line and plane, and use it to find the
	angle and perpendicular distance between plane and line.

CO4 Apply method to find the tangent plane and angle of intersection of Sphere.

CO5 Discuss the geometrical properties and application of Cone and Cylinder.

CO6 Demonstrate the knowledge of Plane section of Conicoid

Text Book (s)

- 1. Bell, R. J. T., Elementary Treatise on Coordinate Geometry of Three Dimensions, Macmillan India Ltd., 1994.
- Loney, S. L., The elements of Coordinate Geometry, Michigan Historical Reprint Series, Macmillan & Co., New York, 2005.
- 3. Kishan, <u>H.</u> Coordinate Geometry of Two Dimensions, <u>Atlantic Publishers & Distributors Pvt Ltd</u>, New Delhi, 2006.
- 4. Thomas, G. B., and R. L. Finney, Calculus and Analytic Geometry, 9th ed., Addison Wesley Publishing Company,1995.

Reference Book (s)

- 1. Prasad, G. and H.C.Gupta, Text Book on Coordinate Geometry, Pothishala Pvt. Ltd., Allahabad, 1958.
- 2. Saran, N. and R.S. Gupta, Analytical Geometry of Three Dimensions, Pothishala Pvt. Ltd. Allahabad.

Unit-1 10 Hours				
Transformation of rectangular axes. General equation of second degree and its reduction to				
normal form, Pair of lines, Parabola, Ellipse, Hyperbola, Tangent, Normal, Pole and Polar,				
Conjugate diameters				
Unit-2 10 Hours				
Asymptotes, Polar equation of a conics, Polar equation of tangent, normal, polar and				
asymptotes, Tracing of parabola, Ellipse and hyperbola , Conjugate hyperbola and				
Rectangular hyperbola				
Unit-3 11 Hours				
Line and Plane: Review of Co-ordinates in 3-space, Direction cosines and direction ratios,				
Equations of coordinate planes, Normal form of equation of a plane, Distance of a point				
from a plane, Distance between parallel planes, Systems of planes, Bisector planes,				
Equations of a line in various forms, Symmetric and asymmetric forms of the equations of a				
line, Line passing through two points, Angle between a line and a plane, Perpendicular				
distance of a point from a plane, Condition for two lines to be coplanar				
Unit-4 9 Hours				
Sphere: Equation of a sphere in different forms, plane section of a sphere, Equation of a circle.				
Sphere through a given circle, Intersection of a sphere and a line, Equation of tangent plane to				
standard sphere and general sphere, Angle of intersection of two sphere.				
Unit-5 8 Hours				
Cone: Equation of a cone, Intersection of cone with a plane and a line, Enveloping cone, Right				
circular cone; Cylinder: Equation of cylinder, Enveloping and right circular cylinders				
Unit 66 hrs				
Plane section of Conicoid: Nature of ellipsoid, hyperboloid of one sheet and hyperboloid of two				
sheets, Intersection of a line and a central conicoid., Axes of central plane sections. Area of the				
section., Nature of plane section of paraboloids.				

Name of The Course	Elements of Physics		
Course Code	BBS14T1001		Course
Prerequisite			
Corequisite			
Antirequisite			
	L T P	С	
	3 1 0	4	

Objectives: The objective of this course is:

- To acquaint the students with elementary physics such as quantum mechanics, semiconductors, diodes, Laser, magnetic and superconducting materials.
- To acquire a general understanding of the theoretical and practical methods in these fields and make individual be able to apply this knowledge to solve the concrete problems.

Course Outcomes

CO1	Explain the concept of duality of matter and wave, and solve Schrödinger wave
	equations for a given quantum system
CO2	Describe the fundamentals of intrinsic and extrinsic semiconductors.
CO3	Interpret the Junction theory of diode and describe the applications of diodes
CO4	Interpret interference, diffraction and describe the working of Laser and its
	applications
CO5	Explain the origin of magnetism in the material and describe the types of
	superconductors and their applications
CO6	Predict the new concept of achieving the superconductivity at high temperature for its
	feasible applications

Text Book (s)

- 3. Arthur Beiser, S RaiChoudhury, ShobhitMahajan, (2009), Concepts of Modern Physics, 6th Edition, Tata-McGraw Hill. ISBN- 9780070151550.
- 4. Neeraj Mehta, (2011), Applied Physics For Engineers, New Arrivals PHI, ISBN-9788120342422.
- 5. Engineering Physics, B K Pandey, S Chaturvedi, Cengage Learning, ISBN: 137788131517611
- 6. Kanaankano, semiconductor devices, PHI, 2005
- 7. S.O. Pillai, Solid state physics , New Age International Pvt Ltd, 7th edition, 2015.
- A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, M. I. Eremets. Superconductivity at 250 K in lanthanum hydride under high pressures. *Nature*, 2019; 569 (7757): 528 DOI: 10.1038/s41586-019-1201-8

Reference Book (s)

- 1. B.B. Laud, Lasers and Non-Linear Optics (2011), 3rd Edition, New Ages International.
- 2. William Silfvast (2002), Laser Fundamentals, Cambridge University Press.
- 3. D.A. Neamen, Semiconductor physics and devices .3rd edition, Mcgraw-Hill, 2003.
- 4. M.S. Tyagi, Introduction to semiconductor materials and devices, John Wiley & Sons, 2004

(12 lecture hours)

Failure of classical mechanics, dual nature of radiation, Photoelectric effect, Compton Effect, Wave-Particle duality, de-Broglie waves, Experimental verification of de-Broglie waves, Heisenberg Uncertainty Principle and its Applications, concept of wave function, Schrodinger's wave equations, Particle in a Box

Unit-2 Semiconductor Fundamentals	(12 lecture hours)
Intrinsic and extrinsic semiconductors, elemental and	compound semiconductor, carrier
concentration and Fermi level of intrinsic and extrinsi	ic semiconductor, thermal effects,
conductivity and carrier mobility in semiconductors.	Hall effect.
Unit-3 Junction Theory and Diodes	(12 lecture hours)
PN junction , junction potential , biasing of PN junction dynamics resistances , breakdown phenomena- avalar solar cell.	on , I-V characteristics , static and nche and Zener process, Zener diode ,
Unit-4 Optics and LASER	(12 lecture hours)
Interference: Interference of Light, displacement of fringe film, Newton's rings. Diffraction: Single and double slit, I orders in spectra. Interaction of radiation and matter, Einstein's coefficients level laser, Laser characteristics, He-Ne laser and applica	es, interference in thin films, wedge shaped Diffraction grating, Grating spectra, missing , Population Inversion, Three level and four tions.
Unit-5 Magnetism and Superconductivity	(12 lecture hours)

Origin of magnetization, Orbital and spin magnetic moment, Classification and properties of magnetic materials, Hysteresis curve, soft and hard magnetic materials.

Superconductors: types I and Type II super conductors, Meissner Effect, magnetic levitation, application of superconductors

Unit VI: Application of Elements of Physics

Recent advancement in Elements of Physics: The superconductor at the highest temperature, latest approach and description of new superconductor

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Name of The Course	Elements of Physics Lab					l
Course Code	BBS14P1002					C
Prerequisite						Course
Corequisite						1
Antirequisite						l
		L	Т	Р	С	l
		0	0	2	1	1

Objectives:

- Directly observe phenomenon discussed in physics theory.
- Exploring relationship between measurable quantities,
- Collect and record experimental data. Gain skills that teach what data to record, when to record, and analyze the recorded data.
- Indulgence with the limited precision of measurements and the uncertainties involved in experimentation.

Course Outcomes

CO1	Operate and handle the instruments effectively and safely in the physics laboratory
CO2	Determine the Planck constant and Stefan's constant
CO3	Calculate the wavelength of Laser and monochromatic light.
CO4	Calculate Hall coefficient and Hysteresis curve for a given material
CO5	Determine the characteristics of solar cell and AC frequency

Reference Books:

3. **B.Sc. Practical Physics** by C.L Arora ,S. Chand Limited, 2001.

2. B.Sc. Practical Physics by Harnam Singh, S. Chand Limited, 2000.

S.	List of Experiments
No.	
1.	To determine the wavelength of sodium light by Newton's ring
2.	To Verify the Stefan's law by electrical method
3.	To determine Planck's constant using Light Emitting Diode (LED)
4.	To determine the wavelength of He-Ne laser source using Diffraction grating
5.	To draw the hysteresis curve (B-H curve) of a given sample of ferromagnetic material and to determine retentivity, coercivity and hysteresis loss
6.	To find the wavelength of monochromatic light with the help of a plane transmission diffraction grating and spectrometer
7.	To determine the frequency of alternating current (AC) mains using Sonometer
8.	To draw the characteristics of solar cell and to estimate Fill Factor (FF) of solar cell
9.	To determine the angle of prism and minimum deviation of solid prism Spectrometer
10.	To determine Hall coefficient and mobility of charge carriers
11.	Characteristics of PN junction diode

12 Zener diode characteristics in reverse bias and its application voltage regulator

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
50	-	50	100

Semester-II

Name of The Course	Calculus -II				
Course Code	BSCM201				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives:

The course deals with differential calculus of multivariable functions. It begins with defining a function of two variables, its limit and continuity followed by defining its derivative (partial derivative) and applications of partial derivatives in the form of the problem of finding Maxima and Minima. The course deals with methods to evaluate double and triple integrals and their applications in finding

Plane areas and volumes of solids. We also introduce 2d polar coordinates and its changing in Cartesian coordinates.

The course gives the idea about the calculus of vector functions. In the differential calculus part we study three basic elements of vector calculus, namely, Gradient, Divergence and Curl and their properties. In the integral calculus part we first learn the techniques of evaluating line integrals and surface integrals followed by the three all important theorems, namely Green's, Stokes's and Gauss Divergence theorem using which we can easily evaluate line and surface integrals

The course describes how to develop linear programming models for simple problems and identify the special features of a model that make it a linear programming model. It will also give an overview of the kinds of problems linear programming has been used to solve.

Course Outcomes:

After successful completion of this course the students will be able to:

CO1	Apply methods to find limit, continuity, derivatives of multivariable scalar functions and
	relate derivatives to solve the problems of optimization
CO2	Apply methods to find integrals of multivariable scalar functions.
CO3	Explain the three elements of vector differential calculus, apply these elements for
	evaluation of integrals of vector valued functions and relate the three important theorems to
	evaluate the problems of integrations.
CO4	Find the area, volume and mass of multivariable scalar functions.
CO5	Find the optimized solution of linear programming problems
CO6	Applications of multivariable calculus.

Text Book (s)

- 1. Thomas, G. B., and R. L. Finney, Calculus and Analytic Geometry, 9th ed., Addison Wesley Publishing Company, 1995.
- 2. Strauss, M.J., G.L Bradley and K.J Smith, 3rd ed., Dorling Kindersley(India) Pvt Ltd.(Pearson Education), Delhi, 2007.
- 3. Marsden, E., A.J. Tromba and A. Weinstein, Basic Multivariable calculus, Springer(SIE), Indian Reprint,2005.
- 4. Stewart, J., Multivariable Calculus, Concepts and contexts, 2nd Ed, Brooks/Cole, Thomson Learning, USA, 2001.

Reference Book (s)

- 1. Narayan, S., Differential Calculus, 10thed, S. Chand and Company, New Delhi, 1962
- 2. Narayan, S., Integral Calculus, S. Chand and Company, New Delhi, 2005.
- 3. Iyengar, <u>S.R.K.</u> and R.K. Jain, Advanced Engineering Mathematics, 4th ed., Alpha Science International, Ltd, 2014.

Unit-1 11 Hours
Functions of several variables, Limits and continuity of function of two variables, Partial
differentiation, Total differentiability, sufficient condition for differentiability, chain rule for one
and two independent parameters, Taylor & Maclaurin series in two variables, Jacobian, Extrema of
function of two variables, saddle points, Method of Lagrange Multipliers
Unit-2 7 Hours
Mathematical Formulation and solution of constrained optimization problems
Unit-3 10 Hours
Beta and Gamma functions, Double integration over rectangular regions, Double integration over
non rectangular regions, Double integral in Polar coordinates, Change of order of integration, Triple
integral over a parallelepiped and solid regions, Dirichlet's theorem, Cylinderical and spherical
coordinates, Change of variables in double and triple integrals,
Unit-4 12 Hours
Scalar and vector fields, Differentiation of Vector functions, Directional derivatives, the gradient,
maximal and normal property of the gradient, tangent planes
Gradient, divergence, curl and their physical interpretations, line integrals, conservative vector
fields, independence of path, Green's theorem, surface integrals, integral over parametrically
defined surfaces, Stokes's theorem, Gauss's divergence theorem
Unit-5 8 hours
Area and volume by double and triple integrations, Application of Line integral in Mass and work
done.
Unit-6 5 hours
Gradient descent: An analogy for understanding gradient descent, Solution of a linear system,
Solution of a non-linear system.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	BSCM211				
Course Code	Calculus Lab using SCILAB				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

The aim to this course is to provide the students a platform to solve the complicated problems of maxima and minima, multiple integral, vector calculus.

Course Outcomes:

After successful completion of this course the students will be able to:

CO1	Develop the SCILAB codes for solving mathematical problems and summarize different
	function loops (if else, while, for) in SCILAB platform
CO2	Apply SCILAB codes to perform various matrix operations to find inverse, transpose &
	Eigen values etc. of a matrix
CO3	Construct SCILAB codes for plotting various graphs in 2 and 3 dimension.
CO4	Apply SCILAB codes for computing double and triple integrals in Cartesian coordinates
	and select the critical points of 2-D and 3-D surfaces.
CO5	Utilize SCILAB codes for computing and plotting scalar and vector point functions in
	vector calculus
CO 6	Construct SCILAB code for solution of Linear programming Problems

Text Book (s)

- 1. Gilberto E. Urroz, Introduction to SCILAB, infocleainghouse.com.
- 2. Gilberto E. Urroz, Numerical integral using SCILAB, infocleainghouse.com.
- 3. Gilberto E. Urroz, Optimization techniques using SCILAB, infocleainghouse.com.

Reference Book (s)

1. Gilberto E. Urroz, Vector operation on SCILAB, infocleainghouse.com.

List of experiments:

- 1. Overview, Basic syntax, Mathematical Operators, Predefined constants, Built in functions at SCILAB platform.
- 2. Write a SCILAB code to find addition, subtraction, multiplication and division of two matrices, transpose of a matrix and inverse of a non singular matrix.
- **3.** Write a **SCILAB** code for programming -Functions Loops Conditional statements Handling .sci files.

- 4. Write a SCILAB code for 2-D : circle, parabola, ellipse and hyperbola.
- **5.** Write a **SCILAB** code for 3-D surfaces: Planes, Sphere, Cylinder, Paraboloid, Ellipsoid, Hyperboloid, and cone.
- 6. Write a SCILAB code for identifying the critical points of 2-D and 3-D. surface.
- 7. Write a SCILAB code for computing double integrals in Cartesian coordinates.
- 8. Write a SCILAB code for computing triple integrals in Cartesian coordinates.
- 9. Write a SCILAB code for computing and plotting gradient of scalar point function.
- 10. Write a SCILAB code for computing and plotting divergence of vector point functions.
- 11. Write a SCILAB code for computing and plotting curl of Vector point functions.
- 12. Write a SCILAB code to optimize linear programming problem.
- 13. Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
50	-	50	100

Name of The Course	General Chemistry				
Course Code	BBS14T1003				
Prerequisite	Students should qualify 10+2 or equivalent examination in				
	Science stream with chemistry as a major subject				
Corequisite	Fundamental knowledge in Chemistry				
Antirequisite	-				
		L	Т	Р	С
		3	1	0	4

Course Objectives:

The course reviews the structure of the atom, which is a necessary pre-requisite in understanding the nature of chemical bonding in compounds. It provides basic knowledge about ionic, covalent and metallic bonding and explains that chemical bonding is best regarded as a continuum between the three cases. The course is also infused with there capitulation of fundamentals of organic chemistry and the introduction of a new concept of visualizing the organic molecules in a three- dimensional space. The constitution of the course strongly aids in the paramount learning of the concepts and their applications.

Course Outcomes:

After the completion of this course, the students will be able to :

CO1	Describe the theoretical models to explain the structure of an atom and orbitals.
CO2	Determine ionic and covalent properties of compounds by various theories of chemical bonding and draw the MO digram of different molecules.
CO3	Describe the fundamental properties of Organic Compound.
CO4	Illustrate the geometry of organic molecules by applying the principles of stereochemistry.
CO5	Describe different reactions and their mechanisms of Aliphatic Hydrocarbons.
CO6	Elaborate the advantages of Green approach over conventional chemical approach.

Reference Books:

- 1. Lee, J.D. Concise Inorganic Chemistry ELBS, 1991.
- 2. Cotton, F.A., Wilkinson, G. & Gaus, P.L. Basic Inorganic Chemistry, 3rd ed., Wiley.
- 3. Douglas, B.E., McDaniel, D.H. & Alexander, J.J. Concepts and Models in Inorganic Chemistry, John Wiley & Sons.
- 4. Huheey, J.E., Keiter, E.A., Keiter, R.L. & Medhi, O.K. *Inorganic Chemistry: Principles of Structure and Reactivity*, Pearson Education India, 2006.
- 5. Graham Solomon, T.W., Fryhle, C.B. &Dnyder, S.A. *Organic Chemistry*, John Wiley & Sons (2014).
- 6. McMurry, J.E. *Fundamentals of Organic Chemistry*, 7th Ed. Cengage Learning India Edition, 2013.
- 7. Sykes, P. A Guidebook to Mechanism in Organic Chemistry, Orient Longman, New Delhi (1988).
- 8. Eliel, E.L. *Stereochemistry of Carbon Compounds*, Tata McGraw Hill education, 2000.
- 9. Finar, I.L. Organic Chemistry (Vol. I & II), E.L.B.S.
- 10. Morrison, R.T. & Boyd, R.N. Organic Chemistry, Pearson, 2010.
- 11. Bahl, A. & Bahl, B.S. Advanced Organic Chemistry, S. Chand, 2010.

UNIT-1: Atomic Structure

12 hours

Review of: Bohr's theory and its limitations, dual behaviour of matter and radiation, de Broglie's relation, Heisenberg Uncertainty principle. Hydrogen atom spectra. Need of a new approach to Atomic structure. What is Quantum mechanics? Time independent Schrodinger equation and meaning of various terms in it. Significance of ψ and ψ 2, Schrödinger equation for hydrogen atom. Radial and angular parts of the hydogenicwavefunctions (atomic orbitals) and their variations for 1s, 2s, 2p, 3s, 3p and 3d orbitals (Only graphical representation). Radial and angular nodes and their significance. Radial distribution functions and the concept of the most probable distance with special reference to 1s and 2s atomic orbitals. Significance of quantum numbers, orbital angular momentum and quantum numbers ml and ms. Shapes of s, p and d atomic orbitals, nodal planes. Discovery of spin, spin quantum number (s) and magnetic spin quantum number (ms). Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy. Relative energies of atomic orbitals, Anomalous electronic configurations.

UNIT-2: Chemical Bonding and Molecular Structure

12 hours

8 hours

Ionic Bonding: General characteristics of ionic bonding. Energy considerations in ionic bonding, lattice energy and solvation energy and their importance in the context of stability

and solubility of ionic compounds. Statement of Born-Landé equation for calculation of lattice energy, Born-Haber cycle and its applications, polarizing power and polarizability. Fajan's rules, ionic character in covalent compounds, bond moment, dipole moment

Covalent bonding: VB Approach: Shapes of some inorganic molecules and ions on the basis

of VSEPR and hybridization with suitable examples of linear, trigonal planar, square planar,

tetrahedral, trigonal bipyramidal and octahedral arrangements. Concept of resonance and resonating structures in various inorganic and organic compounds. MO Approach: Rules for the LCAO method, bonding and antibonding MOs and their characteristics for s-s, s-p and p-p combinations of atomic orbitals, nonbonding combination of orbitals, MO treatment of homonuclear diatomic molecules of 1st and 2nd periods (including idea of s-p mixing) and heteronuclear diatomic molecules such as CO, NO and NO+. Comparison of VB and MO approaches.

Unit-3: Fundamentals of Organic Chemistry

Physical Effects, Electronic Displacements: Inductive Effect, Electromeric Effect, Resonance

and Hyperconjugation. Cleavage of Bonds: Homolysis and Heterolysis. Structure, shape and reactivity of organic molecules: Nucleophiles and electrophiles. Reactive Intermediates: Carbocations, Carbanions and free radicals.Strength of organic acids and bases: Comparative study with emphasis on factors affecting pK values. Aromaticity: Benzenoids and Hückel's rule

Unit-4 Stereochemistry

8 hours

Conformations with respect to ethane, butane and cyclohexane. Interconversion of Wedge Formula, Newmann, Sawhorse and Fischer representations. Concept of chirality (upto two carbon atoms). Configuration: Geometrical and Optical isomerism; Enantiomerism, Diastereomerism and Meso compounds). Three and erythre; D and L; *cis – trans* nomenclature; CIP Rules: R/S (for upto 2 chiral carbon atoms) and E / Z Nomenclature (for upto two C=C systems).

Unit-5 Aliphatic Hydrocarbons

10 hours

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure. Alkanes: (Upto 5 Carbons). *Preparation:* Catalytic hydrogenation, Wurtz reaction, Kolbe's synthesis, from Grignard reagent. *Reactions:* Free radical Substitution: Halogenation. Alkenes: (Upto 5 Carbons) *Preparation:* Elimination reactions: Dehydration of alkenes and dehydrohalogenation of alkyl halides (Saytzeff's rule); cis alkenes (Partial catalytic hydrogenation) and trans alkenes (Birch reduction). *Reactions:* cis-addition (alk. KMnO4) and trans-addition (bromine), Addition of HX (Markownikoff's and anti-Markownikoff's addition), Hydration, Ozonolysis, oxymecuration-demercuration, Hydroboration-oxidation. Alkynes: (Upto 5 Carbons) *Preparation:* Acetylene from CaC2 and conversion into higher alkynes; by dehalogenation of tetra halides and dehydrohalogenation of vicinal-dihalides. *Reactions:* formation of metal acetylides, addition of bromine and alkaline KMnO4, ozonolysis and oxidation with hot alk. KMnO4.

Unit-6 Recent advancements in Chemistry for Society4hrsGreen Chemistry, Principles of Green Chemistry, Advantages of Green synthesis methodsover

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	General Chemistry Lab				
Course Code	BBS14P1004				
Prerequisite	Students should qualify 10+2 or equivalent examinat	ion i	n Sc	ience	;
_	stream with chemistry as a major subject				
Corequisite	Students should have fundamental knowledge of Titration,				
_	Concentration of solution.				
Antirequisite	-				
		L	Т	Р	С
		0	0	2	1

Course Objectives:

Understand and perform different types of volumetric titration.

Course Outcomes:

After the completion of this course, the students will be able to :

CO1	Perform volumetric titration to estimate the amount of a compound present in a mixture (K4).
CO2	Estimate the no. of moles of water of crystallisation present in Mohr's saltby titration
	method.
CO3	Employ different volumetric titration techniques to estimate the amount of acids, salts
	and ions
CO4	Measure the readings of experiments accurately
CO5	Handle the instruments and apparatus carefully

Reference Books:

1. Svehla, G. Vogel's Qualitative Inorganic Analysis, Pearson Education, 2012.

2. Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.

3. Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., Textbook

of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996.

4. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry Orient-Longman, 1960.

Inorganic Chemistry - Volumetric Analysis

1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.

2. Estimation of oxalic acid by titrating it with KMnO4.

3. Estimation of water of crystallization in Mohr's salt by titrating with KMnO4.

- 4. Estimation of Fe (II) ions by titrating it with K2Cr2O7 using internal indicator.
- 5. Estimation of Cu (II) ions iodometrically using Na2S2O3.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
50	-	50	100

Name of The Course	Abstract Algebra				
Course Code	BSCM203				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives: This course aims to provide a first approach to the subject of algebra, which is one of the basic pillars of modern mathematics. The focus of the course will be the study of certain structures called groups, rings, fields and some related structures.

Course Outcomes:

After successful completion of this course the students will be able to:

CO1	Define various algebraic structures (group, subgroup, centralizer, normalizer, center of a
	group) with their standard examples (permutation group, dihegral group) and show the
	theorem based on these.
CO2	Discuss the properties of cyclic groups, permutation group, and Lagrange's theorem and
	their consequences.
CO3	Define normal subgroups, factor groups, group homomorphism and show some theorem
	based on these structures.
CO4	Define various algebraic structures of two binary operations and their properties.
CO5	Define ring homomorphism and their properties and show some theorem related to
	homomorphism.
CO6	Apply group in various applications like Cryptography, ISBN codes, UPC symbols.

Text Book (s)

- 1. Fraleigh, J. B., A First Course in Abstract Algebra, 7th ed., Pearson, New Delhi, 2002.
- 2. Artin, M., Abstract Algebra, 2nd ed., Pearson, Upper Saddle River, NJ, 2011.
- 3. Gallian, J. A., Contemporary Abstract Algebra, 4th ed., Narosa Publishing House, New Delhi, 1999.
- 4. Rotman, J. J., An Introduction to the Theory of Groups, 4th ed., Springer Verlag, 1995.

Reference Book (s)

- 1. Herstein, I.N., Topics in Algebra, Wiley, New York, 1996.
- 2. Malik, D.S., J. N. Mordesonand M. K. Sen, Introduction to Abstract Algebra, : McGraw-Hill, New York, 2007.
- 3. Gallian, J. A. and Winters, S. "Modular Arithmetic in the Marketplace" The American Mathematical Monthly 95(1988): 548-51.

Unit-1 10 Hours				
Symmetries of a square, Dihedral groups, definition and examples of groups including permutation				
groups and quaternion groups (illustration through matrices), elementary properties of groups.				
Subgroups and examples of subgroups, centralizer, normalizer, center of a group, product of two				
subgroups.				
Unit-2 10 Hours				
Properties of cyclic groups, classification of subgroups of cyclic groups. Cycle notation for				
permutations, properties of permutations, even and odd permutations, alternating group, properties				
of cosets, Lagrange's theorem and consequences including Fermat's Little theorem.				
Unit-3 10 Hours				
External direct product of a finite number of groups, normal subgroups, factor groups, Cauchy's				
theorem for finite abelian groups. Group homomorphisms, properties of homomorphisms, Cayley's				
theorem, properties of isomorphisms, First, Second and Third isomorphism theorems.				
Unit-4 10 Hours				
Definition and examples of rings, properties of rings, subrings, integral domains and fields,				
characteristic of a ring. Ideals, ideal generated by a subset of a ring, factor rings, operations on				
ideals, prime and maximal ideals, definition of field and examples.				
Unit-5 08 Hours				
Ring homomorphisms, properties of ring homomorphisms, Isomorphism theorems I, II and III,				
field of quotients,				
Unit-6 5 Hours				

UPC symbols, ISBN codes, Cryptography through group

Internal Assessment (IA) wild refin rest (WIE) End refin rest Total Warks	30	20	(ETE) 50	100
Internal Assessment (IA) Mid Term Test (MTE) End Term Test Testal Marks	Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks

Continuous Assessment Pattern

Name of The Course	Programming using Python				
Course Code	BSCM304				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

The main objective of this course is to provide basic knowledge of Python programming. Students will also be able to apply concept of Decision Making and Functions.

Course Outcomes:

After successful completion of this course the students will be able to:

CO1	Apply Tokens & Data types supported in python
CO2	Apply Different program control structures available in python
CO3	Define and Use user defined Functions in Python
CO4	Utilize various string handling techniques available in python
CO5	Apply and Differentiate various data structures like Lists, tuples, and dictionaries available in python.
CO6	Under the area of latest development in Python

Text Book (s)

- 1. Introduction to Computation and Programming using Python, by John Guttag, PHI Publisher
- 2. Python Programming using problem solving Approach by ReemaThareja, Oxford University, Higher Education Oxford University Press; First edition (10 June 2017), ISBN-10: 0199480173
- 3. Fundamentals of Python first Programmes by Kenneth A Lambert, Copyrighted material Course Technology Inc. 1 st edition (6th February 2009)

Reference Book (s)

- 1. T. Budd, Exploring Python, TMH, 1st Ed, 2011
- 2. How to think like a computer scientist : learning with Python / Allen Downey, Jeffrey Elkner, Chris Meyers. 1st Edition Freely available online.2012
- 3.

```
Unit-I: Basic Python
12 Hours

Python identifiers and reserved words, Lines and indentation, multi-line statements,

Comments, Input/output with print and input functions, Command line arguments and
```

processing command line Arguments, Standard data types - basic, none, Boolean (true & False), Numbers, Data type conversion, Python basic operators (Arithmetic, comparison, assignment, bitwise logical), Python membership operators (in & not in), Python identity operators (is & is not), Operator precedence, Control Statements, Python loops, Iterating by subsequence index, loop control statements (break continue, pass)

Unit-II:	String,	Tuples	&	Lists
----------	---------	--------	---	-------

10 Hours

String - Concept, escape characters, String special operations, String formatting operator, Single quotes, Double quotes, Triple quotes, Raw String, Unicode strings, Built-in String methods Creating & deleting tuples, Accessing values in a tuple, Updating tuples, delete tuple elements, Indexing, slicing and Matrices, built- in tuple functions, Sets - Concept, operations, Python Lists - concept, creating and accessing elements, updating & deleting lists, basic list operations, built-in List functions Using Lists as stacks and Queues, List comprehensions.

Unit-III: Files & Directories 8 Hours

Creating files, Operations on files (open, close, read, write), File object attributes, file positions, Listing Files in a directory, Testing File Types, Removing Files and Directories, Copying and Renaming Files, Splitting Pathnames, Creating and Moving to Directories, Traversing Directory Trees, built-in dictionary functions and methods

Unit-IV: Functions9 HoursDefining a function, Calling a function, Function arguments - Pass by value, KeywordArguments, default arguments, Scope of variable - basic rules, Documentation Strings,Variable Number of Arguments, Call by Reference, Order of arguments (positional, extra &keyword), Generators (functions and expressions) and iterators, list Anonymous functions,Recursion, Treatment of Input and Output Arguments, Unpacking argument lists.

Unit-V: Classes & Objects 9 Hours

Object oriented programming and classes in Python - creating classes, instance objects, accessing members, Data hiding (the double underscore prefix), Built-in class attributes, Garbage collection : the constructor, Overloading methods and operators, Inheritance - implementing a subclass, overriding methods, recursive calls to methods, class variables, class methods, and static methods.

UNIT- VI: Latest Development

6 Hours

Library Management System, Stock Prediction, Air Quality Prediction, Age Calculator in Python, Online Video Chat, Diabetes Prediction

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Python Lab				
Course Code	BCSM311				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

The main objective of this course is to provide basic knowledge of Python programming. Students will also be able to apply concept of Decision Making and Functions handling in Python. It also covers the Object Oriented Programming and Files Handling.

Course Outcomes:

After successful completion of this course the students will be able to:

CO1	Define the Numbers, Math functions, Strings, List, Tuples and Dictionaries in Python
CO2	Explain different Decision Making statements and Functions
CO3	Interpret Object oriented programming in Python
CO4	Summarize different File handling operation
CO5	

Text Book (s)

- 4. Introduction to Computation and Programming using Python, by John Guttag, PHI Publisher
- 5. Python Programming using problem solving Approach by ReemaThareja, Oxford University, Higher Education Oxford University Press; First edition (10 June 2017), ISBN-10: 0199480173
- 6. Fundamentals of Python first Programmes by Kenneth A Lambert, Copyrighted material Course Technology Inc. 1 st edition (6th February 2009)

Reference Book (s)

- 4. T. Budd, Exploring Python, TMH, 1st Ed, 2011
- 5. How to think like a computer scientist : learning with Python / Allen Downey, Jeffrey Elkner, Chris Meyers. 1st Edition Freely available online.2012

List of experiments:

1. (a) Write a program in Python that uses class to store the name and marks of students.

[Note: use list to store marks in 3 subjects]

- (b) Create two instances of this class and make use of instance method to display marks.
- (c) Write code in Python to show the use of the following built-in functions:
 - Getattr(), setattr(), hasattr() and delattr()
- 2. (a) Write a program to define the same function area to compute the area of circle and rectangle

depending upon the number of arguments passed. (Method overloading)

Area (a, b=None) If b==None: Compute the area of circle Else

606	

Compute the area of rectangle (b) Write the Python code for method overriding:

- Class Person: It has an instance method display (self)
- Class Student: It also has an instance method display (self)
- Create objects of each class and invoke the instance method display.
- 3. (a) Write a program in Python for the class Person using __init__(self), the class constructor.

 - (c) Add a class attribute- counter and object attributes- self.name and self.age. Increase counter by 1 in
 - the constructor and initialize name and age in constructor.
- 4. (a) Write a code in Python to use single inheritance:
 - Base class: Person: name and age attributes
 - Derived class: Student (Person): mark-attribute
 - (b) Write Python code using multiple-inheritance.
 - (c) Write Python code using multi-level inheritance.
- 5. Write a Python code for database connectivity database = student.db
 - b) Create a database table marks with columns name and marks
 - c) Insert two records in the table
- 6. a) Write a Python code using 'select' statement and print the result of query.
 - b) Write Python code using update operation.
 - c) Write Python code using delete operation.
- 7. Write Python code using database connectivity:
 - a) Performing transactions
 - b) commit operation
 - c) Roll back operation
- 8. Write Python code using sockets and sockets module.
 - b) Use server socket methods
 - c) Use client socket methods
- 9. Write Python code using general socket methods.
- b) Implement simple server
- c) Implement simple client
- 10. Write Python code using Python Internet modules
 - b) Use socket modules
 - c) Use socket libraries
- 11. Write Python code using multi-threading
 - b) Use states of thread
 - c) Use starting a new thread
- 12. Write Python code using methods provided by thread class
 - b) Use threading module
 - c) Create a thread using threading module
- 13. Write Python code using multi-threading
 - b) Use synchronizing threads.

c) Implement multi-threaded priority queue.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
50	-	50	100

Name of The Course	Ordinary Differential Equations				
Course Code	BSCM302				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives: In this increasingly growing and developing complex world, mathematical understanding, thinking and skill is more important than ever. Differential equations will provide students with the working knowledge of advanced mathematical concepts and an awareness of their relationship to complex problems. It also provides a solid platform for further studies in mathematics, the basic sciences, and in engineering.

The theory of elementary differential equations provides students with proficiency skills and broad view in 1st order differential equations, higher order linear differential equations, the Laplace transform and a conceptual understanding of those topics, and the opportunity for an in depth understanding of elementary differential equations and the meaning of their solutions.

CO1	Classify ordinary differential equations(ode's) and solutions of 1st order ode's.
CO2	Classify higher order ordinary differential equations(ode's) and solutions of 1st order
	ode's.
CO3	Classify special kind of ordinary differential equation known as Cauchy-Euler
	differential equation and its method of solution
CO4	Change the higher order differential equation into system of 1 st order differential
	equations and their method of solutions
CO5	Model some certain type of differential equations
CO6	Demonstrate knowledge of numerical solution of ODE

Course Outcomes: After the completion of the course the students will be able to:

Text Book (s)

- 1. G.F. Simmon; Differential equations with applications and historical notes, McGraw-Hill, 1991.
- 2. F. Brauer and J. A. Nohel; Ordinary differential equations, W. A. Benjamin, Inc., New York, Amsterdam, 1967.
- 3. M. Braun; Differential equations and their applications, Springer-Verlag, New York Heidelberg, Berlin.

Reference Book (s)

- 1. W. T. Martain and E. Relssner; Elementary differential equations, Addison Wesley Publishing Company, inc., 1995.
- 2. E. A. Coddington; An introduction to ordinary differential equations, Prentice-Hall of India Private Ltd., New Delhi.
- 3. M. D. Rai Singhania; Ordinary and partial differential equations, S. Chand & comp. Ltd., New Delhi.

Introduction to Ordinary differential equation, Exact 1st and higher order differential
equations, integrating factors for different cases, some important geometrical problems,
Orthogonal trajectories and oblique trajectories.
Unit-II 10 Hours
Second order differential equations, linear homogenous equations with constant coefficients,
Linear non-homogenous equations, auxilary equations and complementary functions, general
solutions of homogeneous equations and non-homogeneous equations, general and short
methods for finding particular integrals, the method of undetermined coefficients, wronskian,
method of variation of parameters.
Unit-III 9 Hours
Cauchy-Euler differential equations, equations reducible to Cauchy-Euler form, simultaneous
linear differential equations, equations of the form dx/P=dy/Q=dz/R, Equation of the form
Pdx+Qdy+Rdz=0, Singularities in differential equations.
Unit-IV 9 Hours
Introduction of systems of differential equations, systems of 1 st order differential equations,
linear homogeneous and non-homogenous systems, linear systems with constant coefficients,
phase space in two dimensions.
Unit-V 9 Hours
Introduction to compartmental model, exponential model, lake pollution model, drug
assimilation into the blood (case of a single cold pill, case of a course of cold pills), limited
growth of population, limited growth with harvesting.
Unit-V I 2 hours
Numerical solutions of differential Equations: Euler's method and Runge-Kutta methods

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Semester-III

Name of The Course	Real Analysis I				
Course Code	BSCM301				
Prerequisite					
Corequisite					
Antirequisite					
	L	,	Т	Р	С
	3		1	-	4

Course Objectives:

Demonstrate an understanding of sets, limits, continuity, differentiability, sequence, series and how they are used in real world problems.

Course Outcomes

CO1	Understand sets and their properties
CO2	Understand sequences and their convergence
CO3	Understand series and their sum
CO4	Understand the limit, continuity and uniform continuity of functions
CO5	Understand the differentiability of a function and their application
CO6	Develop knowledge of sigma algebra

Text Book (s)

1. R. G. Bartle and D. R. Sherbert, *Introduction to Real Analysis* (3rd Edition), John Wiley and Sons (Asia) Pvt. Ltd., Singapore, 2002.

2. Gerald G. Bilodeau, Paul R. Thie and G.E. Keough, *An Introduction to Analysis*, Jones & Bartlett, Second Edition, 2010.

3. Brian S. Thomson, Andrew. M. Bruckner, and Judith B. Bruckner, *Elementary Real Analysis*, Prentice Hall, 2001.

4. S. C. Malik and Savita Arora: *Mathematical Analysis*, New Age International (P) Ltd. Publishers, 1996. 5. K. A. Ross, Elementary Analysis: *The Theory of Calculus, Under graduate Texts in Mathematics*, Springer (SIE), Indian reprint, 2004.

6. Sudhir R. Ghorpade and Balmohan V. Limaye, A course in Calculus and Real Analysis, Undergraduate Text in Math., Springer (SIE). Indian reprint, 2004.

7. T.M. Apostol: Mathematical Analysis, Addison-Wesley Series in Mathematics, 1974.

Reference Book (s)

1. A. Mattuck, Introduction to Analysis, Prentice Hall (1999).

2. S. R. Ghorpade & B. V. Limaye, A Course in Calculus and Real Analysis - Springer (2006).

Unit I Lecture hours-14 Bounded and unbounded sets, Infimum and supremum of a set, Order completeness property of R, Archimedian property of R, equivalence between order completeness property of R and Dedekind property. Neighbourhood, Open set, Limit point, Closed set, Derived set, closure of a set, Bolzano-Weierstrass theorem, Countable and uncountable sets.

Unit II

Lecture hours-10

Sequence of real numbers, Monotone sequences, Bounded sequence, convergent and nonconvergent sequences, limit points of a sequence, Cauchy's sequence, Cauchy's general principle of convergence, Subsequences, Monotone convergence Theorem, Bolzano Weierstrass Theorem for Sequences.

Unit III

Lecture hours-8

Infinite series, convergence and divergence of infinite series, Test for convergence of positive term series, Integral test, Alternating series, Leibnitz test, Absolute and conditional convergence.

Unit IV

Lecture hours-8

Limits of functions (epsilon-delta approach), sequential criterion for limits, Continuous functions(epsilon-delta approach), sequential criterion for continuity & discontinuity. Uniform continuity, non-uniform continuity criteria, uniform continuity theorem.

Unit V	Lecture hours-10
Differentiability of a function at a point & in an interval, Ca	rathéodory's theorem, Rolle's
theorem, Mean value theorem, Darboux's theorem. Cauchy's	mean value theorem. Taylor's
theorem with Lagrange's form of remainder, Taylor's the	orem with Cauchy's form of
remainder.	
Unit –VI	4 hours

Sigma algebra of sets, Binary operations, Absolutely continuous functions, Bounded variation, Introduction of uniform converge of functions

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Partial Differential Equations				
Course Code	BSCM401				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives: Students will learn about the partial differential equations (pde's) and how they can serve to model many physical processes such as mechanical vibrations, transport phenomena including diffusion, heat transfer, advection and electrostatics etc. They will learn about heat and wave equations in 1D, 2D and 3D.

More ever, students will master the use of flux laws in combination with the conservation principle, expressed as the continuity equation, to derive pde's associated with transport phenomena. They can also learn how we can solve the pde's under the boundary conditions on the spatial domain and initial conditions on time. They can easily solve the pde's by the technique of separation of variables to pde's and analyze the behaviour of solutions in terms of eigen functions expansions.

Course Outcomes: After the completion of the course, students will be able to

CO1	Classify partial differential equations and solve linear partial differential equations of
	both first and second order
CO2	Classify and solve partial differential equations of second order with constants
	coefficients
CO3	Classify heat equations and its elementary solution
CO4	Classify wave equations and the Cauchy method to solve vibrating strings
CO5	Apply separation of variable method to heat and wave equations
CO6	Lean some special partial differential equations

Text Book (s)

1. K. Sankara Rao; Introduction of partial differential equations, PHI Learning Pvt. Ltd, New Delhi.

2. M. D. Rai Singhania; Ordinary and partial differential equations, S. Chand & co. Ltd, Edi. 12, New Delhi.

3. F. John; Partial differential equations, 3rd Edition, Narosa publication co., New Delhi, 1979.

Reference Book (s)

- 1. N. Sneddon ; Elements of partial differential equations, McGRaw Hill Book company, 1957.
- 2. E.T. Copson; Partial differential equations, Cambridge university press, 1995.
- 3. E. Di Benedetto; Partial differential equations, Birkhauser, Boston, 1995.

Unit-1 10 Hours				
Introduction of partial differential equations (PDE's) and its classification, formation and				
geometrical interpretation of first order partial differential equations, surfaces and normal's,				
basic definitions of general solution or integral, particular solution, complete integral and				
singular integral of first order partial differential equations, method of characteristic and				
general solution of first order partial differential equations by Lagrange's method, canonical				
form of first order PDE, method of separation of variables for first order PDE.				
Unit-2 9 Hours				
Introduction of second order partial differential equations and its classification, homogeneous				
and non-homogeneous linear equations with constant coefficient, solutions of linear				
homogeneous and non-homogeneous equations with constant coefficient, short and general				
method of finding particular integral, equations reducible to linear equations with constant				
coefficients				
Unit-3 6 Hours				
Conduction of heat in solids gravitational notential Laplace and heat equations				
conservation laws and Burger's equations, reduction to canonical forms, elementary solution				
of heat equations				
Unit-4 9 Hours				
Cauchy problem for second order partial differential equations, mathematical modelling of				
vibrating string, vibrating membrane, homogeneous wave equations, initial and boundary				
value problems, non-homogeneous boundary conditions, finite strings with fixed ends, non-				
homogeneous wave equations, Riemann problem, Goursat's problem, spherical and cylindrical				
wave equations.				
Unit-5 6 Hours				
Method of separation of variables for second order PDE, vibrating string problem, existence				
and uniqueness of solution of vibrating string problem, existence and uniqueness of solution of				
heat conduction problem, Euler-Bernoulli Beam Equation.				
Unit-6 4 Hours				
Klein–Gordon equation, Korteweg–de Vries equation, Modified KdV–Burgers equation, Maxwell's equations, Navier–Stokes equations				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks		
		(ETE)			
30	20	50	100		
Name of The Course	Linear Algebra				
--------------------	----------------	---	---	---	---
Course Code	BSCM303				
Prerequisite					
Anti-requisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives:

Course Outcomes:

After the completion of the course, students will be able to:

CO1	Understand real vector spaces, subspaces ,basis & dimension and apply their properties.
CO2	Compute linear transformations, kernel and range, and inverse linear transformations, and
	find matrices of general linear transformations.
CO3	Compute inner products on a real vector space and compute angle and orthogonality in
	inner product spaces.
CO4	Find eigen values and eigen vectors. Diagonalize, and orthogonally diagonalize symmetric
	matrices•
CO5	To solve system of first order linear ordinary differential equations using Linear algebra.
CO6	Know various applications of linear algebra.

Text Book (s):

1. SERGE LANG : Introduction to Linear Algebra, Springer Verlag.

2. S. KUMARESAN : Linear Algebra A Geometric approach, Prentice Hall of India Private Limited

3- GARETH WILLIAMS : Linear Algebra with Applications, Narosa Publication

Reference Book (s):

1. M. ARTIN : Algebra, Prentice Hall of India Private Limited.

2. K. HOFFMAN and R. KUNZE : Linear Algebra, Tata McGraw Hill, New Delhi.

3. GILBERT STRANG : Linear Algebra and its applications, International Student Edition.

4. L. SMITH : Linear Algebra, Springer Verlag.

5. A. RAMACHANDRA RAO and P. BHIMA SANKARAN : Linear Algebra, Tata McGraw Hill, New Delhi.

6. T. BANCHOFF and J. WERMER : Linear Algebra through Geometry, Springer Verlag New York, 1984.

7. SHELDON AXLER : Linear Algebra done right, Springer Verlag, New York.

8. OTTO BRETCHER : Linear Algebra with Applications, Pearson Education.

Unit-I: Vector Spaces10hrsDefinition examples and basic properties of a vector space, Subspaces, Linear DependenceIndependence, Linear combinations and span, Basis and dimension, Sum and intersection of
subspaces, Direct sum of subspaces, Dual spaces, invariant subspaces and Cyclic subspaces.

Unit-II: Linear Transformations

8hrs

Definition and examples of linear transformations, Properties of linear transformations, Range and kernel, The rank and nullity of a linear transformation, Rank-Nullity Theorem and its consequence, The matrix representation of a linear transformation, Change of basis, Isomorphism theorems, invertibility and isomorphism, change of coordinate matrix.

Unit-III: Inner Product Spaces

8hrs

Scalar product in an Inner product spaces. Orthogonality in inner product Spaces, Normed linear spaces, Inner product on complex vector spaces, Orthogonal Complements, orthogonal sets and projections, Gram-Schmidt Orthogonalization process, Bessel's inequality.

Unit-IV: Eigen Value & Eigen Vectors

8 hrs

6hrs

Eigenvalues and eigenvectors, Eigenvectors and eigenvalues of linear transformations and matrices, Eigen Space, algebraic multiplicity, geometrical multiplicity, Cayley-Hamilton Theorem. Similar matrices and Diagonalization, Eigenvalues and eigenvectors of symmetric and Hermitian matrices, Orthogonal Diagonalization, Quadratic forms and conic sections.

Unit-V: Applications

Eigen Decomposition (Spectral Decomposition), Singular Value Decomposition, Dimension Reduction, Principal Component Analysis, Image Compression, Facial Recognition, Solving system of first order linear ordinary differential equations.

Unit-VI: Advancement of Linear Algebra: 5hrs Zero-dilation index of a finite matrix ,Non existence of 5-class association scheme with 2-Q polynomial scheme. Line star set for Laplacian Eigen Values.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Linear Algebra Lab using Python				
Course Code	BBS14P1005				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

Students of the course should master properties of solving complex linear systems of equations, conversion of linear transformation into matrix, to find orthogonal and orthonormal basis by Gram Smith process and many other complicated real life problem of linear algebra by using Python lab

613

Course Outcomes:

After completion of the course the students will be able to:

CO1	Develop code to find the inverse of a matrix and solving a system of equations
CO2	Apply code for rank nullity theorem and Eigen value problems.
CO3	Find the matrix from a linear transformation
CO4	Develop code for Singular value decomposition and its applications
CO5	Solve system of first order linear ordinary differential equations

Text Book (s)

- 7. Introduction to Computation and Programming using Python, by John Guttag, PHI Publisher
- 8. Python Programming using problem solving Approach by ReemaThareja, Oxford University, Higher Education Oxford University Press; First edition (10 June 2017), ISBN-10: 0199480173
- 9. Fundamentals of Python first Programmes by Kenneth A Lambert, Copyrighted material Course Technology Inc. 1 st edition (6th February 2009)

Reference Book (s)

- 6. T. Budd, Exploring Python, TMH, 1st Ed, 2011
- 7. How to think like a computer scientist : learning with Python / Allen Downey, Jeffrey Elkner, Chris Meyers. 1st Edition Freely available online.2012

List of experiments:

- 1. Basic of python
- 2. Basic of python continued
- 3. Develop python code to find the Inverse of matrix by Jordan method
- 4. Develop python code to determine LI of vectors and determining solution of system of linear equations.
- 5. Develop python code to find the Kernel, range and verification of rank and nullity theorem.
- 6. Develop python code for Matrix representation of any linear transformation, and find inverse of a linear transformation.
- 7. Develop code to compute the Eigen Values and Vectors and check whether a given matrix is symmetric, skew-symmetric, and orthogonal.
- 8. Develop a code for Gram-Schmidt orthogonalization process.
- 9. Implement singular value decomposition in python
- 10. Implement Dimension Reduction in python
- 11. Develop code for image compression using SVD
- 12. Develop python code for solving system of first order linear ordinary differential equations.

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
50	-	50	100

Continuous Assessment Pattern

Name of The Course	Discrete Structures
Course Code	BSCM205

1				
Corequisite				
Antirequisite				
	L	Т	Р	С
	3	1	0	4

Course Objectives:

Discrete structure is the study of mathematical structures that are fundamentally discrete rather than continuous. The objective of this course is to teach students how to think logically and mathematically. The course stresses on mathematical reasoning and describes different ways in which mathematical problems could be solved.

Course Outcomes:

After successful completion of this course the students will be able to:

CO1	Apply the Rules of Inference in solving variety of problems including the validity of
	an argument.
CO2	Apply advance counting techniques to solve a variety of problems.
CO3	Apply the concepts of sets, relation and functions.
CO4	Apply laws of Boolean algebra.
CO5	Classify a structure as Graph, Trees and their various types.
CO6	Understand the concept of automated theorem proving.

Text Book (s)

- 1. Rosen,K. H., Discrete Mathematics and Its Applications, 7thed., McGraw-Hill, New York, 2007.
- 2. Liu, C. L. and Mohapatra, Elements of Discrete Mathematics: a computer oriented approach, 3rd ed., McGraw Hill, New Delhi, 2008.
- Mano, M. M., Computer System Architecture, 3rd Edition, Prentice-Hall of India Pvt. Ltd, New Delhi, 1996.

Reference Book (s)

1. Sarkar, S. K., A textbook of Discrete Mathematics, S.Chand & Company Ltd., New Delhi, 2005.

Unit-1: Propositional Logic & Proof Techniques	10 Hours			
Syntax, Semantics, Validity and Satisfiability, Bas	sic connectives and Truth Tables, Logical			
Equivalance, ,the laws of logic, Logical implication,	Rules of inference,Normal form(CNF,DNF),			
Predicate logic, Universal and Existantial quantifiers,	skolemization.			
Some terminologies, Proof methods and strategies, Forward proof, Proof by contradiction, Pro				
by contraposition, Proof of necessity and sufficiency.				
Unit-2	08 Hours			
Counting Techniques: Basic counting techniques, inclusion and exclusion, pigeon-hole				
principle, permutation and combination.				
Unit-3: Sets, Relation and Function & Principles of Ma	athematical Induction 10 Hours			

Operations and laws of sets, Cartesian product, binary relation, partial order relation, Equivalence relation, Functions, Bijective function, inverse and composition of function, size of a set, countable and uncountable set, Cantor's diagonal argument and the power set theorem, Schroeder-Bernstein theorem.

The well -Ordering principle, Recursive definition, prime numbers, greatest common divisor, Euclidean algorithm, the fundamental theorem of arithmetic.

Unit-4: Boolean Algebra & Logic Circuits

10 Hours

Logical Addition(OR operation), Logical multiplication(AND operation), Boolean function, truth table, logic diagram, Boolean expression, DeMorgan's theorem, Complement of a function; Logic Gates: OR, AND, inverter, NAND, NOR, exclusive-OR; Karnaugh map(or Kmap) simplification: minterm, adjacent squares, product-of-sums, NAND implementation, NOR implementation.

Unit-5: Graphs

Unit-6

10 Hours

Graphs and their properties, degree, connectivity, path cycle, sub graphs, isomorphism, Eulerian and Hamiltonian walks, Graph coloring, coloring maps and planer graphs, coloring vertices and edges, list coloring, perfect graph. Trees: Definitions, properties and examples, rooted trees, trees and sorting, weighted trees and prefix codes, bi-connected components and articulation points, shortest distances.

3 Hours

Automated theorem proving

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Probability and Statistics				
Course Code	BSCM104				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives:

The aim of this course is to identify the types of data (qualitative, quantitative, discrete, and continuous). Identify the types of sampling (random, stratified, systematic, cluster). Identify the misuses of statistics. Student will use appropriate statistical methods to collect, organize, display, and analyze relevant data. Course Outcomes:

After successful completion of this course the students will be able to:

CO1	Analyze statistical data graphically and by using measures of central tendency,
	dispersion and location.
CO2	Domestication and introduction to Probability and its Applications in real life
	situation.
CO3	Understand the concepts of a random variable, Expectation and a probability
	distribution.
CO4	Identify the characteristics and real life application of different discrete probability
	distributions.
CO5	Identify the characteristics and real life application of different continuous
	probability distributions.
CO6	Explain the various applications of statistics in current research.

Text Book (s)

- 1. Walpole, R. E., R. H. Mayers, S. L. Mayers and K. Ye, Probability and Statistics for Engineers and Scientists, 8th ed., Pearson Education, 2007.
- 2. Sheldon, M. Ross, Introduction to Probability and Statistics for Engineers and Scientists, 4th ed, Academic Foundation, California, 2011.
- 3. Douglas, C. Montgomery, Applied Statistics and Probability for Engineers, 5th ed., Wiley India, 2012.
- 4. Spiegel, M. R., J. Schiller and R. A. Srinivasan, Probability & Statistics, 3rd ed., Tata-McGraw Hill, 2010.

Reference Book (s)

1. Gupta, S.C., and V.K. Kapoor, Fundamentals of Mathematical Statistics (a Modern Approach), 10th ed., Sultan Chand & Sons, New Delhi, 2000.

Unit-1: Descriptive Statistics	9 Hours			
Concepts of a statistical population and sample from a population, Sources of data. Different				
types of scales - nominal, ordinal, ratio and inter	rval. Presentation of Data, Diagrammatic and			
graphical representation of grouped data. Fro	equency distributions, cumulative frequency			
distributions and their graphical representatio	n, histogram, frequency polygon and ogives			
.Univariate data - Concepts of central tendency of	or location, dispersion and relative dispersion,			
skewness and kurtosis, and their measures inclu	uding those based on quantiles and moments.			
Sheppard's correction for grouped data (withou	t derivation).			
Unit-2: Probability Theory	9 Hours			
Random experiments: trial, sample point and	sample space, event. Operations of events,			
concepts of mutually exclusive and exhaustive e	vents. Definition of Probability: Classical and			
relative frequency approach. Discrete probability space, Axiomatic approach to probability for				
the discrete case only. Properties of probability. Independence of events in probability for two				
and three events. Conditional probability, total and compound probability rules, Baye's				
theorem and its applications.				
Unit-3: Random Variable and Expectation	8 Hours			
Discrete and continuous random variables, Cumulative distribution function (cdf), Probability				
mass function(pmf) and probability density fur	nctions(pdf). Bivariate distribution, Marginal			
and conditional distributions. Expectation of	of a random variable and its properties.			
Independence of random variables. Moments,	measures of location and dispersion of arv.			
Theorems on the expectation of sums of random	variables and product of independent random			

variables, Conditonal expectations	Probability	generating	function(pgf)	and	moment	
generating function(mgf), their properties and uses.						
Unit-4 :Discrete Probability Distribution	ns		9 Hoi	Jr		
Introduction to probability distribut	tion, Mean, V	ariance, mgf	and other cha	iracte	ristics of	
Bernoulli, Binomial, Negative Bino	mial, Poisson,	Geometric,	Hyper geome	tricdi	striution.	
Multinomial distribution.						
Unit-5: Continuous Distributions			9 Hours			
Uniform, Normal, Beta and Gamm, Exponential, Log-normal, Cauchy, Laplace, Pareto and						
Weibull distributions and their properties. Bivariate normal distribution and its properties.						
Chi-Square distribution and Exact Sampling distribution.						
Unit-6: Advancement in Probability and	l Statistics		4 Hour			
Recent Developments in Modeling and	Applications in	Statistics, M	igration and mig	grant p	opulation	
statistics, Statistical Model use in Child	Mortality.					

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Probability and Statistics Lab in R				
Course Code	BSCM112				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives: The objective of this course is to familiarize the students with fundamental concepts of R Environment and develop programming skills using R Environment to effectively implement for difficult statistical problems like plotting of different types of chart, curve fitting of data, regression analysis, test of hypothesis, and interval estimations.

Course Outcomes:

After successful completion of this course the students will be able to:

CO1	Develop R-code for basic concepts of R
CO2	Design R-code various data inferences like: CSV files, Excel files, XML files, binary
	files.
CO3	Apply R-code to plot the different types of chart
CO4	Develop R-code for correlation and regression problems
CO5	Write R-code for mean, variance, moments, problems of different probability
	distributions, test of hypothesis and confidence interval.

Text Book (s)

 Garret Gorlemund and Dadley Wickham, R for Data Science, <u>https://r4ds.had.co.nz/</u>
 Roger D. Peng, R Programming for Data Science, https://www.cs.upc.edu/~robert/teaching/estadistica/rprogramming.pdf

3. Hogg, R.V., Tanis, E.A. and Rao J.M., Probability and Statistical Inference, 2009

Seventh Ed, Pearson Education, New Delhi.

Reference Book (s)

1. Miller, Irwin and Miller, Marylees : John E. Freund's Mathematical Statistic with Applications, (7th

Edn.), Pearson Education, Asia., 2006

2. Bhattacharjee D and Das D., Introduction to Probability Theory, Asian Books, New Delhi, 2010.

List of Experiments:

- Lab 1. Basics of R data type, variables, operators, loops, functions, string.
- Lab 2. Basics of R Contd. vector, list, matrices, array, packages.
- Lab 3. R data interfaces CSV files, Excel files, XML files, binary files.
- Lab 4. R Charts & Graphs Pie charts, Bar Charts, Boxplots, Histograms, Line Graphs, Scatterplots.
- Lab 5. Problems based on combined mean and variance and coefficient of variation.
- Lab 6. Problems based on moments and cumulants.
- Lab 7. Problem based on Poisson distributions for given value of lambda.
- Lab 8. Problem based on Normal distributions.
- Lab 9. Fitting of polynomials and exponential curves.
- Lab 10. Problem based on Karl Pearson's correlation coefficient.
- Lab 11 Lines of regression, angle between two lines of regression and estimated values of variables.

Lab 12. Testing of significance and confidence intervals for mean and difference of mean proportions.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
50	-	50	100

Name of The Course	Numerical Methods				
Course Code	BSCM503				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives:

The aim of this course is to learn various numerical methods for finding solutions of non linear equations and system of linear equations, problems of interpolation, numerical integration and differentiation and solution of ordinary differential equations.

Course Outcomes:

After the completion of the course, students will be able to:

CO1	Summarize the concept of errors and apply various numerical methods to find the roots of
	non linear equations.

CO2	Summarize the concept of errors and apply various numerical methods to find the solution
	of system of equations.
CO3	Apply interpolated formulas to find approximated polynomials and missing values.
CO4	Solve differentiation and integration for complex functions using numerical methods.
CO5	Solve Ordinary differential equations using different numerical methods.
CO6	Apply numerical methods to solve mechanical, thermal and dynamical problems

Text Book (s)

- 1. M. K. Jain, S. R. K. Iyengar, R. K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International, New Delhi, Sixth edition.
- 2. Melvin J. Maron, Numerical Analysis A Practical Approach, Macmillan Publishing Company Inc., New York, 1982.
- 3. S. S. Sastry, Introductory Methods of Numerical Analysis, PHI Learning Private Limited, New Delhi, 2010.

Reference Book (s)

- 1. C. F. Gerald, P. O. Wheatley, Applied Numerical Analysis, Pearson Education, 2009.
- 2. S. D. Conte, C de Boor, Elementary Numerical Analysis, McGraw-Hill, 1980.
- 3. C. E. Froberg, Introduction to Numerical Analysis, (Second Edition), Addition-Wesley, 1979.

Unit-1 8 Hours				
Introduction, error and error propagation. Solution of transcendental and polynomial				
equations by iteration, bisection, Regula-Falsi and Newton-Raphson methods. Convergence of				
these methods.				
Unit-2 10 Hours				
Solution of system of linear equations by Gauss – Jordan method, LU decomposition, Gauss-				
Siedel. Convergence of iterative methods. Algebraic eigen value problems: Power method.				
Unit-3 8 Hours				
Shift operator, Forward and backward difference operators and their relationships,				
Fundamental theorem of difference calculus, Interpolation, Newton-Gregory's forward and				
backward interpolation formulae. Approximation: Least square polynomial approximation.				
Unit-4 11 Hours				
Divided differences, Newton's divided difference formula, Lagrange's formula, Central				
differences, Formulae based on central differences: Gauss, Striling's, Numerical				
differentiation.				
Unit-5 11 Hours				
Numerical integration, General quadrature formula, Trapezoidal and Simpson's 1/3 and 3/8				
rules, Numerical solution of first order differential equations: Euler's method, Picard's				
method, Runge-Kutta method.				
Unit-6				

Applications of Numerical Methods in domain related problems such as mechanical, thermal and dynamical problems etc.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Numerical Methods Lab				
Course Code	BSCM512				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

The objective of this course is to familiarize the students with fundamental numerical methods and develop programming skills using Scilab to effectively implement numerical solutions for difficult engineering problems.

Course Outcomes:

After the completion of the course, students will be able to:

CO1	Elaborate the Arithmetic Operations and Elementary Mathematical Built-in functions
	on SCILAB platform.
CO2	Design SCILAB codes to find the solution of non linear equations and system of
	equations.
CO3	Develop SCILAB codes for interpolating the value in the given range of data.
CO4	Apply SCILAB codes to find the Numerical Integration of complex functions
CO5	Apply SCILAB codes to find the solution of complex Ordinary differential equations
	with specific initial conditions.

Text Book (s)

- . Urroz, G E., Numerical and Statistical Methods with SCILAB for Science and Engineering ,Vol1 Book Surge Publishing, 2001, ISBN-13: 978-1588983046
- 2. Software site: http://www.scilab.org, official scilab website
- 3. Wikipedia article: http://en.wikipedia.org/wiki/Scilab

Reference Book (s)

Lab 1: Basics of Scilab (Refresher)

(i) Scilab Basics

- (ii) Arrays: Unlocking potential of Scilab
- (iii) Scilab Files: script and function
- Lab 2: Experiment on following:
- (i) Numerical Limitations
- (ii) Program output and plotting
- (iv) Working with arrays and functions

(v) Loops and Execution control

Lab 3: Developing code for Bisection method to find the roots of a non linear equation.

Lab 4: Developing code for Regula- Falsi method to find the roots of a non linear equation.

Lab 5: Developing code for Newton- Raphson method to find the roots of a non linear equation.

Lab 6: Developing a code for Naïve Gauss Elimination to find the solution of system of linear equations.

Lab 7: Developing a code for Gauss Seidel Method to find the solution of system of linear equations.

. Lab 8: Developing a code for Power Method to find Largest Eigen value and corresponding Eigen Vector.

Lab 9: Developing a code for Lagrange's Method to solve the problems of Interpolation.

Lab 10: Developing a code for numerical integration of complex function (Trapezoidal and Simpson 1/3rd Rule)

Lab 11: Develop a code to find the solution of ordinary differential equation by Euler Method..

Lab 12: Develop a code to find the solution of ordinary differential equation by Runge- Kutta Method.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
50	-	50	100

Semester IV

Name of The Course	Transforms and their applications				
Course Code	BSCM403				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives:

1. Mathematics fundamental necessary to formulate, solve and analyze engineering problems.

2. An understanding of Fourier and Laplace Transform to solve real world problems.

3. An understanding of Wavelet transforms.

4. An understanding of Z-transform & Affine transforms.

Course Outcomes:

After the completion of the course, students will be able to:

CO1	Demonstrate the application of Laplace transform in mathematical problem & engineering
	problem.
CO2	Conclude the application of Fourier transform in real world problems.
CO3	Classify the Wavelet transform in different wave packets and apply in mathematical models.
CO4	Interpret the Z- transform in mathematics beside Laplace & Fourier transform.
CO5	Interpret the uses of Affine transform in mathematical problem.
CO6	Apply integral transform to solve differential equations.

Text Book (s)

- 1. Raguveer M. Rao and Ajit S. Bopardikar-Wavelet Transforms –Introduction and applications-Pearson Education, 2008
- 2. K.P Soman, K. I. Ramachandran Insight into Wavelets from Theory to practice, PHI, 2006.
- 3. Jain R.K., Iyengar, S.R.K. Advanced Engineering Mathematics, Narosa Publishers, 2006.

Reference Book (s)

4. Johny R. Johnson, Introduction to Digital Signal Processing, PHI, 2006.

Unit-1: Laplace Transform	10 Hours
The concept of transform, Integral transforms and kerne	l, Linearity property of transforms, Laplace
transform, Properties of Laplace transform, Inverse Lap	ace transform, Convolution theorem, Applications of
Laplace transform to solve ordinary differential equation	18.
Unit-2:Fourier transforms	10 Hours
Fourier Transform (finite and infinite), Properties of Fou	rier transforms, Fourier integral, Convolution
Theorem, Inverse of Fourier Transform, Applications of	Fourier transform to boundary value problems.
Discrete Fourier transform: Frequency domain sampling	, Discrete Fourier transform (DFT): DFT pair,
properties of DFT, circular convolution using DFT, Fast	Fourier transform (FFT).
Unit-3: Wavelet transform	10 Hours
Classification: continuous and discrete wavelet transform	ns, Developments in wavelet theory applications.
Continuous Wavelet Transform: Introduction, Continuo	us time wavelets, CWT as an operator, Inverse CWT.
Discrete Wavelet Transform and orthogonal Wavelet de	composition: Approximations of vectors in nested
linear vector subspaces, Multi-resolution Analysis of L2	(R), Haar Scaling function, Haar wavelet, Haar
wavelet decomposition, Haar wavelet packets and applied	cation.
Unit-4: Z-Transform	9 Hours
Definition and properties of Z-transforms, inverse Z-transforms	nsform of elementary functions, Initial and final value
theorem for Z-transforms, Convolution theorem for Z- t	ransforms, Formation of difference equations,
Solution of difference equations. Applications of Z- tran	sform.
Unit-5: Affine Transform	9 Hours
Constant-functions. Definition of affine transformation.	Linear spaces of affine transformations. The algebra
of affine transformations. Bases for various function-spa	ces. Matrices and transformations. The dimension of
the linear space of all affine transformations on a finite-	dimensional Euclidean space.
Unit-6: Applications of Integral Transforms to Fractiona	al Differential Equations 7hours
Laplace Transforms of Fractional Integrals and Fraction	al Derivatives, Fractional Ordinary Differential
Equations, Initial Value Problems for Fractional Differe	ntial Equations.

Name of The Course	Econometrics				
Course Code	BSCM404				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives:

Econometrics is a set of research tools used to estimate and test economic relationships. The aim of this course is to provide you with the skills helpful in filling the gap between being "a student of economics" and being "a practicing economist." By taking this introduction to econometrics you will gain an overview of what econometrics is about, and develop some "intuition" about how things work. Course Outcomes:

After the completion of the course, students will be able to:

CO1	Apply statistical tests to solve the hypothesis testing problems.
CO2	Define Simple Linear Regression Model & its various methods
CO3	Define multiple Linear Regression Model &its various methods
CO4	Explain the violations of Classical Assumptions
CO5	Able to explain Specification Analysis Omission of a relevant variable, inclusion of
	irrelevant variable and tests of specification errors.
CO6	Understands the recent trends in econometrics.

Text Book (s)

1. Jay L. Devore, Probability and Statistics for Engineers, Cengage Learning, 2010.

2. John E. Freund, Mathematical Statistics, Prentice Hall, 1992.

Reference Book (s)

- 1. Richard J. Larsen and Morris L. Marx, *An Introduction to Mathematical Statistics and its Applications*, Prentice Hall, 2011.
- 2. D. N. Gujarati and D.C. Porter, *Essentials of Econometrics*, McGraw Hill, 4th Ed., International Edition, 2009.
- 3. Christopher Dougherty, *Introduction to Econometrics*, Oxford University Press, 3rd Ed., Indian edition, 2007.

Unit-1 10 Hours
Fitting of the Curves by method of least square: Straight line, parabola and exponential curves.
Correlation and Regression: Bivariate population, Meaning of correlation & regression.
Coefficient of Correlation, rank correlation, lines of regression. Properties of regression
coefficients, Partial and multiple correlation and their simple Properties.
Unit-2 9 Hours
Simple Linear Regression Model: Two Variable Case Estimation of model by method of ordinary
least squares; properties of estimators; goodness of fit; tests of hypotheses; scaling and units of
measurement; confidence intervals; Gauss-Markov theorem; forecasting.
Unit-3 9 Hours
Multiple Linear Regression Model Estimation of parameters; properties of OLS estimators;
goodness of fit - R2 and adjusted R2 ; partial regression coefficients; testing hypotheses – individual
and joint; functional forms of regression models; qualitative (dummy) independent variables.
Unit-4 8 Hours
Violations of Classical Assumptions: Consequences, Detection and Remedies Multicollinearity;
heteroscedasticity; serial correlation.
Unit-5 8 Hours

Specification Analysis Omission of a relevant variable; inclusion of irrelevant variable; tests of specification errors.

4 Hour

Estimating derivatives of function-valued parameters in a class of moment condition models. Relevant parameter changes in structural break models.

Name of The Course	Differential Geometry & Tensor				
Course Code	BSCM524				
Prerequisite	Linear algebra, Calculus in several variables, Vector	calc	ulus.		
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives: The aim of the course is to provide knowledge of the geometry of curves and surfaces. The course integrates concepts from different parts of mathematics, such as linear algebra, calculus and differential equations. It also provides intuitive examples for many concepts in linear algebra, calculus and differential equations. These examples are fundamental to physics and mechanics: they play a role in our understanding of the movements of particles and the theory of relativity.

Course Outcomes:

Unit-6

After learning the course the students should be able to:

CO1	Apply method to find the parametric representations and tangent, Evolute and
	Envolute of curve.
CO2	Apply methods of theory of surfaces
CO3	Explain the theory of Geodesics.
CO4	Find the tensor product of vector spaces and its associated vectors.
CO5	Elaborate the knowledge about tensor analysis and tensor differentiation.
CO6	Learn the basic theory of curvature tensor

Recommended Books:

1. Tensor Calculus, Zafar Ahsan, Anamaya Publication, New Delhi.

2. Differential Geometry of manifolds, U.C.De&A.A.Shaikh, Narosa Publishing House Pvt. Ltd,

2007.

3. Schaum's Outlines of Tensor Calculus.

4. Tensor Calculus & Riemannian Geometry, D.C. Agarwal, Krishna Publications.

Reference Book (s):

- 1- J. A. Schouten, *Ricci-Calculus*. *An introduction to tensor analysis and its geometrical applications*, **2d** ed. Berlin, Springer, 1954.
- 2- Introduction to Tensor Calculus: Kees Dullemond & Kasper Peeters, Lecture Notes series.

Unit-1: Theory of Space Curves

Space curves, Planer curves, Curvature, torsion and Serret-Frenet formulae. Osculating circles, Osculating circles and spheres. Existence of space curves. Evolutes and involutes of curves.

Unit-2: Theory of Surfaces

11 Hours

Parametric curves on surfaces. Direction coefficients. First and second Fundamental forms. Principal and Gaussian curvatures. Lines of curvature, Euler's theorem. Rodrigue's formula, Conjugate and Asymptotic lines. Developables: Developable associated with space curves and curves on surfaces, Minimal surfaces.

Unit-3

10 Hours

10 Hours

Canonical geodesic equations. Nature of geodesics on a surface of revolution. Clairaut's theorem. Normal property of geodesics. Torsion of a geodesic. Geodesic curvature. Gauss-Bonnet theorem. Surfaces of constant curvature. Conformal mapping. Geodesic mapping. Tissot's theorem.

Unit-4: Tensor algebra

08 Hours

4hours

Vector spaces, the dual spaces, tensor product of vector spaces, transformation formulae, contraction, special tensor, inner product, associated tensor.

Unit-5: Tensor Analysis

Contravariant and covariant vectors and tensors, Mixed tensors, Symmetric and skewsymmetric tensors, Algebra of tensors, Contraction and inner product, Quotient theorem, Reciprocal tensors, Christoffel's symbols, Covariant differentiation, Gradient, divergence and curl in tensor notation.

Unit-6:Curvature tensor

Differential Manifold-examples, tangent vectors, connexions, Elements of general Riemannian geometry-Riemannian metric, the fundamental theorem of local Riemannian Geometry

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Name of The Course	Complex Analysis				
Course Code	BBS14T1006				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	C
		3	1	0	4

Course Objectives:

The objective of the course is to familiarize with techniques in calculus of complex variable functions It aims to enhance the problem solving skills using standard concepts and tools at an intermediate to advance level that will serve them well towards tackling more advanced level of Mathematics and application that they would find useful in their discipline.

Course Outcomes: Students will able to

CO1	Explain analytic function and its properties.
CO2	Evaluate contour integral in complex plane.
CO3	Determine power series and zero of an analytic functions.
CO4	Construct conformal mappings between many kinds of domain.
CO5	Evaluate and Differentiate between the singularities and Residues.
CO6	Understand the concept of transformation in a complex space (linear and non-linear)
	and sketch their associated diagrams.

Text Book (s)

- 1. S. Ponnusamy and H. Silverman, Complex Variables, Birkhäuser, Inc., Boston, MA, 2006.
- 2. J. B. Conway, Functions of One Complex Variable, Narosa Publishing House, New Delhi, 2002.

Reference Book (s)

- 1. V. Ahlfors, Complex Analysis (Third Edition), McGraw-Hill, 1979.
- 2. S.Ponnusamy, Foundation of complex analysis, Narosa publication, 2003

Unit-1	Contact hours: 9		
Algebra of complex numbers, Limit, Continuity, Differentiability of	complex function, Cauchy-		
Riemann equations(Cartesian & polar), analytic functions, harmonic fu	nctions, harmonic conjugates,		
analyticity of functions, the exponential, trigonometric, hyperbolic fun	ctions and their properties.		
Unit-2	Contact hours: 8		
Line integral, basic properties of contour integration, M-L inequal	ity, fundamental theorem of		
contour integration, Cauchy's integral theorem, Cauchy-Goursa	t theorem (statement only),		
Cauchy's integral formula, Cauchy's integral formula for higher of	lerivatives,		
Unit-3	Contact hours: 9		
Taylor's theorem, zeros of an analytic function, Laurent's theor	em, the identity/uniqueness		
theorem for analytic functions, the identity theorem for power	series, Maximum modulus		
theorem, Schwarz' lemma and its consequences, Cauchy's estimate, Liouville's theorem, A			
Generalized version of Liouville's theorem, the fundamental theor	em of algebra.		
	-		
Unit-4	Contact hours: 9		
Conformal mappings, Möbius transformations and its proper	ties, the group of Möbius		
transformations, circles and lines under Möbius maps, cross ratio and its invariance property,			
Principle of symmetry (statement only), Conformal self maps of di	sks and half planes.		

Unit-5

Contact hours: 10

Singularities of functions, Non-isolated singularities: removable singularity, poles and essential singularities, Characterization of removable singularity, pole and essential singularity, Characterizing singularities via Laurent series expansion, isolated singularities at ∞ , residues, Cauchy's residue theorem, evaluation of definite and improper integrals using contour integration,

Unit-6

Contact hours: 4

Introduction, Conformal Mapping, Some special transformations, Möbius transformations, Cross ratio, invariance of circles, symmetry and orientation principles (statement only), determination of Möbius transformations mapping real line onto itself, upper half plane onto itself, upper half plane onto open disc and an open disc onto an open disc.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Real Analysis II				
Course Code	BBS14T1007				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives:

Demonstrate an understanding of Riemann integral, improper integrals, point wise and uniform convergence of sequences and series of functions, Fourier Series, Power series and their convergence, metric spaces and how they are used in real world problems.

Course Outcomes

CO1	To understand the Riemann integral
CO2	To understand improper integrals and their convergence
CO3	To understand point wise and uniform convergence of sequences and series of
	functions
CO4	To understand Fourier Series, Power series and their convergence
CO5	To understand definition and examples of metric spaces
CO6	To Explain fundamental properties of the metric spaces that lead to the formal
	development of real analysis.

Text Book (s)

1. R. G. Bartle and D.R. Sherbert, *Introduction to Real Analysis* (3rd Edition), John Wiley and Sons (Asia) Pvt Ltd., Singapore, 2002.

2. S.C. Malik and Savita Arora: Mathematical Analysis, New Age International (P) Ltd. Publishers, 1996.

3. K. A. Ross, Elementary Analysis: *The Theory of Calculus, Under graduate Texts in Mathematics*, Springer (SIE), Indian reprint, 2004.

Reference Book (s)

1.Sudhir R Ghorpade and Balmohan V. Limaye, *a course in Calculus and Real Analysis, Undergraduate Text in Math.*, Springer (SIE). Indian reprint, 2004.

2. T.M. Apostol: Mathematical Analysis, Addison-Wesley Series in Mathematics, 1974.

Unit I Lecture hours- 12			
Introduction to Riemann integral, Riemann lower and upper sums, existence of Riemann			
integral, Darboux theorem, Condition of integrability, Riemann integrability for continuous			
functions, bounded functions, monotonic function and functions with finite or infinite number			
of discontinuities (with proof).			
Unit II Lecture hours- 8			
Definition of improper integrals, Kinds of improper integral with example, test for			
convergence of improper integrals: p-integral test, comparison test, Cauchy's test for			
convergence, absolute convergence, Abel's Test, Dirichlet's Test,			
Unit III Lecture hours- 12			
Definition of point wise and uniform convergence of sequences and series of functions,			
Cauchy's criterion for uniform convergence, Weierstrass M-test, Uniform convergence and			
continuity, Uniform convergence and differentiation, Uniform convergence and integration.			
Unit IV Lecture hours- 12			
Fourier Series, Power series, Radius of convergence, uniform and absolute convergence,			
Abel's Theorem, Uniqueness theorem for power series, Abel's and Tauber's theorems (with			
proof).			
Unit V Lecture hours- 8			
Definition and examples of metric spaces, open ball and closed ball, Neighbourhood of a			
point, Open sets, Limit points, Closed sets and closure of a set, Convergent and Cauchy			
sequences, Complete metric space.			
Unit VI Lecture hours- 4			
Equivalent metric spaces, Complete metric, Banach fixed point theorem, Dense subsets,			
Nowhere dense set, Perfect sets, Cantor Sets, Baire Category theorem, Separable, second			
countable and first countable spaces. Compactness, Sequential compactness, \in -Nets &			
Totally bounded sets. Finite intersection property. Lebesgue numbers for coves,			
Connectedness, Component of metric spaces and its property.			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Ring and Module Theory				
Course Code	BSCM423				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives: **Objective of this course is to introduce basic concepts of Ring, subring , their homomorphism and related properties.**

Course Outcomes:

After learning the course the students should be able to:

CO1	Apply methods to find Ring Sub ring and Ideal.
CO2	Apply methods to find Homomorphism, Isomorphism and Kernel.
CO3	Explain the concept of Polynomial rings, Division algorithm and Factorization of
	polynomials.
CO4	Apply the concept of Principal Ideal Domain, Euclidean Domain, Unique
	Factorization Domain.
CO5	Explain Ring embedding and quotient field.
CO6	Introduce module theory over commutative rings.

Text Book (s)

1. Surjeet Singh and QaziZameeruddin: Modern Algebra, Vikas Publication.

2. J.A. Gallian: Contemporary Abstract Algebra, Narosa Publication.

Reference Book (s)

1. I. N. Herstein: Topics in Algebra, Wiley Eastern Ltd., New Delhi.

2. N. Jacobson: Basic Algebra, Volume I and II. W. H. Freeman and Co.

Unit-1	10 Hours			
Rings and their properties, Boolean Ring, Integral domain, Division ring and Field, Subrings,				
Ideals and their properties, Operations on ideals, Ideal generated by a subset of a ring,				
Quotient rings				
Unit-2	9 Hours			
Homomorphism of rings and its properties, Kernel of a homo	omorphism, Natural			
homomorphism, Isomorphism and related theorems, Field of	quotients			
Unit-3	10 Hours			
Polynomial rings over commutative rings, Properties of R[X]	, Division algorithm and its			
consequences, Factorization of polynomials, Irreducibility tes	st, Eisenstein's criterion for			
irreducibility				
Unit-4	11 Hours			
Factorization in integral domains, prime and irreducible element, Principal Ideal Domain,				
Euclidean Domain, Unique Factorization Domain and its pro	perties			
Unit-5	8 Hours			
Ring embedding and quotient field, regular rings and their examples, properties of regular				
ring, ideals in regular rings				
Unit-6	6 Hours			
Module over commutative rings, examples: vector spaces, Z-modules, commutative rings;				
submodules, quotient modules, homomorphism, isomorphism,				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Semester- V

Name of The Course	Fuzzy Mathematics
Course Code	BSCM601
Prerequisite	Set theory
Corequisite	
Antirequisite	

	L	Т	Р	С
	3	1	0	4

Course Objectives:

- 1. Introduce the basic mathematical concepts of the theory of fuzzy sets.
- 2. Explain the differences and similarities between fuzzy sets and classical sets theories.
- 3. Provide an emphasis on the concepts of fuzzy logic, neural networks and genetic algorithms.
- 4. Enable students to define membership grades of sets extracted from the real life applications.

Course Outcomes:

After the completion of the course, students will be able to:

CO1	Explain the basics of fuzzy set theory and fuzzy equivalence relation.
CO2	Develop understanding and knowledge of fuzzy logic and its application.
CO3	Develop different membership functions corresponding to different sets in the fields
	like neural network, genetic algorithm and inductive reasoning.
CO4	Define the fundamental concepts of fuzzy arithmetic and its properties.
CO5	Discuss various application areas like control systems, industrial problems to name a
	few.
CO6	Introduce some extensions and application areas of fuzzy set theory.

Text Book (s):

- 1. H.J. Zimmerman: Fuzzy Set Theory and its Application, 3rd Ed., Springer India Pvt. Ltd., 2006.
- 2. G. Klir and B. Yuan: *Fuzzy Set and Fuzzy Logic: Theory and Applications*, Prentice Hall of India Pvt. Ltd., 2002.

Reference Book (s):

1. T.J. Ross: Fuzzy Logic with Engineering Applications, 3rd Ed., Wiley India Pvt. Ltd., 2011.

2. G. Klir and T. Folger: Fuzzy Sets, Uncertainty and Information, Prentice Hall of India Pvt. Ltd., 2002.

Unit-1: Fuzzy Sets and Uncertainty	11 Hours
Uncertainty and information, fuzzy sets and membership funct	tions, chance versus fuzziness,
properties of fuzzy sets, fuzzy set operations. Cardinality,	operations, properties, fuzzy
Cartesian product and composition, fuzzy tolerance and eq	uivalence relations, forms of
composition operation.	
Unit-2: Fuzzy Logic and Fuzzy Systems	10 Hours
Classic and fuzzy logic, approximate reasoning, Natural languag	ge, linguistic hedges, fuzzy rule
based systems, graphical technique of inference. fuzzification, de	e-fuzzification to crisp sets and
scalars.	
Unit-3: Development of membership functions	9 Hours
Membership value assignments: intuition, inference, rank order	ring, neural networks, genetic
algorithms, inductive reasoning.	
Unit-4: Fuzzy Arithmetic and Extension Principle	8 Hours
Functions of fuzzy sets, extension principle, fuzzy mapping, inte	rval analysis, vertex method
and DSW algorithm.	

Unit-5: Fuzzy Control Systems	10 Hours	
Fuzzy control system design problem, fuzzy engineering process co	ntrol, fuzzy statistical	
process control, industrial applications.		
Unit-6: Extensions and Applications of fuzzy set theory	5 Hours	
Extensions: Type-2 fuzzy sets and intuitionistic fuzzy sets		
Applications: Fuzzy rough set, fuzzy time series analysis and fuzzy automata		

Continuous Assessment Pattern

Internal Assessment (IA) Mid Term Test (MTE) J		End Term Test	Total Marks	
		(ETE)		
30	20	50	100	

Name of The Course	Operations Research				
Course Code	BSCM502				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives:

The course aims at building capabilities in the students for analyzing different situations in the industrial/ business scenario involving limited resources and finding the optimal solution within constraints. This course introduce students to use quantitive methods and techniques for effective decisions-making; model formulation and applications that are used in solving decision problems. Topics covered will include linear programming, Duality, Assignment, and transportation programming, Game theory and Queueing theory. The course will discuss the underlying theory, but the emphasis will be on 632odelling and applications in various real world problems.

Course Outcomes:

After the completion of the course, students will be able to:

CO1	Construct linear integer programming models and discuss the solution techniques.
CO2	Design Dual problems and their relationship with primal with economic interpretation
CO3	Explain and formulate transportation, assignment problems and drive their optimal solution.
CO4	Explain the various technique to solve zero-sum two- person games problems and game
	with mixed strategies.
CO5	Develop the model and solve various type of queueing system.
CO6	Explain the applications of Operations Research in real life problems.

Text Book (s)

1. Mokhtar S. Bazaraa, John J. Jarvis and Hanif D. Sherali, *Linear Programming and Network Flows*, 2nd Ed., John Wiley and Sons, India,2004.

- 2. HamdyA.Taha, OperationsResearch, AnIntroduction, 8thEd., Prentice-HallIndia, 2006.
- 3. G. Hadley, *Linear Programming*, Narosa Publishing House, New Delhi, 2002.

Reference Book (s)

1. F.S. Hillier and G.J. Lieberman, *Introduction to Operations Research*, 9th Ed., Tata McGraw Hill, Singapore,2009.

5.

Unit-1: Linear Programming	10 Hours
Introduction to linear programming problem. Theory of s	simplex method optimality and
unboundedness the simpley algorithm simpley method in table	au format
unooundedness, the simplex argorithm, simplex method in table	au format.
Unit-2 Duality	8 Hours
Duality, formulation of the dual problem, dual simplex method, p	orimal-dual relationships, economic
interpretation of the dual.	
Unit-3: Transportation & Assignment Problem	10 Hours
· · · · · · · · · · · · · · · · · · ·	
Transportation problem and its mathematical formulation, no	orthwest-corner method least cost
method and Vogel approximation method for determination of st	tarting basic solution, algorithm for
solving transportation problem, assignment problem and its ma	thematical formulation, Hungarian
method for solving assignment problem.	
Unit-4: Game Theory	9 Hours
Formulation of two person zero sum games, solving two pers	son zero sum games, games with
mixed strategies, graphical solution procedure, linear progra	amming solution of games.
Unit-5: Sequencing & Replacement Model	11 Hours
Sequencing and replacement model: Sequencing problem –	processing through 2 machines, 3
machine – s jobs and k machines, Replacement of items that	deteriorate gradually – with
time, without time, that fails completely – individual replace	ement.
Unit-6: Applications of OR	6 hours
Optimal Allocation and distribution of resources, Finance, D	Decision Making, Production and
facilities planning, travelling salesman problem.	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Operations Research Lab
Course Code	BSCM 511
Prerequisite	
Corequisite	

Antirequisite				
	L	Т	Р	С
	0	0	2	1

Course Objectives: Operations research Lab helps in solving peoblems in different conditions. The Analytic techniques and computer software will be used to solve problems various LPP, transportation Models, assignments models, Game theory, sequencing Model etc..

Course Outcomes:

After the completion of the course, students will be able to:

CO1	Design simple models
CO2	Develop critical thinking and objective analysis of various problems.
CO3	To build and solve Transportation Models and Assignment Models.
CO4	To solve and model Game theory
CO5	To optimize the sequencing of job and replacement Model.

Text Book (s)

1. G. Hadley: Linear Programming. Narosa, Reprint, 2002.

2. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010.

Reference Book (s)

3. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005.

4. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010.

List of Experiments:

- 1. Using SCILAB to solve Linear Programming Problem using Graphical Method.
- 2. Illustration of following special cases in LPP using Simplex method in SCILAB
 - a. Unrestricted variables
 - b. Unbounded solution
 - c. Infeasible solution
 - d. Alternative or multiple solutions
- 3. Developing Sci code for primal- dual relationship.
- 4. Solve Transportation problem for determination of starting basic solution by northwest-corner method using SCILAB
- 5. Solve Transportation problem for determination of starting basic solution by least cost method using SCILAB
- 6. Solve Transportation problem for determination of starting basic solution by Vogel approximation method using SCILAB
- 7. Developing Sci code for solving assignment problem by Hungarian method.
- 8. Developing Sci code for finding saddle point and solving two person zero sum games.
- 9. Developing Sci code for solving games with mixed strategies.

- 10. Developing Sci code for linear programming solution of games.
- 11. Developing Sci code for Sequencing problem processing through s jobs and k machines.
- 12. Developing Sci code for Replacement of items that deteriorate gradually with time, without time.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
50	-	50	100

Name of The Course	Special Functions and Difference equations				
Course Code	BBS14T1008				
Prerequisite	Ordinary Differential Equations				
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives:

- The interplay between mathematical analysis and physical understanding.
- To investigate and derive the properties of special functions, inter-relations between such functions and their representations in various forms.
- Certain specific systems of orthogonal polynomials and their properties.
- To impart knowledge about various special functions and difference equations employed to study real world problems.
- This course further explains the analytic techniques in computing the solutions of various ordinary differential equations appearing in various fields of science and technology.

Course Outcomes

CO1	Solve, expand and interpret solutions of many types of important differential
	equations by making use of special functions and orthogonal polynomials.
CO2	Derive the formulas and results of certain classical special functions and orthogonal
	polynomials by different methods.
CO3	Achieve the knowledge to analyse the problems using the methods of special functions
	and orthogonal polynomials.
CO4	Classify the problem related to difference equation.
CO5	Apply the difference equation technique in real world problem.
CO6	Apply special function and difference equation to mechanical, thermal and
	dynamical problems

Text Book (s)

- 1. E. D. Rainville: Special Functions, Chelsea Publishing Co., Bronx, New York, Reprint, 1971.
- 2. Sneddon, I.N., *Special Functions of Mathematical Physics and Chemistry*. Edinburg: Oliver & Boyd, 1956.
- 3. Introductions to Difference Equations, SamuleGoldbarg. Dover Pulications.

4. Modelling with Differential and Difference equations, GleenFulford, Peter Forrester, Cambridge University press, 1997

Reference Book (s)

- 1. Bell. W.W. (1966) Special function for Scientific and Engineers; D. Van Nontrand Conv. Ltd. London.
- 2. U.P. Singh: Special Function & Their Application, WISDOM PRESS, 2012.
- **3.** Advanced topics in Difference Equations, Ravi Agarwal and Praticia J. Y. Wang, Kluwar Academic Press
- 4. S.Elaydi, Difference equation, springer.

Unit-1:Gamma, Hypergeometric, Bessel and Neumann Functions 8 hours				
Introduction; Gamma Function; Hypergeometric Functions: Definition and special cases,				
convergence, analyticity, integral representation, differentiation, transformations and				
summation theorems; Bessel Functions: Definition, connection with hypergeometric function,				
differential and pure recurrence relations, generating function, integral representation;				
Neumann polynomials, Neumann series and related results; Examples.				
Unit-2: Legendre, Hermite and Laguerre Polynomials10 Hours				
Legendre polynomials: (i) Generating function (ii) Special values (iii) Pure and differential				
recurrence relations (iv) Differential equation (v) Series definition (vi) Rodrigues' formula (vii)				
Integral representation; Hermite polynomials: Results (i) to (vii) and expansion of x^n in terms				
of Hermite polynomials; Laguerre polynomials: Results (i) to (vii).				
Unit-3: Orthogonal Polynomials 9 Hours				
Simple sets of polynomials; Orthogonal polynomials: Equivalent condition for orthogonality;				
Zeros of orthogonal polynomials; Expansion of polynomials; Three-term recurrence relation;				
Christoffel-Darboux formula; Normalization and Bessel's inequality; Orthogonality of				
Legendre, Hermite and Laguerre polynomials; Ordinary and singular points of differential				
equations, Regular and irregular singular points of hypergeometric, Bessel, Legendre,				
Hermite and Laguerre differential equations; Examples.				
Unit-4: Difference Equations-I 8 Hours				
Difference equations: Introduction. Definition of difference equation. Solution of the difference				
equations. Various type of linear difference equation. Differential equation as limit of				
difference equations. Linearly independent functions. Homogenous difference equation with				
constant co-efficients. Homogenous linear difference equations with variable coefficients.				
Existence and uniqueness theorem.				
Unit-5: Difference Equations-II9 Hours				
Linear difference equation with constant coefficient, method of undetermined coefficient and				
specialoperator method to find particular solution, Solution of linear difference equation with				
constant coefficient usingVariation of parameter, calculation of nth power of a matrix A,				
matrix method for the solution of system of lineardifference equation, generating function				
technique to solve linear difference equation, applications of difference equations.				
Unit-6 8 hours				
Use of Special Functions and Difference equations in the real life applications and research				
oriented problems such as mechanical, thermal and dynamical problems etc.				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	General Mechanics				
Course Code	BBS14T1009				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives: The aim of the course is to provide the basic knowledge of static objects like concepts of force, moment, and mechanical equilibrium. To understand forces and moments in two and three dimensions due to concentrated and distributed forces in various systems such as beams, frames and trusses. Also, to analyze the bodies which is in motion using the basics of kinetics and kinematics.

Course Outcomes: After completing the course, the students will able to

CO1	analyze force systems in plane and also in space.
CO2	to solve two and three dimensional rigid body static equilibrium problems.
CO3	to determine the centroid of planes, center of gravity of masses and evaluate their moments of inertia.
CO4	to evaluate velocity and acceleration of a particle in rectangular and cylindrical coordinate systems and angular velocity of rigid bodies that are in plane motion.
CO5	to solve the problem related to bodies in dynamic Equilibrium and bodies undergoing forced and free vibration using the laws of kinetics
CO6	Understand the basics of generalised coordinates and degree of freedom

Text Book (s):

- 1. R.S. Verma A Text Book on Statics, Pothishala Pvt. Ltd., Allahabad.
- 2. M. Ray and G. C. Sharma A Text Book on Dynamics, S. Chand & Company, New Delhi, 2008
- 3. Beer, F. P. and Johnston, E. R., "Vector Mechanics for Engineers- Statics and Dynamics", 8/e, McGraw Hill International Book Co., 2008.
- 4. Shames, I. H, "Engineering Mechanics Statics and Dynamics", 4/e, Prentice–Hall of India Pvt. Ltd., 2003.

5.

Reference Book (s) :

- 1. S.L. Loney An Elementary Treatise on the Dynamics of a Particle and of Rigid Bodies, Kalyani Publishers, New Delhi.
- 2. J.L. Synge & B.A. Griffith Principles of Mechanics, Tata McGraw-Hill, 1959.
- 3. Hibbeler, R. C., "Engineering Mechanics', 12/e, Pearson Education Pvt. Ltd., 2007.
- 4. Meriam, J. L., "Dynamics", 5/e, John Wiley & sons, 2003.
- 5. K. L. Kumar, "Engineering Mechanics", 3/e, Tata McGraw Hill, 2003.

Unit-1: Introduction of Statics	8 hours	
Introduction to vector approach – free body diagrams –forces in plane – forces in space –		
concurrent forces - resolution of forces –equilibrium of p	article, Virtual work.	

Г

Unit-2: Principles of statics	8 hours			
Statics of rigid bodies in two dimensions and three dimensions,	, Moment of a force about a			
point – moment of a force about an axis .				
Unit-3 : Applications of statics	8 hours			
Friction – contact friction problems. Analysis of trusses –method	od of joints – method of			
sections. Properties of surfaces and solids - Centroid.				
Unit-4: Dynamics	8 hours			
Rotation of a vector in a plane. Velocity and acceleration components in Cartesian, polar and				
intrinsic terms. Central orbit, Kepler's laws of motion.				
Unit-5: Dynamic Equilibrium and bodies	8 hours			
Rectilinear simple harmonic motion. Vertical motion on circul	ar and cycloidal curves. Motion			
with respect to linearly moving and rotating plane. Coriolis for	ce and centrifugal force.			
Unit VI	4 hours			
Generalised coordinates, Generalised forces, equation of equilibrium of a rigid body, degree				
of freedom for a system of rigid bodies				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Elective-I

Name of The Course	Dynamical System				
Course Code	BSCM522				
Prerequisite	Differential equations				
Corequisite	NA				
Antirequisite	NA				
		L	Т	Р	С
		3	1	0	4

Course Objectives: The course objectives to introduce the main features of dynamical systems, particularly as they arise from systems of ordinary differential equations as models in applied mathematics. The topics presented will include phase space, fixed points and stability analysis, bifurcations, Hamiltonian systems and dissipative systems. Discrete dynamical systems will also be discussed briefly, leading to the idea of a 'chaotic' dynamical system.

Course Outcomes:

After learning the course the students should be able to:

CO1	Explain the main features of dynamical systems and their realisation as systems of
	ordinary differential equations
CO2	identify fixed points of simple dynamical systems, and study the local dynamics
	around these fixed points, in particular to discuss their stability and bifurcations

CO3	Make use of a range of specialised analytical techniques which are required in the
	study of dynamical systems
CO4	Explain and predict the occurrence and consequences of bifurcations
CO5	Find fixed points and period orbits of discrete dynamical systems, and find their
	stability

Text Book (s)

- 1. M. W. Hirsch & S. Smale Differential Equations, Dynamical Systems and Linear Algebra (Academic Press 1974)
- 2. L. Perko Differential Equations and Dynamical Systems (Springer 1991)

Reference Book (s)

- 3. Lawrence Perko, Differential equations and dynamical systems, Springer-Verlag, 2001.
- 4. F. Verhulst, Non-linear Differential Equations and Dynamical Systems, Springer, 1990.

Unit-1	10 Hours	
An Introduction to Dynamical Systems: Background and examples, dynamical systems,		
attractors and invariant sets. Phase Portraits: Phase portraits in 1D, topological equivalence.		
Unit-2	10 Hours	
linear systems, linear 2D systems, stability and linearization of n	on-linear systems, Lyapunov	
stability, drawing global phase portraits.		
Unit-3	9 Hours	
Non-linear dynamical systems: solutions to initial value problem, existence and uniqueness		
ofsolutions, linearization, phase space, classification of critical points.		
Unit-4	10 Hours	
Bifurcations: Introductions, Saddle-Node Bifurcations, Transcritical Bifurcation,		
Pitchfork Bifurcation, Imperfect Bifurcations and Catastrophes		
Unit-5	9 Hours	
Definition of a discrete dynamical system, graphical analysis of 1	ID discrete dynamical	
systems, stability of fixed points and periodic orbits, chaotic orbits – definition and examples.		
Unit-6	6 Hours	
Higher-dimensional dynamical system: Lorenz and Rossler equations, chaos, strange		
attractors and fractals		

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Financial Mathematics				
Course Code	BSCM523				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives:

The key objectives of financial mathematics are also to understand how to construct the best investment strategies that minimizes risks in the real world.

Course Outcomes:

After learning the course, the students should be able to:

CO1	Summarize the concepts of time value of money using interest rates and discounting
CO2	Explain concepts related to complex rate functions and annuities.
CO3	Apply discounted cash flow techniques in different project appraisal
CO4	Explain concepts of Internal rate of return and securities
CO5	Estimate the price of a future and forward contract
CO6	Applying hedging in the contract

Text Book (s)

1. Suresh Chandra, S. Dharmaraja, Aparna Mehra, R. Khemchandani, Financial Mathematics: An Introduction, Narosa Publication House, 2012.

Reference Book (s)

- 1. D.G. Luenberger, Investment Science, Oxford University Press, Oxford, 1998.
- 2. J.C. Hull, Options, Futures and Other Derivatives, 4th ed., Prentice-Hall, New York, 2000.
- 3. J.C. Cox and M. Rubinstein, Options Market, Englewood Cliffs, N.J.: Prentice Hall, 1985.

Unit-1	10 Hours	
Interest rates, Simple interest rates, Compound interest rates, Present value of a single future		
payment. Discount factors, effective and nominal interest rates.		
Unit-2	11 Hours	
Relation between the time periods for compound interest rates and the dis	scount factor. Compound	
interest functions. Annuities and perpetuities.		
Unit-3	10 Hours	
loan schedule, Investment project appraisal, Cash flow, present value of a	cash flow	
Unit-4	9 Hours	
Equation of value, Internal rate of return, securities, fixed income securities, types of		
markets.		
Unit-5	8 hours	
Forward and futures contracts, options, properties of stock option prices, trading strategies		
involving options		
Unit-6	6 hours	
Hedging, Bonds, Equity, Property, Interest rate modelling, Financial	networks	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Graph Theory					
Course Code	BSCM421					
Prerequisite	Discrete Structure					
Corequisite						
Antirequisite						
		L		Г	Р	С
		3	1	1	0	4

Course Objectives: This course is aimed to cover a variety of different problems in Graph Theory. In this course students will come across a number of theorems and proofs. Theorems will be stated and proved formally using various techniques. Various graphs algorithms will also be taught along with its analysis. After the course the student will have a strong background of graph theory which has diverse applications in the areas of computer science, biology, chemistry, physics, sociology, and engineering. Topics include: Basic concepts of graph theory, Trees, Bipartite graphs and matching, Connectivity, Eulerian circuits, Degree Sequences, Planarity.

Course Outcomes: After learning the course the students should be able to:

CO1	Define basic notions in graph theory including bi-partite graphs and matching,
	Network and flow, some basic algorithms for graphs and discuss travelling salesman's
	problem.
CO2	Discuss degree sequences including tree and path, then using it in some algorithms for
	graphs.
CO3	Explain the basic operations on Graphs and subgraphs, and determine whether
	graphs are Hamiltonian and/or Eulerian. Also, discuss the application of trees.
CO4	Solve problems involving Eulerian circuits, and found the matrix representation of
	graph.
CO5	Solve problems involving vertex and edge, connectivity, planarity and crossing
	numbers.
CO6	Understand the concept of vector space for graphs and its requirement.

Text Book (s)

- 1. N Deo Graph theory with applications to Engineering and Computer Science, Prentice Hall of India, 1987.
- 2. K R Parthasarathy Basic Graph theory, Tata McGraw-Hill, New Delhi, 1994.
- 3. Edgar G. Goodaire and Michael M. Parmenter, Discrete Mathematics with Graph Theory 2nd Ed., Pearson Education (Singapore) P. Ltd., Indian Reprint, 2003.
- 4. Rudolf Lidl and Günter Pilz, Applied Abstract Algebra, 2nd Ed., Undergraduate Texts in Mathematics, Springer (SIE), Indian Sreprint, 2004.

Reference Book (s)

- 1. C.L. Liu Elements of discrete mathematics, McGraw-Hill, 1986.
- 2. Kenneth H. Rosen Discrete Mathematics and its applications, McGraw-Hill, 2002.
- 3. F Harary Graph theory, Addison Wesley, Reading Mass, 1969.
- 4. J A Bondy and U S R Murthy Graph theory with applications, Elsevier, 1976.

Unit-1 Introduction	10 Hours	
Definition, examples and basic properties of graphs, pseudographs, complete graphs, bi-		
partite graphs, isomorphism of graphs, paths and circuits, Eulerian circuits, Hamiltonian		
cycles, the adjacency matrix, weighted graph, travelling salesman's problem, shortest path,		
Dijkstra's algorithm, Floyd-Warshall algorithm.		
Unit-2	8 Hours	

Degree Sequences – Graphic Sequences, Travelling salesman's	s problem, shortest path, Tree		
and their properties, spanning tree, Dijkstra's algorithm, War	shall algorithm.		
Unit-3	10 Hours		
Basic Definitions, Isomorphism, Subgraphs, Operations on gra	aphs, Walks, Paths, Circuits,		
Connected and disconnected graphs, Euler graphs, Hamiltonia	an graphs, Some Applications,		
Trees and Basic properties, Distance, Eccentricity, centre, Spa	nning trees, Minimal spanning		
tree.			
Unit-4	10 Hours		
Eulerian circuits, Eulerian graph, semi-Eulerian graph, theorems, Hamiltonian			
cycles, theorems Representation of a graph by matrix, the adjacency matrix, incidence matrix,			
weighted graph.			
Unit-5	10 Hours		
Cut- sets, Fundamental circuits; fundamental cut-sets, Connec	tivity, Separability, cutvertex,		
Network flows, 1- and 2- Isomorphisms. Planar and non plana	r graphs, Euler's formula,		
Detection of planarity. Matrix representation of Graphs - Adj	acency matrix of a graph,		
Incidence matrix of a graph.			
Unit -6	3 Hours		
Vector space of graphs, computer representation of graphs			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
30	20	50	100

Name of The Course	Measure Theory				
Course Code	BBS14T5011				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives: **Demonstrate an understanding of measure of sets and functions, also relation between Riemann integration and Lebesgue integration and how they are used in real world problems.**

Course Outcomes

Sudents are able

CO1	To understand the sets and their cardinality
CO2	To learn about Lebesgue Measure of sets
CO3	To learn about algebra of Lebesgue Measurable functions
CO4	To understand relation between Riemann integration and Lebesgue integration
CO5	To understand General Lebesgue integral and its application
CO6	To extend the concept of analysis in General measurable space

Text Books:

1. Royden, H.L. and Fitzpatrick, P. M., Real Analysis, 4th Edition, Pearson, 2010.

2. Barra, G. De. Measure Theory and Integration (New Age International(P) Ltd, Publishers, New Delhi 2003).

3.P. Billingsley, Probability and Measure, 3rd ed., John Wiley & Sons, New York, 1995

4.G. De Barra, Measure theory and Integration, New age international publishers, 2012

Reference Books:

1. Rana, I. K. An Introduction to Measure and Integration, 2nd edition, Narosa Publishing House India, 2000.

2. Halmos, P. R. Measure Theory, Springer-Verlag, 1974.

3. Jain, P. K. and Gupta, V. P. Lebesgue Measure and Integration, New Age International (P) Limited, New Delhi, 1986.

4.J. Rosenthal, A First Look at Rigorous Probability, World Scientific, Singapore, 2000. 5.A.N. Shiryayev, Probability, 2nd ed., Springer, New York, 1995.

6.K.L. Chung, A Course in Probability Theory, Academic Press, New York, 1974.

Unit I Lecture hours- 10				
Equivalent Set, Finite and Infinite set, Countable and Uncountable set, Cardinality of set, order				
relation in cardinal number, addition, multiplication and exponentiation of cardinal number, Cantor				
like sets, Continuum Hypothesis.				
Unit II Lecture hours- 8				
Length of sets, Outer measure, Lebesgue Measure, properties of measurable sets, Borel sets and their				
measure, σ algebra of Lebesgue Measurable set, Set of measure zero, Non Measurable Sets.				
Unit III Lecture hours- 12				
Measurable Function, Measurability of sum, difference, product and quotient of measurable				
functions. Measurability of Step function, characteristic function, Simple function, Sequence of				
function, Sequentional pointwise limits, Littlewood's Three Priciple, Egoroff's Theorem,				
Unit IV Lecture hours- 12				
Riemann integration and Lebesgue integration, Lebesgue integration of bounded and unbounded				
measurable, Lebesgue integration of non-negative measurable function.				
Unit V Lecture hours- 8				
General Lebesgue integral, Bounded Convergence Theorem, Monotone, Lebesgue Dominated				
Convergence Theorem, Fatou's Lemma.				
Unit VI Lecture				
hours- 4				
General measurable space, Signed measure, The Han and Jordon Decompositions Theorem,				
the Caratheodory Han Theorem, integration of non-negative measurable function and General				
measurable function, The Radon Nikodym Theorem, The Vitali Han Saks Theorem.				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Name of The Course	Bio- Mathematics				
Course Code	BSCM422				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives: The aim of the course is to describe the application of mathematical models to biological phenomena. A variety of contexts in human biology and diseases are considered, as well as problems typical of particular organisms and environments.

Course Outcomes:

After learning the course the students should be able to:

CO1	Discuss various Mathematical modeling process for Biological phenomena like
	bacterial growth in a Chemostat, harvesting a single natural population, Populations
	in competitions, Epidemic Models (SI, SIR, SIRS, SIC).
CO2	Find numerical and graphical solutions of continuous models like Insect Outbreak
	Model, multiple species communities and Routh-Hurwitz Criteria, Phase plane
	methods etc
CO3	Demonstrate spatial models for spreading colonies of microorganisms, blood flow in
	circulatory system, Spread of genes in a population etc.
CO4	Discuss Discrete Models for Growth models, Decay models, Drug Delivery Problem,
	Discrete Prey-Predator models, Density dependent growth models with harvesting.
CO5	Discuss Case Studies for Optimal Exploitation models, Models in Genetics, Stage
	Structure Models, Age Structure Models.
CO6	Discuss Turing Patterns and Reaction-Diffusion and Tumour Growth Models

Text Book (s)

- 1. L.E. Keshet, Mathematical Models in Biology, SIAM, 1988.
- 2. J. D. Murray, Mathematical Biology, Springer, 1993.
- 3. Y.C. Fung, Biomechanics, Springer-Verlag, 1990.

Reference Book (s)

- 1. F. Brauer, P.V.D. Driessche and J. Wu, Mathematical Epidemiology, Springer, 2008.
- 2. M. Kot, Elements of Mathematical Ecology, Cambridge University Press, 2001.

Unit-1 11 Hours				
Mathematical Biology and the modeling process: an overview. Continuous models: Malthus				
model, logistic growth, Allee effect, Gompertz growth, Michaelis-Menten Kinetics, Holling				
type growth, Bacterial growth in a Chemostat, Harvesting a single natural population, Prey				
predator systems and Lotka Volterra equations, Populations in competitions, Epidemic				
Models (SI, SIR, SIRS, SIC)				
Unit-2 11 Hours				
Activator-Inhibitor system, Insect Outbreak Model: Spruce Budworm, Numerical solution of				
the models and its graphical representation. Qualitative analysis of continuous models:				
Steady state solutions, stability and linearization, multiple species communities and Routh-				
Hurwitz Criteria, Phase plane methods and qualitative solutions, bifurcations and limit cycles				
with examples in the context of biological scenario.				
Unit-3 08 Hours				
Spatial Models: One species model with diffusion, Two species model with diffusion.				
Conditions for diffusive instability, Spreading colonies of microorganisms, Blood flow in				
circulatory system, Travelling wave solutions, Spread of genes in a population				
Unit-4 9 Hours				
Discrete Models: Overview of difference equations, steady state solution and linear stability				
analysis. Introduction to Discrete Models, Linear Models, Growth models, Decay models,				

Drug Delivery Problem, Discrete Prey-Predator models, Density dependent growth models				
with harvesting.				
Unit-5	9 Hours			
Host-Parasitoid systems (Nicholson-Bailey model), Numer	ical solution of the models and its			
graphical representation. Case Studies: Optimal Exploitation models, Models in Genetics,				
Stage Structure Models, Age Structure Models.				
Unit-6	6 Hours			
Turing Patterns and Reaction-Diffusion Models for Pattern Formation: Animal Coat				
Patterns, Phyllotaxis, Min proteins and e. coli Cell Division	n, Tumour Growth Models			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Special Theory of Relativity				
Course Code	BBS14T5012				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives: This course enables the students: To distinguish between Newtonian Mechanics and special theory of relativity and develop the relationship of length contraction, time dilation and Einstein energy mass relation and to apply the concepts of special theory of relativity in various field of physics and engineering.

Course Outcomes

CO1	Demonstrate an understanding of the basic principles of the special theory of
	relativity.
CO2	Perform basic calculations in relativistic kinematics and dynamics
CO3	Explain relativistic momentum and Einstein field equations.
CO4	Explain Maxwell equations in electromagnetic field
CO5	To explain Maxwell equations in tensor forms and apply its concepts in various fields
	of physics and engineering.
CO6	To apply the special theory of relativity in different field.

Text Book (s):

1. C. Moller, The Theory of Relativity, Oxford Clarendon Press, 1952.

- 2. P.G. Bergmann, Introduction to the Theory of Relativity, Prentice Hall of India, 1969.
- 3. J.L. Anderson, Principles of Relativity Physics, Academic Press, 1967.

4. W. Rindler, Essential Relativity, Van Nostrand Reinhold Company, 1969.

Reference Book (s):

1. V. A. Ugarov, Special Theory of Relativity, Mir Publishers, 1979.

2. R. Resnick, Introduction to Special Relativity, Wiley Eastern Pvt. Ltd. 1972.

3. J.L. Synge, Relativity : The Special Theory, North-Holland Publishing Company, 1956.

4. W.G. Dixon, Special Relativity : The Foundation of Macroscopic Physics, Cambridge University Press, 1982.

Unit-1 Introduction9hoursReview of Newtonian mechanics: Inertial frames. Speed of light and Galilean relativity.Michelson-Morley experiment. Lorentz-Fitzgerald contraction hypothesis. Relative characterof space and time. Postulates of special theory of relativity. Lorentz transformation equationsand its geometrical interpretation. Group properties of Lorentz transformations.

Unit-2

10hours

Relativistic kinematics: Composition of parallel velocities. Length contraction. Time dilation. Transformation equations for components of velocity and acceleration of a particle and Lorentz contraction factor. Geometrical representation of space-time: Four dimensional Minkowskian space-time of special relativity. Time-like, light-like and space-like intervals. Null cone, Proper time. World line of a particle. Four vectors and tensors in Minkowiskian space-time

Unit-3

10hours

Relativistic mechanics - Variation of mass with velocity. Equivalence of mass and energy. Transformation equations for mass momentum and energy. Energy-momentum four vector. Relativistic force and Transformation equations for its components. Relativistic Lagrangian and Hamiltonian. Relativistic equations of motion of a particle. Energy momentum tensor of a continuous material distribution.

Unit-4

10 hours

Electromagnetism – I. Maxwell's equations in vacuum. Transformation equations for the densities of electric charge and current. Propagation of electric and magnetic field strengths. Transformation equations for electromagnetic four potential vectors.

Unit-5

6 hours

Electromagnetism – II. Transformation equations for electric and magnetic field strengths. Gauge transformation. Lorentz invariance of Maxwell's equations. Maxwell's equations in tensor form. Lorentz force on a charged particle. Energy momentum tensor of an electromagnetic field.

Unit -06:

4 hours

Application of Special theory of Relativity: Superconducting currents and charge gradients in the octonion spaces, A New Lab for Measuring the Speed of Light, Modified electromagnetic transmission eigenvalues in inverse scattering theory, The Maxwell-Pauli Equations.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Name of The Course	Numerical solution of ordinary differential equati	ons			
Course Code	BBS14T5013				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives: The aim of the course is develop an understanding of Numerical methods for ordinary differential equations. The students will explore his/her knowledge how to determine the stability criterion for a numerical scheme and apply the methods to solve problems.

Course Outcomes: After completing the course, the students will able to

CO1	apply the numerical methods for ordinary differential equations.
CO2	apply the different single and multi step methods
CO3	apply the methods to solve problems and stiff problems
CO4	determine the stability criterion for a numerical scheme .
CO5	Apply the different error analysis to ordinary differential equations
CO6	Learn the convergence of methods

Text Book (s):

- 1. G.D.Smith,"Numerical Solution of Partial Differential Equations : Finite Difference Methods" (Oxford Applied Mathematics & Computing Science Series).
- 2. R K Jain ,"Numerical Methods for Scientific and Engineering Computations": M K Jain, S R K Iyengar.
- 3. John Wiley,"Finite Difference methods for partial Differential equations": Forsythe G.E.& Wasow, WR.
- 4. Gerald, C.F.& Wheatley P.O."Applied Numerical Analysis", Pearson Education Asia.

Reference Book (s) :

- 1. Bradie B A, Friendly Introduction to Numerical Anaysis Pearson Education, 2007
- 2. Burden RL, Faires J D Numerical Analysis Cengage Learning, 2007
- 3. Chapra SC, Canale, R P Numerical Methods for Engineers Tata McGraw Hill, 2003
- 4. Gerald C.F., Wheatley P O Applied Numerical analysis, Addison Wesley, 1998

 Unit-1: Solution of first order ordinary differential equations
 8 hours

 Single step methods: Euler method, Modified Euler Method, Convergence of Euler method,

 Improvement of error bound, stability, Higher order single step methods: Runge Kutta

 methods, Second Order methods, Fourth Order Runge Kutta methods, Higher Order Runge

 Kutta methods, error bound , Absolute stability

 Unit-2: Multi step methods
 8 hours

 Multi step methods predictor corrector methods, Multi step methods Adams Basforth

 method, Multi step methods Adams Moulton method

Unit-3 : Systems of equation

8 hours
Systems of differential equations, higher order equations, stiff differential equations, general					
single step methods, convergence of general single step methods					
Unit-4: Linear boundary value problems	8 hours				
Finite difference methods: Dirichlet's type boundary condit	ion, mixed boundary condition,				
shooting method, linear multistep methods for stiff systems					
Unit-5: Non-Linear boundary value problems 8 hours					
Finite difference methods: Dirichlet's type boundary condition, mixed boundary condition,					
shooting method, analysis of difference system, analytic expression of the error					
Unit-6: Convergence of methods 4 hours					
Convergence of Linear Multistep Methods, Necessary & Sufficient Conditions for					
Convergence, Absolute Stability and Relative Stability, General methods for finding intervals					
of absolute and relative stability					

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Name of The Course	Information Theory and Coding				
Course Code	BBS14T5014				
Prerequisite	Mathematical foundation				
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives:

- 1. To define and apply the basic concepts of information theory (entropy, channel capacity etc.)
- 2. To learn the principles and applications of information theory in communication systems
- 3. To study various data compression methods and describe the most common such methods
- 4. To understand the theoretical framework upon which error-control codes are built

Course Outcomes

CO1	Quantify the notion of information in a mathematically sound way.
CO2	Explain what is the significance of this quantitative measure of information in the
	communications systems.
CO3	Calculate entropy, joint entropy, relative entropy, conditional entropy, and channel
	capacity of a system.
CO4	Differentiate between lossy and lossless compression techniques.
CO5	Decide an efficient data compression scheme for a given information source.
CO6	Describe different codes of cryptography and time transform approach.

Text Book (s)

1. T. M. Cover, J. A. Thomas, *Elements of Information Theory*, Wiley.

2. R. Togneri, C.J.S deSilva, Fundamentals of Information Theory and Coding Design, Taylor and Francis.

Reference Book (s)

1. The mathematics of coding theory, Garrate P., Pearson

2. Error correcting coding theory-Rhee M.Y.,McGraw-Hill

Unit-1 10 Hours		
Information theory: Concept of amount of information, information units Entropy: marginal,		
conditional, joint and relative entropies, relation among entropies Mutual information,		
information rate, channel capacity, redundancy and efficiency of channels Discrete channels –		
Symmetric channels, Binary Symmetric Channel, Binary Erasure Channel, Noise-Free		
Channel, Channel with independent I/O, Cascaded channels, repetition of symbols, Binary		
asymmetric channel, Shannon theorem		
Unit-2 10 Hours		
Source coding – Encoding techniques, Purpose of encoding, Instantaneous codes, Construction		
of instantaneous codes, Kraft's inequality, Coding efficiency and redundancy, Source coding		
theorem. Construction of basic source codes – Shannon Fano coding, Shannon Fano Elias		
coding, Huffman coding, Minimum variance Huffman coding, Adaptive Huffman coding,		
Arithmetic coding, Dictionary coding – LZ77, LZ78, LZW, ZIP coding Channel coding,		
Channel coding theorem for DMC.		
Unit-3 10 Hours		
Codes for error detection and correction – Parity check coding, Linear block codes, Error		
detecting and correcting capabilities, Generator and Parity check matrices, Standard array		
and Syndrome decoding, Hamming codes Cyclic codes – Generator polynomial, Generator and		
Parity check matrices, Encoding of cyclic codes, Syndrome computation and error detection,		
Decoding of cyclic codes, BCH codes, RS codes, Burst error correction		
Unit-4 7 Hours		
Convolutional codes – Encoding and State, Tree and Trellis diagrams, Maximum likelihood		
decoding of convolutional codes -Viterbi algorithm, Sequential decoding -Stack algorithm.		
Unit-5 9 Hours		
Interleaving techniques – Block and convolutional interleaving, Coding and interleaving		
applied to CD digital audio system - CIRC encoding and decoding, interpolation and muting.		
ARQ – Types of ARQ, Performance of ARQ, Probability of error and throughput.		
Unit-6 7 Hours		
Golay codes, Shortened cyclic codes, Burst and Random Error correcting codes.		
Time domain approach. Transform domain approach		

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
130	20	50	100

Name of The Course	Mechanics of solids
Course Code	BBS14T5015
Prerequisite	Mathematical foundation
Corequisite	

Antirequisite				
	L	Т	Р	С
	3	1	0	4

Course Objectives:

The aim of this course is to introduce the basic theory of mechanics of solids. This course deals with the the laws of transformations and tensors, Mathematical theory of deformations, analysis of strain and analysis of stress in elastic solids, basic equations of elasticity. In this course, the students will be exposed to the mathematical theory of elasticity and other techniques which find applications in areas of civil and mechanical engineering and Earth and material sciences.

Course Outcomes: After successful completion of this course the students will be able to:

CO1	Understand tensors and their properties.
CO2	Analyse various types of tensors.
CO3	Analyse geometrical and analytical interpretation of components of strain.
CO4	Analyse geometrical and analytical interpretation of components of stress.
CO5	Distinguish the equations of elasticity for isotropic and anisotropic elastic solid.
CO6	Apply applications of elasticity in various engineering branches.

Text Book (s)

- 1. I.S. Sokolnikoff, Mathematical Theory of Elasticity, Tata-McGraw Hill Publishing Company Ltd., New Delhi, 1977.
- 2. D.S. Chandrasekharaiah and L. Debnath, Continuum Mechanics, Academic Press, 1994.

Reference Book (s)

1. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity Dover Publications, New York.

2. Y.C. Fung. Foundations of Solid Mechanics, Prentice Hall, New Delhi, 1965.

3. Shanti Narayan, Text Book of Cartesian Tensor, S. Chand & Co., 1950.

4. S. Timeshenko and N. Goodier. Theory of Elasticity, McGraw Hill, New York, 1970.

Unit-1	10 Hours		
Tensor Algebra: Coordinate-transformation, Cartesian Tensor of different order. Properties			
of tensors.Isotropic tensors of different orders and rela	tion between them. Symmetric and		
skew symmetric tensors. Tensor invariants. Eigen-valu	es and eigen-vectors of a tensor.		
Unit-2	8 Hours		
Tensor Analysis: Scalar, vector, tensor functions, Com curl of a vector / tensor field.	ma notation, Gradient, divergence and		
Unit-3	8 Hours		
Analysis of Strain : Affine transformation, Infinitesimal affine deformation, Geometrical			
Interpretation of the components of strain. Strain quadric of Cauchy.			
Unit-4	10 Hours		
Analysis of Stress : Stress Vector, Stress tensor, Equations of equilibrium, Transformation of			
coordinates.Stress quadric of Cauchy, Principal stress and invariants. Examples of stress.			
(Relevant portions of Chapter 1 & 2 of the book by I.S. Sokolnikoff).			

Equations of Elasticity :Generalised Hooks Law, Anisotropic symmetries, Homogeneous				
isotropic medium. Elasticity moduli for Isotropic media. Equilibrium and dynamic equations				
for an isotropic elastic solid.				
Unit-6	8 Hours			
Applications of mathematical theory of elasticity				
"Application of hooks law in elasticity" R.Vishalashi, Indian journal of research, 6(11), 2017.				
"The Theory and Applications of Elasticity: A Study on Consumers in Oba	afemi Awolowo			
University, Ile-Ife, Osun State, Nigeria" Adejumo Oluwabunmi Opeyemi,	American			
Journal of Economics, 3(6), 313-321, 2013.				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Semester VI

Name of The Course	Classical Mechanics				
Course Code	BBS14T1010				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives:

1. Students should understand the drawbacks of Newtonian approach and necessity of new approaches to solve advanced problems involving the dynamic motion of classical mechanical systems.

2. The students will introduce about the forces, angular momentum and knowledge about the constraint.

3. The course provides the students about the knowledge of hollow cylinder and solid cylinder.

4. How to use differential equations and other advanced mathematics in the solution of the problems considered in item 2.

5. How to use conservation of energy and linear and angular momentum to solve dynamics problems.

6. How to represent the equations of motion for complicated mechanical systems using the Lagrangian and Hamiltonian formulations of classical mechanics.

7. Students should understand the forces in non inertial systems.

Course Outcomes

CO1	Understand the rigid body problem involving Euler dynamical and geometrical
	equations of motion.
CO2	Define and understand basic mechanical concepts related to advanced problems
	involving the dynamic motion of classical mechanical systems.
CO3	. Describe and understand the differential equations and other advanced mathematics
	in the solution of the problems of mechanical systems.
CO4	Describe and understand the motion of a mechanical system using Lagrange's
	Hamilton formalism.
CO5	Describe and understand the motion of the forces in non inertial systems.

CO6 | Apply the laws of classical mechanics .

Text Book (s):

- 1- Classical Mechanics by P. V. Panat, Narosa Publishing Home, New Delhi.
- 2- Classical Mechanics by N. C. Rana and P. S. Joag, Tata Mc-Graw Hill Publishing Company Limited, New Delhi.
- **3-** Introduction to Classical Mechanics by R. G. Takawale and P. S. Puranik, Tata Mc-Graw Hill Publishing Company Limited, New Delhi.

4- Classical Mechanics by J. C. Upadhyaya, Himalaya Publishing House. 7. Analytical Dynamics E. T. Whittaker, Cambridge University Press.

Reference Book (s):

1. Classical Mechanics by H. Goldstein, Narosa Publishing Home, New Delhi.

2. Classical Dynamics of Particles and Systems by Marion and Thomtron, Third Edition, Horoloma Book Jovanovich College Publisher.

Unit-1 Introduction

6hours

Review of Vector Calculus(Questions will not set in examination), Rotation of a vector in two and

three dimensional fixed frame of reference. Kinetic energy and angular momentum of rigid

body rotating about its fixed point. Euler dynamical and geometrical equations of motion.

Unit-2

10hours

Constrained motion and Lagrangian formulation: **Constraints and their types. Generalized coordinates, Lagrange's equations of motion, including velocity dependent potentials. Properties of kinetic energy function, theorem on total energy, generalized momenta, cyclic coordinates, integrals of motion, Jacobi integrals and energy conservation. Concept of symmetry, invariance under Galilean transformation.**

Unit-3

10hours

Variational principle and Hamiltonian formulation: Variational principle, Euler's equation, applications of variational principle, shortest distance problem, Brachistrochrone, Geodesics of a Sphere. Hamilton's function and Hamilton's equation of motion, configuration space, phase space and state space, Lagrangian and Hamiltonian of relativistic particles.

Unit-4

10 hours

Canonical transformations and Poisson brackets: Legendre transformations, Generating function, Conditions for canonical transformation and problem. Definition, Identities, Poisson theorem, Jacobi Poisson theorem, Jacobi identity, (statement only), invariance of Poisson Bracket under canonical transformation.

Unit-5 hours

Non inertial frames of references, central force: Rotating frames of reference, inertial forces in rotating frames, Larmour precession, electromagnetic analogy of inertial forces, effects of Coriolis force, Foucault's pendulum.

6

Unit-06

Applications of Classical Mechanics:

Power laws in wall and wake layers of a turbulent boundary layer, Generalized Lie Symmetries, Singular Lagrangians, and the Passage to Hamiltonian Mechanics, Modeling flywheel energy storage system charge and discharge dynamics.

Name of The Course	Mathematical Modeling & Simulation				
Course Code	BSCM621				
Prerequisite	Linear algebra & Calculus				
Corequisite	NA				
Antirequisite	NA				
		L	Т	Р	С
		3	1	0	4

Elective II

Course Objectives: The overall objectives of this course is to enable students to build mathematical models of real-world systems, analyze them and make predictions about behaviour of these systems. Variety of modelling techniques will be discussed with examples taken from physics, biology, chemistry, economics and other fields. The focus of the course will be on seeking the connections between mathematics and physical systems, studying and applying various modelling techniques to creating mathematical description of these systems, and using this analysis to make predictions about the system's behavior. Course Outcomes: Successful completion of the course assumes that a student is able to:

CO1	Assess and articulate what type of modelling techniques are appropriate for a given
	real world system
CO2	Construct a mathematical model of a given real world system and analyze it,
CO3	Discuss predictions of the behaviour of a given real world system based on the
	analysis of its mathematical model.
CO4	Demonstrate the power of mathematical modelling and analysis and be able to apply
	their understanding to their further studies.
CO5	Apply network modelling in some relevant situation
CO6	Demonstrate Role of time delay in various mathematical modeling.

Text Books:

- 1. Kapur, J.N.,"Mathematical Modelling", New Age international publisher, 1988.
- 2. Burghes D.N , "Modelling with differential equations", Ellis Horwood and John Wiley, 1991

Reference Books:

- 1. Burghes, D.N.," Mathematical Modelling in the Social Management and Life Science", Ellie Herwood and John Wiley.
- 2. Charlton, F.," Ordinary Differential and Difference Equations", Van Nostrand.
- 3. Brauer, Castillo-Chavez,"Mathematical Models in Population Biology and Epidemiology".

Unit-1	10 Hours
Introduction to compartmental models, lake pollution model	, exponential growth of
population, limited growth of population, limited growth with	h harvesting, discrete
population growth , logistic equation with time lag.	
Unit-2	9 Hours
Linear homogeneous and non-homogeneous equations of high	her order with constant
coefficients, Euler's equation, method of undetermined coeffi parameters, application to projectile motion.	cients, method of variation of
Unit-3	9 Hours
Equilibrium points, interpretation of the phase plane, predat	or-prey model and its analysis,
competing species and its analysis, epidemic model of influen	za and its analysis, battle model
and its analysis.	
Unit-4	10 Hours
Mathematical modeling of vibrating string, vibrating membr	ane, conduction of heat in
solids, gravitational potential, conservation laws and Burger'	s equations, classification of
second order PDE, reduction to canonical forms, equations w	with constant coefficients,
Unit-5	10 Hours
Graphs, diagraphs, networks and subgraphs, vertex degree,	paths and cycles, regular and
bipartite graphs, four cube problem, social networks, explori	ng and traveling, Eulerian and
Hamiltonian graphs, applications to dominoes, diagram traci	ng puzzles, Knight's tour
problem, gray codes.	
Unit-6	6 Hours
Prey-predator model with infectious disease in any one of the	species, Ecological models,
Role of time delay in various mathematical modeling.	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Optimization Techniques				
Course Code	BSCM622				
Prerequisite	Operation Research-1				
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives: To impart knowledge in concepts and tools of Operations Research .To understand mathematical modelsand numerical techniques in Operations Research .To apply these techniques constructively to make effective business decisions

Course Outcomes:

After learning the course the students should be able to:

CO1 Solve Non-linear and dynamic programming problems.

CO2	Explain networking analysis.
CO3	Interpret the simulation methods.
CO4	Interpret the Information theory.
CO5	Solve constrained and unconstrained optimization problems with numerical
	optimization techniques.
CO6	Determine optimization using calculus of function of multiple variables.

Text Book (s)

- 1. M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, J. Wiley & Sons.
- 2. G. Hadley, Nonlinear and Dynamic Programming, Addison-Wesley, 1972.
- 3. I.C. Hu, Integer Programming and Network Flows, Addison-Wesley, 1970.

Reference Book (s)

- 1. Hillier, Lieberman, Introduction to Operations Research, McGraw Hill Book Company, 1989.
- 2. Mangasarian O.L., Non-linear Programming, McGraw Hill, New York

Jnit-1: Nonlinear Programming & Dynamic Programming9 Hours	
Nonlinear programming, Karush-Kuhn-Tucker necessary and sufficient conditions of optimali	ty,
Quadratic programming, Wolfe's method, Beale's method.	
Dynamic programming, Bellman's principle of optimality, Recursive relations, System with m	ore
han one constraint, Solution of LPP using dynamic Programming.	
Unit-2: Network Analysis12 Hours	
Analysis of a project thorough network diagram, Network scheduling by CPM, PERT, Financia	ial
blanning through network, Network crashing. Network flow problems, Max-flow-min-cut the	orem,
ntegral flow theorem, Maximum flow algorithms, Linear programming interpretation of Max	-
low-mincut theorem. The out-of-Kilter formulation of minimal cost network flow problem,	
Labeling procedure for the Out-of-Kilter algorithm, Insight into changes in Primal and Dual	
function values. Sequencing Problem.	
Unit-3: Simulation 8 Hours	
Basic concepts, Monte Carlo method, Random number generation, Waiting the simulation mo	del,
New process planning through simulation, Capital budgeting through simulation	
Unit-4: Information Theory9 Hours	
Shannon theory, Measure of information, Entropy – the expected information, Entropy as a me	easure
of uncertainty, Memoryless channel, Conditional entropies, Mutual information, Information provident	rocess
by a channel, Channel capacity, Encoding, Shannon-Fanno encoding procedure.	
Unit-5: Unconstrained Optimization 10 Hours	
Search Methods-Fibonacci search, Golden section search. Gradient Methods- Method of steep	est
lescent, Damped Newtown's Method, Davidson-Fletcher-Powell Method, Line search derivat	ives,
Projection Methods. Constrained Optimization: Methods of feasible direction, Cutting hyperpl	lane
Method.	
Unit-6: Optimization using Calculus10 Hot	urs
Stationary points, Functions of single and two variables, Global Optimum, Convexity and	
concavity of functions of one and two variables, Optimization of function of one variable and	
nultiple variables, Gradient vectors, Optimization of function of multiple variables subject to	
equality constraints, Lagrangian function	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Cryptography and Network Security				
Course Code	BSCM623				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives: This Course focuses towards the introduction of network security using various cryptographic algorithms. Underlying network security applications. It also focuses on the practical applications that have been implemented and are in use to provide email and web security Course Outcomes:

After learning the course the students should be able to:

CO1	Explain the fundamentals of Cryptography and Network Security, including data and
	advanced encryption
CO2	Analyse about different types of attacks.
CO3	Develop security networks and its usages.
CO4	Improve the knowledge of standard algorithms that can be used to provide
	confidentiality, integrity and authentication of data.
CO5	Design firewall characteristics.
CO6	Describe computer-based Symmetric Key Cryptographic Algorithms.

Text Book (s)

1.TCP/IPProtocolSuite, BehrouzA.Forouzan, DataCommunicationandNetworking, Tata McGraw Hill.

Reference Book (s)

2.W.Stallings, CryptographyandNetworkSecurity, Principles and Practice, Pearson Education, 2000.

Unit-1 Introduction	11 Hours		
Public Key Cryptography Principles & Applications, Algorithm	ns: RSA, Message		
Authentication: One way Hash Functions: Message Digest, MD	5, SHA1.Public Key		
Infrastructure: Digital Signatures, Digital Certificates, Certificates	ate Authorities.		
Unit-2	10 Hours		
NetworkAttacks:BufferOverflow,IPSpoofing,TCPSessionHijac	king,SequenceGuessing,		
NetworkScanning:ICMP,TCPsweeps,BasicPortScans;DenialofS	ServiceAttacks:SYN		
Flood, Teardrop attacks, land, Smurf Attacks			
Unit-3	9 Hours		
IP security Architecture: Overview, Authentication header, Encapsulating Security Pay			
Load, combining Security Associations, Key Management. Virt	ual Private Network		
Technology: Tunneling using IPSEC			
Unit-4	9 Hours		
Requirements, Secure Socket Layer, and Secure Electronic	Transactions, Network		
Management Security: Overview of SNMP Architecture-SNMPV1, SNMPV3.			
Unit-5	9 Hours		

Firewall Characteristics & Design Principles, Types of Firewalls: Packet Filtering				
Router, Application Level Gate way or Proxy, Content Filters, Bastion Host.				
Unit-6	7 Hours			
Computer-based Symmetric Key Cryptographic Algorithms: Algorithm Types and				
Modes, An overview of Symmetric Key Cryptography, DES, International Data				
Encryption Algorithm (IDEA), RC5, Blowfish, AES,	Differential and Linear			
Cryptanalysis.				

Name of The Course	Applications of Algebra				
Course Code	BSCM624				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives: The objective of this course is to provide knowledge about applications of both abstract and linear algebra. The aim is to study about the codes that deal with error detection and correction in any technological devices that allows communication. Also, the course focus on the key concepts of image processing.

Course Outcomes:

After learning the course the students should be able to:

CO1	Construct of Balanced incomplete block designs (BIBD).
CO2	Define and illustrate main concepts and prove fundamental theorems concerning
	error-correcting codes
CO3	Understand the symmetry groups and coloring patterns.
CO4	Elobrate anatomy of special types of matrices and applications of image processing
CO5	Analyze the applications of Linear Transformations.
CO6	Analyze the application of computer algebra.

Text Book (s)

- 1. I. N. Herstein and D. J. Winter, *Primer on Linear Algebra*, Macmillan Publishing Company, New York, 1990.
- 2. S. R. Nagpaul and S. K. Jain, *Topics in Applied Abstract Algebra*, Thomson Brooks and Cole, Belmont, 2005.
- **3.** Richard E. Klima, Neil Sigmon, Ernest Stitzinger, *Applications of Abstract Algebra with Maple*, CRC Press LLC, Boca Raton, 2000.

Reference Book (s)

- 1. David C. Lay, *Linear Algebra and its Applications*. 3rd Ed., Pearson Education Asia, Indian Reprint, 2007.
- 2. Fuzhen Zhang, *Matrix theory*, Springer-Verlag New York, Inc., New York, 1999.

Unit-1	10 Hours	
Balanced incomplete block designs (BIBD): definitions and results, incidence matrix of a		
BIBD, construction of BIBD from difference sets, construction of BIBD using quadratic		
residues, difference set families, construction of BIBD from finite fields.	· -	

Unit-2	9 Hours			
Coding Theory: introduction to error correcting codes, lin	near cods, generator and parity			
check matrices, minimum distance, Hamming Codes, deco	oding and cyclic codes.			
Unit-3	9 Hours			
Symmetry groups and color patterns: review of permutati	ion groups, groups of symmetry and			
action of a group on a set; colouring and colouring pattern	ns, Polya theorem and pattern			
inventory, generating functions for non-isomorphic graph	S.			
Unit-4	12 Hours			
Special types of matrices: idempotent, nilpotent, involution	n, and projection tri diagonal			
matrices, circulant matrices, Vandermonde matrices, Had	lamard matrices, permutation and			
doubly stochastic matrices, Frobenius- König theorem, Bi	rkhoff theorem. Positive Semi-			
definite matrices: positive semi-definite matrices, square r	oot of a positive semi-definite			
matrix, a pair of positive semi-definite matrices, and their	simultaneous diagonalization.			
Symmetric matrices and quadratic forms: diagonalization	of symmetric matrices, quadratic			
forms, constrained optimization, singular value decompos	ition, and applications to image			
processing and statistics.				
Unit-5	10 Hours			
Applications of linear transformations: Fibonacci number	s, incidence models, and			
differential equations. Least squares methods: Approximate solutions of system of linear				
equations, approximate inverse of an m×n matrix, solving a matrix equation using its normal				
equation, finding functions that approximate data. Linear	algorithms: LDU factorization, the			
row reduction algorithm and its inverse, backward and fo	rward substitution, approximate			
inverse and projection algorithms.				
Unit_6	5Hours			
	Shours			
Computer algebra and its application				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Time Series Analysis				
Course Code	BBS14T5016				
Prerequisite	Statistical Inference				
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives:

This course is aimed at the reader who wishes to gain a working knowledge of time series and forecasting methods as applied in economics, engineering and the natural and social sciences.

Course Outcomes

CO2	Explain the concept of ARMA Processes.
CO3	Understand the concept Forecasting ARMA Processes
CO4	Understand the concept and application of Spectral Analysis.
CO5	Understand the concept of Modeling and Forecasting with ARMA Processes.
CO6	Understands the recent advancement in time series.

Texts / References

- P. Brockwell and R. Davis, Introduction to Time Series and Forecasting, Springer, Berlin, 2000. 1.
- G.E.P. Box, G. Jenkins and G. Reinsel, Time Series Analysis-Forecasting and Control, 3rd ed., Pearson 2. Education, 1994.
- C. Chatfield, The Analysis of Time Series An Introduction, Chapman and Hall / CRC, 4 th ed., 2004. 3.

Unit-1: Introduction to Time Series:	9 Hour
	~
Examples of Time Series, Objectives of Time Series Analysis, Some	Simple Time Series Models,
Stationary Models and the Autocorrelation Function, The Sample	e Autocorrelation Function,
A Model for the Lake Huron Data, Estimation and Eliminati	on of Trend and Seasonal
Components.	
Unit-2: Stationary processes	8 Hour
Basic Properties, Linear Processes, Introduction to ARMA Process	ses, Properties of the Sample
Mean and Autocorrelation Function, Forecasting Stationary	Fime Series, The Durbin-
Levinson Algorithm. The Wald decomposition Theorem.	
Unit-3: ARMA Models	8 Hour
ARMA(p, q) Processes, The ACF and PACF of an ARMA(p, q)	Process, Calculation of the
ACVF, The Autocorrelation Function, The Partial Autocorrela	tion Function, Forecasting
ARMA Processes	
Unit-4: Spectral Analysis	8 Hour
Spectral Densities, The Periodogram, Time-Invariant Linear Filte	ers, The Spectral Density of
an ARMA Process.	
Unit 5: Modeling and Forecasting with ARMA Processes	8 Hour
Preliminary Estimation, Yule–Walker Estimation, Burg's Al	gorithm. The Innovations
Algorithm. The Hannan–Rissanen Algorithm. Maximum Likeliho	od Estimation. The Sample
ACF of the Residuals, Tests for Randomness of the Residuals, For	ecasting.
	C
Unit-6: Recent trends in Time Series	4 Hour
Location Multiplicative Error Models with Quasi Maximum Lik	elihood Estimation. On the
Stationary Marginal Distributions of Subclasses of Multivariate Se	tar Processes of Order One.

Name of The Course	Introduction to Actuarial Science				
Course Code	BBS14T5017				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives:

The aim of the Actuarial science subject is to provide grounding in life insurance and risk management. Course Outcomes

CO1	Summarize the concepts of valuing cash flows
CO2	Able to calculate probability using the two-state model
CO3	Able to Calculate Probabilities using the Life Table
CO4	Summarize the concepts of valuing uncertain cash flows
CO5	Life Insurance Company Scenario
CO6	Introduce some life assurance and annuity contracts.

Text Book (s)

1. Suresh Chandra, S. Dharmaraja, AparnaMehra, R. Khemchandani, Financial Mathematics: An Introduction, Narosa Publication House, 2012

Reference Book (s)

- 1. D.G. Luenberger, Investment Science, Oxford University Press, Oxford, 1998.
- 2. J.C. Hull, Options, Futures and Other Derivatives, 4th ed., Prentice-Hall, New York, 2000.
- 3. J.C. Cox and M. Rubinstein, Options Market, Englewood Cliffs, N.J.: Prentice Hall, 1985.

Unit-1	12 Hours			
Valuing Cash Flows, Time Value of Money, Present Value, Accumulated Value, Valuing				
Multiple Regular Payments, Equations of Value, Annuity				
Unit-2	11 Hours			
Introduction to State Transitions, Two-State Model, Calcula	ting Probabilities using the Two-			
State Model				
Unit-3	9 Hours			
Introduction to the Life Table, Calculating Probabilities using the Life Table				
Unit-4	8 Hours			
Valuing Uncertain Cash Flows, Expected Present Value, Accumulated Value and Uncertainty				
Unit-5	8 Hours			
Life Insurance Company Scenario and Reserves				
Unit-6	6 Hours			
Life assurance contracts, Life annuity contracts, Evaluation of assurances and annuities, AI				
and Machine Learning Usage in Actuarial Science				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
30	20	50	100

Name of The Course	Approximation Theory				
Course Code	BBS14T5018				
Prerequisite	Basic knowledge of Calculus, Real Analysis				
Corequisite	Numerical Analysis				
Antirequisite					
		L	Т	Р	С
		3	1	0	3

Course Objectives: The course is designed for B.Sc (H) mathematics students. Main objective of this course to lay the theoretical foundation for wider field of mathematical as well as research areas by using classical topics of Approximation theory. After studying this course, the students will be able to understand and master theoretical as well as practical topics that arise in approximation of functions by polynomials, trigonometric polynomials, splines and by rational functions.

Course Outcomes

CO1	Understand basic concepts in approximation theory.
CO2	Apply different important techniques that are used.
CO3	Use polynomial and trigonometric approximation.
CO4	Apply approximation methods to interpolation
CO5	Implement some of the techniques to engineering problems
CO6	Know application of approximation theory in real life

Text Book (s):

M.J.D.Powell, Approximation theory and Application: Cambridge University Press.

Reference Book (s)

(1)E. W. Cheney, Approximation theory.

(2) Lloyd N. Trefethen, Approximation theory and approximation practice.

Unit-1 Introduction	10 hours				
Basic concepts, the best approximation, Linear approximation and projection	n, Degree of				
approximation, The Weierstrass theorems, Linear positive operators, Korovl	kin theorem.				
Unit-2 Existence, uniqueness, characterization of best approximations	8 hours				
Existence and unicity of best approximation, Finite-dimensional subspaces. S	trictly convex				
spaces, Examples of nonexistence.					
Unit-3 Polynomial and Trigonometric approximations	8 hours				
Jacksons theorems, Best approximation in C(K), Kolmogorov criterion and H	Haar spaces,				
Chebyshev alternation theorem, Haarunicity theorem, Chebyshev polynomia	ls.				
Unit-4 Polynomial Interpolation	6 hours				
Estimates outside the interval, Application to the iterative methods, Lagrange	e interpolation,				
Polynomials with interlacing zeros					
Unit-5 Other Approximation	8				
hours					

Approximation to periodic functions, B-splines, Rational approximations.

Unit 6

Hours

Applications in signal processing, Computer Simulation, Engineering and technology

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

4

Name of The Course	General Theory of Relativity				
Course Code	BBS14T5019				
Prerequisite	Special Theory of Relativity, Classical Mechanics,	Cla	assic	al	
	Electrodynamics, Tensor Calculus.				
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives: The primary objective is to teach the students the physical and mathematical basis of Einstein's relativistic theory of gravitation and application of General Relativity to Cosmology. Course Outcomes

CO1	Demonstrate an understanding of the basic principles of the General theory of Relativity, tensor analysis and tensor calculus.
CO2	Perform basic calculations in the formalism of general relativity (GR) and to obtain an exact solution of GR, namely, the Schwarzschild solution.
CO3	Explain Post Newtonian formalism and Mach Principle.
CO4	Explain equation of motion for field equation and different laws for gravitational field.
CO5	To study Cosmology based on general relativity will teach how to study the origin, composition and evolution of the universe.
CO6	To apply General theory of Relativity to electrical engineering , Astronomy & Astrophysics.

Text Book (s):

- 1. C.E. Weatherburn: An Introduction to Riemannian Geometry and the tensor Calculus, Cambridge University Press, 1950.
- 2. J.V. Narlikar : General Relativity and Cosmology, The Macmillan Company of India Ltd. 1978.
- 3. B.F. Shutz: A first course in general relativity, Combridge University Press, 1990.
- 4. A.S. Eddington: The Mathematical Theory of Relativity, Cambridge University Press, 1965.
- 5. S. Weinberg Gravitation and Cosmology : Principle and applications of the general theory of relativity, John Wiley & Sons, Inc. 1972.
- 6. J.V. Narlikar: Introduction to Cosmology, Cambridge University Press, 1993.
- 7. Misner, Thorne & Wheeler (MTW): Gravitation (Freeman 1973)

- 8. Lightman, Press, Price & Teukolsky (LPPT): Problem Book in Relativity & Gravitation (Princeton 1975)
- 9. T. Padmanabhan : Gravitation, CAMBRIDGE UNIVERSITY PRESS

Reference Book (s):

- 1. Hartle (H): Gravity (Addison-Wesley 2003)
- 2. Schutz (S): First Course in General Relativity (Cambridge 1985)
- 3. Rindler (R): Essential Relativity (Springer 1969)
- 4. Adler, Bazin & Schiffer (ABS): General Relativity (McGraw Hill 1965)
- 5. Einstein (E): The Meaning of Relativity (Princeton 2014) Weinberg (W): Gravitation & Cosmology (Wiley 1972)
- 6. L. Ryder : Introduction to General Relativity, CAMBRIDGE UNIVERSITY PRESS 2009
- 7. Landau & Lifshitz (LL): Classical Theory of Fields (Pergamon 1989)
- 8. Hans Stephani (HS): Relativity: An Introduction to Special and General Relativity (Cambridge Paperback, 2004)

Unit-1 Introduction 10hours
Equality of gravitational and intertial masses, Equivalence principle, Principle of general
covariance. covariant and contravariant tensors. Tensors of arbitrary rank. Metric tensor. Parallel
transport and covariant differentiation. Affine connection and its relation to metric tensor.
Curvature tensor and its symmetries. Bianchi identities. Weyl tensor and conformal invariance.
Unit-2 11hours
Geodesics: Equation of motion of particles. Weak fields and Newtonian approximation. Time and
distance in general theory, gravitational red and blue shifts, experimental verification, Einstein's
field equation - Newtonian gravity as an approximation, Schwarzschild solution, Radial motion
towards centre. Nature of singularities, black holes, even horizon, Kruskal co-ordinates.

Unit-3

6hours

General orbits, constants of motion, deflection of light, precession of perihelion and radar echo. Standard, isotropic and harmonic coordinates. Parameterized post-Newtonian formalism and status of observational verification. Mach's principle.

Unit-4

6 hours

Energy momentum tensor for a perfect fluid, equation of motion from field equation for equation for dust. Action principle for field equations. Conservation laws in curved space and pseudo energy tensor for gravitational field.

Unit-5

12 hours

Cosmology: Cosmological principle, maximally symmetric spaces, Killing vectors, Robertson- Walker metric. Red shift of galaxies and Hubble's law. Magnitude-red shift relation, Hubble's constant and deceleration parameter. Friedman equations and standard models. Closed, flat and open universes. Age of the universe, critical density. Galaxy clusters and problem of missing mass or missing light, dark matter. Thermal history of early universe, helium formation, decoupling of matter and radiation, microwave background radiation. Cosmological constant and the late time acceleration.

Unit-06: Application of General theory of Relativity:

General theory of Relativity for electrical engineering, Dark Energy and Modified Scale Covariant Theory of Gravitation, Gravitational Theory of Cosmology, Galaxies and Galaxy Clusters, Hamiltonian formulation of dust cloud collapse.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Name of The Course	Numerical solution of partial differential equations				
Course Code	BBS14T5020				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	1	0	4

Course Objectives: The aim of the course is develop an understanding of Numerical methods for partial differential equations. The students will explore his/her knowledge how to determine the stability criterion for a numerical scheme and apply the methods to solve problems.

Course Outcomes: After completing the course, the students will able to

CO1	apply the numerical methods for partial differential equations.
CO2	apply the different single and multi step methods
CO3	apply the methods to solve problems.
CO4	determine the stability criterion for a numerical scheme .
CO5	Apply the different error analysis to partial differential equations
CO6	Apply the Galerkin method to the partial differential equations

Text Book (s):

- 6. A. R. Mitchell and D.F. Griffiths, The finite difference method in partial differential equations, J. Wiley & sons, New York
- 7. K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential Equations, Cambridge University Press.
- 8. W F Ames, Numerical Methods for Partial Differential Equations, 3rd edn. Boston, Academic Press

Reference Book (s) :

- 1. Courant, R. and Hilbert, D., Methods of Mathematical Physics, Vol2: Partial Differential Equations, New York, Wiley-Interscience.
- 2. A. R. Mitchell, Computational methods in partial differential equations, J. Wiley & sons, New York

Unit-1: Parabolic equations in one space variable	8 hours					
Introduction, A model problem, Series approximation, An explicit scheme for the model						
problem, Difference notation and truncation error, Convergence of the explicit scheme.						
Unit-2: Single and Multi step methods	8hours					
Fourier analysis of the error, An implicit method, The Thomas	algorithm, The weighted					
average or θ -method, A maximum principle and convergence f	or $\mu(1-\theta) \leq 1$, A three-time-					
level scheme, 2-D and 3-D parabolic equations , The explicit me	ethod in a rectilinear box, An					
ADI method in two dimensions.						
Unit-3 : Hyperbolic equations in one space dimension	8hours					
Characteristics, The CFL condition, Error analysis of the upw	ind scheme, Fourier analysis					
of the upwind scheme, The Lax–Wendroff scheme, The Lax–W	endroff method for					
conservation laws.						
Unit-4: Stability Criterion	8hours					
Consistency, convergence and stability, Definition of the probl	ems considered, The finite					
difference mesh and norms, Finite difference approximations,	Consistency, order of accuracy					
and convergence, Stability and the Lax Equivalence Theorem,	Calculating stability conditions					
•						
Unit-5: Linear second order elliptic equations in 2D	8hours					
A model problem, Error analysis of the model problem, The ge	neral diffusion equation,					
Boundary conditions on a curved boundary, Error analysis usi	ng a maximum principle,					
Asymptotic error estimates						
Unit -6: The Galerkin method	4hours					
Introduction, elliptic equations, two-point boundary value problems, the Galerkin method						
with different test and trial functions						

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

(Established under Galgotias University Uttar Pradesh Act No. 14 of 2011)

Program: B.Sc. (Hons.) Chemistry

Scheme: 2020-2021

Vision:

To be recognized globally as a center of excellence in imparting value-based education in Basic and Applied Sciences by creating innovation in fundamental and multidisciplinary research

Mission:

- M1. To excel in imparting contemporary knowledge and skills by developing an educational ecosystem with diverse interests and talents.
- **M2.** To perform cutting edge research leading to innovation in sciences through national and international collaborations.
- **M3.** To develop solutions for the emerging challenges in Basic and Applied Science to cater the needs of society.
- M4. To attract best quality faculty to facilitate knowledge and develop confidence in our graduates to succeed in the world.

Program Educational Objectives:

- PEO1:The graduates shall be successful professionals in Academia, Industry, Government and Entrepreneurship.
- PEO2: The graduates shall pursue higher education/research at institute of national and international repute.
- PEO3: The graduate shall effectively address the challenges of the society and undertake the projects for bridging the gap between industry and societal needs.

Program Specific Objectives

The students shall be able to

- PSO1: Exhibit technical skills required for synthesis and structural characterization of Organic, Inorganic compounds and Nanomaterials.
- PSO2: Acquire industrial exposure and scientific knowledge through industry internship and research based learning in R & D labs.

Program Outcomes:

- **PO1:** Apply the knowledge of various areas of chemistry to solve complex chemical problems in industry and academia.
- **PO2:** Develop the ability to evaluate theories, methods, principles and applications of pure and applied science.
- **PO3:** Employ critical thinking and the scientific knowledge to design, carry out, record and analyze the results of chemical reactions.
- PO4: Use modern techniques, decent equipments and Chemistry software's
- **PO5:** Create an awareness of the impact of chemistry on the environment, society, and development outside the scientific community.
- **PO6:** Perform professionally with social, cultural and ethical responsibility as an individual as well as in multifaceted teams with positive attitude.
- **PO7:** Communicate effectively with the scientific community and with society at large. Be able to comprehend, write and communicate effective reports/ documentation.
- **PO8:** Capable of adapting to new methodologies and constantly upgrading their skills with an attitude towards independent and lifelong learning.

Semest	ter I	1							
Sl. No	Course Code	Name of the Course					As	sessment Pa	ttern
OL OF	BASIC AND AP	PLIED SCIENCES	L	Г	ΓP	P C	IA	MTE	ETE
1	BSCC1003	Inorganic Chemistry I	4	0) 0) 4	30	20	50
2	BSCC1051	Inorganic Chemistry Lab	-I 0	0) 4	2	50	-	50
3	BMAT1041	Foundation Course i Mathematics	n 5	1	0	6	30	20	50
4	BBS05T1101	Programming in C an Python	d 4	0) ()) 4	30	20	50
5	BBS05P1102	Programming in C an Python Lab	d 0	0) 4	2	50	-	50
6	BBS09P1101	Hands on Basi Techniques an Measurments	c 0 d	0) 4	2	50	-	50
7	Xxxx	Environmental Science	0	0) 1	0.	5		
8	Xxxx	AI and Machine learning	g			2			
9	Xxxx	Liberal Art				0.	5		
10	Xxxx	BEC-B1				3			
11	Xxxx	Soft Skill							
12	Xxxx	Computer Awareness							
		Total	13	1	1 1	3 20	5		
Semest	ter II								
Sl No	Course Code	Name of the Course					As	sessment Pa	ttern
			L	Т	P	P C	IA	MTE	ETE
1	BSCC1002	Physical Chemistry I	4	0	0	9 4	30	20	50
2	BSCC1052	Physical Chemistry-I La	b 0	0	4	2	50	-	50
3	BSCG1001	Nanoscience an Nanotechnology	d 4	0	0) 4	30	20	50
4	BSCG1051	Nanoscience an Nanotechnology lab	d 0	0	4	2	50	-	50
5	BSCP1043	General Physics	4	0	0	9 4	30	20	50
	BSCP1044	Physics Lab	0	0	4	2	50	-	50
6	BBS05T5101	Elective (Analytica Methods in Chemistry)	al 3	0	0	3	30	20	50
7	BSCS1062	Analytical Technique and Instrumentation Lab	es 2	0	0	2	50	-	50
8	Xxxx	BEC-B2				3			
9	Xxxx	***Two week socia internship (durin summer)	al g						
		Total	17	0	1	2 20	5		
Semest	er III	1	I			I	I		<u> </u>
Sl No	Course Code	Name of the Course	T		 [As	sessment Pa	ttern
1		Organia Chamister I	L 4				1A 20		
1	BSCC2001	Organic Chemistry I	4	0			50	20	50
4	DSCC2031	Lab	U	U	4		50	-	50

3	BSCC2002	Physical Chemistry II	4	0	0	4	30	20	50
4	BSCC2052	Physical Chemistry II Lab	0	0	4	2	50	-	50
5	BSCC2003	Inorganic Chemistry II	4	0	0	4	30	20	50
6	BSCC2053	Inorganic Chemistry II Lab	0	0	4	2	50	-	50
7	BSCC2004	Organic Chemistry II	4	0	0	4	30	20	50
8	BSCC2054	Organic Chemistry II lab	0	0	4	2	50	-	50
9	BBS05T5102	Industrial Chemistry	3	0	0	3	30	20	50
		Total	19		16	27			
Semest	er IV								
Sl No	Course Code	Name of the Course					Asses	sment Pa	ttern
			L	Т	Р	С	IA	MTE	ETE
1	BBS05T2101	Physical Chemistry III	4	0	0	4	30	20	50
2	BBS05P2101	Physical Chemistry III Lab	0	0	4	2	50	-	50
3	BSCC2006	Inorganic Chemistry III	4	0	0	4	30	20	50
4	BSCC2056	Inorganic Chemistry III Lab	0	0	4	2	50	-	50
5	BSCC2007	Organic Chemistry III	4	0	0	4	30	20	50
6	BSCC2057	Organic Chemistry III Lab	0	0	4	2	50	-	50
7	BSCC2101	Green Chemistry	4	0	0	4	30	20	50
8	Xxxx	Waste Management	0	0	2	1	50	-	50
9	BBS09T2411	Research Methodology and Statistics	2	0	0	2	30	20	50
10	Xxxx	IPR				0.5			
11	Xxxx	Foreign Language				0.5			
		Total	18	0	14	26			
Semest	er V		•				•	•	
Sl No	Course Code	Name of the Course					Asses	sment Pa	ttern
			L	Т	Р	C	IA	MTE	ETE
1	BBS05T3101	Organic Chemistry IV	4	0	0	4	30	20	50
2	BBS05P3101	Organic Chemistry IV Lab	0	0	4	2	50	-	50
3	BSCC3002	Physical Chemistry IV	4	0	0	4	30	20	50
4	BSCC3052	Physical Chemistry IV Lab	0	0	4	2	50	-	50
5	BSCC3003	Inorganic Chemistry IV	4	0	0	4	30	20	50

6	BSCC3053	Inorganic Chemistry	0	0	4	2	50	-	50
		IV Lab							
7	BBS05T3102	Organic Chemistry V	4	0	0	4	30	20	50
8	BBS05T5103	Battery Technology	3	0	0	3	30	20	50
9	Xxxx	Campus to corporate				2			
		Total	19	0	12	27			
Semest	er VI						·		
Sl No	Course Code	Name of the Course					Assess	ment Pat	tern
			L	Т	Р	С	IA	MTE	ETE
1	BSCC3151	Project	-	-	-	12	50	-	50
		Total	Credit	t=144	•	•	•		•

urriculum

List of Electives:

Sl	Course Code	Name of the Electives			Assessment Patter			attern	
No			L	Т	Р	С	IA	MTE	ETE
1	BBS05T5101	Analytical Methods in	3	0	0	3	30	20	50
		Chemistry							
2	BSCC2101	Green Chemistry	4	0	0	4	30	20	50
3	BSCC2102	COMPUTATIONAL	4	0	0	3	30	20	50
		CHEMISTRY							
4	BBS05T5102	Industrial Chemistry	3	0	0	3	30	20	50
5	BSCC3102	NOVEL INORGANIC	4	0	0	3	30	20	50
		SOLIDS							
6	BSCC3103	POLYMER CHEMISTRY	4	0	0	3	30	20	50
7	BSCC3104	MOLECULAR	4	0	0	3	30	20	50
		MODELLING & DRUG							
		DESIGN							
8	BBS05T5103	Battery Technology	3	0	0	3	30	20	50

Name of The Course	INORGANICCHEMISTRY I						
Course Code	BSCC1003						
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject						
Corequisite	Students should have fundamental knowledge of Inorganic Chemistry.						
Antirequisite							
		L	Т	Р	С		
		4	0	0	4		

Course Objectives: The course reviews the structure of the atom, which is a necessary pre-requisite in understanding the nature of Chemical Bonding in compounds. It provides basic knowledge about Ionic, Covalent and Metallic bonding and explains that Chemical Bonding is best regarded as a continuum between the three cases. It discusses the Periodicity in properties with reference to the sand p block, which is necessary in understanding their group chemistry.

Course Outcomes:

CO1	Describe the basic concept and principle of atomic structure (K2).
CO2	Discuss the periodic properties of s and p block element to locate their position in periodic table. (K2)
CO3	Determine the properties and shape of molecules by various theories of chemical bonding. (K3).
CO4	Understand the bonding in metals and various chemical forces, interactions and redox reaction (K2).
CO5	Apply the basic knowledge of inorganic chemistry for real applications (K3).
CO6	Elaborate the recent advancements in inorganic chemistry. (K6).

Text Book (s)

- Lee, J.D. Concise Inorganic Chemistry ELBS, 1991.
- Douglas, B.E. and McDaniel, D.H. Concepts & Models of Inorganic Chemistry Oxford, 1970

Reference Book (s)

- Lee, J.D. Concise Inorganic Chemistry ELBS, 1991.
- Douglas, B.E. and McDaniel, D.H. Concepts & Models of Inorganic Chemistry Oxford, 1970
- Atkins, P.W. & Paula, J. *Physical Chemistry*, 10th Ed., Oxford University Press, 2014.
- Day, M.C. and Selbin, J. *Theoretical Inorganic Chemistry*, ACSPublications, 1962.
- Rodger, G.E. InorganicandSolidStateChemistry, CengageLearningIndiaEdition, 2002.

Unit-1: Atomic Structure

Bohr's theory, its limitations and atomic spectrum of hydrogen atom. Wave mechanics: de Broglie equation, Heisenberg's Uncertainty Principle and its significance, Schrödinger's wave equation, significance of ψ and ψ 2. Quantum numbers and their significance. Normalized and orthogonal wave functions. Sign of wave functions. Radial and angular wave functions for hydrogen atom. Radial and angular distribution curves. Shapes of *s*, *p*, *d* and *f* orbitals. Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau'sprinciple and its limitations.

Unit-2: Periodicity of Elements

Detailed discussion of the following properties of the elements, with reference to *s* and *p*-block.

(a) Effective nuclear charge, shielding or screening effect, Slater rules, variation of effective nuclear charge in periodic table.

(b) Atomic radii (van der Waals) (c) Ionic and crystal radii.

(d) Covalent radii (octahedral and tetrahedral)

(e) Ionization enthalpy, Successive ionization enthalpies and factors affecting ionization energy. Applications of ionization enthalpy.

(f) Electronegativity, Pauling's/ Mulliken's/ Allred Rachow's/ and Mulliken-Jaffé's electronegativity scales. Variation of electronegativity with bond order, partial charge, hybridization, group electronegativity.

Unit-3: Chemical Bonding- (Ionic and Covalent bond)

14hrs

(i) *Ionic bond:* General characteristics, types of ions, size effects, radius ratio rule and its limitations. Packing of ions in crystals. Born-Landé equation with derivation and importance of Kapustinskii expression for lattice energy. Madelung constant, Born-Haber cycle and its applications, Solvation energy.

(ii) *Covalent bond:* Lewis structure, Valence Bond theory (Heitler-London approach). Energetics of hybridization, equivalent and non-equivalent hybrid orbitals. Bent's rule, Resonance and resonance energy, Molecular orbital theory. Molecular orbital diagrams of diatomic and simple polyatomic molecules N2, O2, C2, B2, F2, CO, NO, and their ions; HCl (idea of s-p mixing and orbital interaction to be given). Formal charge, Valence shell electron pair repulsion theory (VSEPR), shapes of simple molecules and ions containing lone pairs and bond pairs of electrons, multiple bonding (σ and π bond approach) and bond lengths. Covalent character in ionic compounds, polarizing power and polarizability. Fajan's rules and consequences of polarization. Ionic character in covalent compounds: Bond moment and dipole moment. Percentage ionic character from dipole moment and electronegativity difference.

Unit-4: Chemical Bonding- (Metallic bond and Chemical Forces)8 hrs8hrs

(iii) *Metallic Bond*:Pool model of metallic bonding, Qualitative idea of valence bond and band theories. Semiconductors and insulators, defects in solids.

(iv) *Weak Chemical Forces:* van der Waals forces, ion-dipole forces, dipole-dipole interactions, induced dipole interactions, Instantaneous dipole-induced dipole interactions. Repulsive forces, Hydrogen bonding (theories of hydrogen bonding, valence bond treatment) Effects of chemical force, melting and boiling points,

10hrs

12hrs

Unit-5: Redox Reaction	6hrs
Redox equations, Standard Electrode Potential and its application to inorganic	reactions. Principles
involved in volumetric analysis to be carried out in class.	
•	
Unit-6: Recent advancements of various inorganic chemistry concepts	4hrs
Recent Advancements in metal catalyzed redox chemistry, New elements di	iscovered in Periodic
table and their properties, Recent advancement in Chemical bonding.	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	INORGANIC CHEMISTRYI LAB						
Course Code	BSCC1051						
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject						
Corequisite	Students should have fundamental knowledge of Titration, Concentration of solution.						
Antirequisite							
		L	Т	Р	С		
		0	0	4	2		

Course Objectives:

Understand and perform different types of volumetric titration.

Course Outcomes

CO1	1. Understand the basics of titrimetric analysis and calibration of appratus (K2).
CO2	Prepare solutions of different Molarity/ Normality of titrants (K4).
CO3	3. Demonstrate and determine the strength of the given acid by acid-base titration (K3).
CO4	4. Gain hands on experience in the different aspects of oxidation-reduction titrimetry (K4).
CO5	5. Apply the basic knowledge of experiments in inorganic analysis (K3).

Text Book (s)

Vogel's Textbook of Quantitative Chemical Analysis, Jeffery, G.H., Bassett, J., Mendham, J., Denney, R.C., **5th Edn.**, Longman Scientific & Technical, England, (*John Wiley and Sons Inc, 605 Third Avenue, New York NY* 10158).

Reference Book (s)

Mendham, J., A.I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.

Vogel's Qualitative Inorganic Analysis, Revised by G. Svehla. Pearson Education, 2002.

Marr & Rockett Practical Inorganic Chemistry. John Wiley & Sons 1972.

Unit-1 Titrimetric Analysis

(i) Calibration and use of apparatus

(ii)Preparation of solutions of different Molarity/Normality of titrants

Unit-2 Acid-BaseTitrations

(i) Estimation of carbonate and hydroxide present together in mixture.

(ii)Estimationofcarbonateandbicarbonatepresenttogetherinamixture.

(iii) Estimation of free alkali present in different soaps/detergents

Unit-3 Oxidation-Reduction Titrimetry

Estimation of Fe(II) and oxalic acid using standardized KMnO4 solution.

Estimation of oxalic acid and sodium oxalate in a given mixture.

Estimation of Fe(II) with K2Cr2O7 using internal indicator (diphenylamine,N-phenyl anthranilic acid).

Continuous Assessment Pattern

Practical IA	Practical ETE	Total Marks
50	50	100

Name of The Course	Foundation Course in Mathematics				
Course Code	BMAT1041				
Prerequisite	Students should qualify 10+2 or equivalent examin stream with Chemistry as major subject	natio	n in	Scie	ence
Corequisite	Students should have fundamental knowledge mathematics, physics and computer applications.	of s	subje	cts	like
Antirequisite					
		L	Т	Р	C
		5	1	0	6

Course Objectives:

The objective of this course is to introduce the students to fundamental mathematical techniques and basic computer skills that will help them in solving chemistry problems. It aims to make the students understand the concept of uncertainty and error in experimental data. Learn the use of different software for data tabulation, calculation, graph plotting, data analysis and document preparation.

Course Outcomes:

CO1	Understand different functions and progressions and solve the problems based on it. (K3)
CO2	Explain the different types of matrices and solve the differential equations. (K3)
CO3	Understand the basics of differential calculus. (K2)
CO4	Evaluate the problems based on integral calulus. (K3)
CO5	Understand the basics of probability. (K2)
CO6	Analyse application of BCG Matrix to market growth.(K6)

Text Book (s)/Reference Book (s)

1. Calculus and Analytic Geometry	: G. B. Thomas, R. L. Finney, Pearson Education, Asia.
2. Statistical Methods	:S.P. Gupta, Sultan Chand and Sons
3. Engineering Mathematics	: B.S. Grewal, Khanna Publishers.

Unit-1

10hrs

Algebra: Fundamentals, mathematical functions, logarithms, the exponential function, polynomial expressions, Factorization and division of Polynomials, Partial fractions, Binomial Expansion, Arithmetic Progression, Geometric Progression, Infinite Geometric Progression.

Unit-2

Matrices & Determinants: Types of matrices, basic operations of matrices, determinant of a matrix and it's properties, matrix inverse, elementary row and column operations, rank of a matrix, consistency of a linear system of equations, solution of a linear system by Gauss Elimination method.

Unit-3

10hrs

Differential Calculus: Differentiation of a function of a single variable, product rule, quotient rule, chain rule of differentiation, Taylor's series, Applications of derivatives: Rate of change, increasing/decreasing functions, tangents and normals, maxima and minima.

Unit-4

10hrs

Integral Calculus: Integral of elementary functions, standard results, Integration by substitutions, by parts and partial fraction methods, Definite integral, Even and odd functions, Properties of definite integral and application in finding the area.

Unit-5

10hrs

Probability: Basicconcepts of probability, Random variable and its probability distribution, Binomial, Poisson and Normal distributions

Unit-6

4hrs

BCG matrix and its application to market sharing growth.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Programming in C and Python				
Course Code	BBS05T1101				
Prerequisite	Students should qualify 10+2 or equivalent exaministream	natio	on in	Scie	nce
Co requisite	Students should have fundamental knowledge mathematics, physics and computer applications.	of s	subje	ects	like
		L	Τ	Р	С
		4	0	0	4

Course Objectives:

The aim of the paper is to make the students of chemistry familiar with the working of computer, programming language, QBASIC and use of software as a tool to understand chemistry, and solve chemistry based problems.

Course Outcomes:

CO1	Understand and explain the basics of computer & its components, logic development and data input and output.
CO2	Explain the control systems and function.
CO3	Explain the arrays, structure, union and pointer.
CO4	Explain control flow structure and function in python.
CO5	Apply the Classes and objects in python.
CO6	Analyze the real world data using python libraries

Text Book (s)/Reference Book (s)

- 20. P Kanetkar Yashvant, Let us C, BPB Publications, New Delhi, Seventh Edition.
- 21. E. Balagurusami, Programming in ANSI C, Tata McGraw Hill, Fourth Edition.
- 22. Schaum Outline Series, Programming in C.
- 23. Mark Lutz ,"Learning Python", O Reily, 4th Edition, 2009, ISBN: 978-0-596-15806-4
- 24. Mark Lutz ,"Programming Python", O Reily, 4th Edition, 2010, ISBN 9780596158118.
- 25. Tim Hall and J-P Stacey ,"Python 3 for Absolute Beginners", 2009, SBN:9781430216322

Unit-1

Introduction to computers:

Units of computers, Block Diagram, Generation of Computers, Characteristics of Computers, Different types of Memory, Input and Output Devices.

Logic Development and Program Development Tools:

Data Representation, Flowcharts, Problem Analysis, Pseudo Code and Algorithms, Program Debugging, Compilation and Execution.

Fundamentals:

Character Set, Identifiers and Key Words, Data Types, Constants, Variables, Expressions, Statements

Operations and Expressions:

Arithmetic Operators, Unary Operators, Relational Operators, Logical Operators, Assignment and Conditional Operators, Library functions.

Data Input and Output:

Single Character Input, Single Character Output, Entering Input Data, More About Scan Functions, Writing Output Data, More About Print Functions, Gets and Puts Functions, Interactive Programming.

Unit-2

10hrs

10hrs

Control Structures:

Introduction, Decision Making with If – Statement, If Else and Nested If, While And Do-While, For Loop. Jump Statements: Break, Continue, Goto, Switch Statement.

Functions:

Introduction To Functions, Function Declaration, Function Categories, Standard Functions, Parameters And Parameter Passing, Pass – By Value/Reference, Recursion, Global and Local Variables, Storage Classes.

Unit-3	10hrs

Arrays:

Introduction to Arrays, Array Declaration, Single and Multidimensional, Array, Memory Representation, Matrices, Strings, String Handling Functions.

Structure and Union:

Declaration of Structure, Accessing Structure Members, Structure Initialization, Arrays of Structure, Nested Structures, Unions.

Pointers:

Introduction To Pointers, Address Operator And Pointers, Declaring and Initializing Pointers,

Assignment through Pointers, Pointers and Arrays.

U	nit-4	
U	nit-4	

10hrs

Introduction

10hrs

CORE PYTHON : BASICS

to Python, Python Interpreter and its working, Syntax and Semantics, Data Types, Assignments and Expressions, Control Flow Statements, Sequences and Dictionaries, Functions and lambda expressions

Unit-5

CORE PYTHON : ADVANCED FEATURES Iterations and Comprehensions, Handling text files, Modules, Classes and OOP

Unit-6 Data Analysis (Python toolboxes/libraries)

4hrs

NumP, SciPy, Pandas, ChemPy

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Programming in C and Python Lab				
Course Code	BBS05P1102				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with a minimum of 50% marks secured in Chemistry				
Co requisite	Students should have fundamental knowledge of Computer and it's application.				
		L	Т	Р	С
		0	0	4	2

Course Objectives:

The aim of the paper is to make the students of chemistry familiar with the working of computer programming language, QBASIC and use of software as a tool to understand chemistry, and solve chemistry based problems.

Course Outcomes

CO1	Understand the different codes to execute the program.
CO2	Write the program for numbers and mathematical calculations.
CO3	Write the print command to the given program.
CO4	Write the program for control structure in python.
CO5	Understand the concept of classes and objects in python.

- 1. Write a program in C to find greatest of three numbers.
- 2. Write a program in C to find gross salary of a person
- 3. Write a program in C to find grade of a student given his marks.
- 4. Write a program in C to find divisor or factorial of a given number.
- 5. Write a program in C to print first ten natural numbers.
- 6. Write a program in C to print first ten even and odd numbers.
- 7. Write a program in python to print n terms of Fibonacci series.
- 8. Write a program in python to find all prime numbers within a given range.
- 9. Write a program in python to demonstrate working of classes and objects

Continuous Assessment Pattern

Practical IA	Practical ETE	Total Marks
50	50	100

Name of The Course	Hands on Basic Techniques and Measurements				
Course Code	BBS09P1101				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject				
Corequisite	Students should have fundamental knowledge of physics, chemistry and biology.				
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives:

The main purpose of this laboratory is to provide the students an appreciation for basic techniques in applied sciences. It is also aimed to provide the students a degree of competence in the laboratory skills required for accurate and precise analysis. Therefore it is expected that the students will demonstrate proficiency in synthesizing some material in laboratory.

Course Outcomes

CO1	Explain and operate the microscope for measurements.(K2)
CO2	Prepare Soap and Resins and understand the mechanism of preparation. (K5)
CO3	Preparation of biodiesel from Vegetable oil/ Waste cooking oil and characterize it. (K5)
CO4	Apply the skill to solder and connect the electronic components. (K3)
CO5	Understand the functioning of CRO and develop the ability to use the micrometers. (K2)

Text Book (s)/ Reference Book (s)

- 1. Georg Stehli, The Microscope And How to Use It, English edition, 1970.
- M.Sayer and A. Mansingh, PHI Learning. Measurement, Instrumentation and Experiment Design in Physics & Engineering, 2005.
- 3. Stocchi, E.(1990), Industrial Chemistry, Vol -I, Ellis Horwood Ltd. UK.

1. Different types of microscopes and its applications.

11. Preparation of Urea-formaldehyde Resin
12. Preparation of Soap
13. Preparation of Biodiesel from Vegetable oil/Waste cooking oil.
14. Characterization of biodiesel (TLC, Acid value and viscosity)
15. Soldering of electrical circuits
16. Measurement with Vernier calipers, Screw gauge and spherometer
17. Operation of oscilloscope
18. Familiarization with linear, logarithmic and polar graphs for plotting of experimental data
19. Assembling of elementary electric circuits using breadboard.

Continuous Assessment Pattern

Practical IA	Practical ETE	Total Marks
50	50	100

Name of The Course	PHYSICALCHEMISTRY I				
Course Code	BSCC1002				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject				
Corequisite	Students should have fundamental knowledge of mathematics, physics and computer applications.	of s	subje	ects	like
Antirequisite					
		L	Т	Р	C
		4	0	0	4

Course Objectives:

1. Understand states of matter and interchange of states, intermolecular interactions.

2. Understand state of equilibrium, concept of pH, buffers, acids and bases indicators.

Course Outcomes

CO1	Describe the various models and behavior of ideal as well as real gases. (K2)
CO2	Describe the effect of various factors on the physical properties of a liquid. (K2)

CO3	Determine the various crystal structure and their properties. (K4)
CO4	Describe the properties of acids and bases. (K2)
CO5	Determine the pH scale, buffer action and applications of buffer solution. (K4)
CO6	Elaborate the recent advancement in different states of matter and analyse their utility. (K6)

Text Book (s)

2. Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry10th Ed., Oxford University Press (2014).

Reference Book (s)

- 3. Castellan, G. W. *Physical Chemistry*4th Ed. Narosa (2004).
- 4. Engel, T. & Reid, P. Physical Chemistry3rd Ed. Pearson (2013

Unit-1 Gaseous state	12 hrs		
Kinetic molecular model of a gas: postulates and derivat frequency; collision diameter; mean free path and viscosity pressure dependence, Maxwell distribution and its use in root mean square and most probable) and average kineti degrees of freedom and molecular basis of heat capacities ideal gas behavior, compressibility factor, Z, and its va Causes of deviation from ideal behavior; Van der Wa application in explaining real gas behavior; Calculation of I and their comparison with van der Waals isotherms	tion of the kinetic gas equation; collision y of gases, including their temperature and evaluating molecular velocities (average, c energy, law of equipartition of energy, .Behaviour of real gases: Deviations from riation with pressure for different gases; als equation of state, its derivation and Boyle temperature. Isotherms of real gases		
Unit-2 Liquid state	6 hrs		
Qualitative treatment of the structure of the liquid state; Radial distribution function; physical properties of liquids; vapor pressure, surface tension and coefficient of viscosity, and their determination; Effect of addition of various solutes on surface tension and viscosity; Explanation of cleansing action of detergents; Temperature variation of viscosity of liquids and comparison with that of gases.			
Unit-3 Solid state	14 hrs		
Nature of the solid state, law of constancy of interfacial angles, law of rational indices, Miller indices, elementary ideas of symmetry, symmetry elements and symmetry operations, qualitative idea of point and space groups, seven crystal systems and fourteen Bravais lattices; X-ray diffraction, Bragg's law, a simple account of rotating crystal method and powder pattern method. Analysis of powder diffraction patterns of NaCl, CsCl and KCl. Defects in crystals. Glasses and liquid crystals.			
Unit-4 Ionic Equilibria-I	6 hrs		
Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water; Ionization of weak acids and bases, pH scale, common ion effect; dissociation constants of mono-, di-and triprotic acids (exact treatment).			
Unit-5 Ionic Equilibria-II

12 hrs

Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions; derivation of Henderson equation and its applications; buffer capacity, buffer range, buffer action and applications of buffers in analytical chemistry and biochemical processes in the human body. Solubility and solubility product of sparingly soluble salts; applications of solubility product principle; Qualitative treatment of acid – base titration curves (calculation of pH at various stages).Theory of acid–base indicators; selection of indicators and their limitations.

Unit-6 Future Trends in States of Matter 4hrs

Recent advancement in different states of matter, Liquid crystal, Application of Liquid crystal

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	PHYSICALCHEMISTRY I Lab				
Course Code	BSCC1052				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject				
Corequisite	Students should have fundamental knowledge of subjects like mathematics, physics and computer applications.				
Antirequisite					
		L	Т	Р	C
		0	0	4	2

Course Objectives:

- 3. Determine the surface tension and viscosity of different solvent and solutions
- 4. Determine pH of buffer soutions and perform pH metric titrations.

Course Outcomes

CO1	Measure the surface tension of solutions by different techniques. (K4)
CO2	Operate Ostwald's viscometer to measure viscosity of different solutions.(K3)
CO3	Prepare buffer solutions of different pH and study the effects on pH by addition of acid/base. (K4)
CO4	Perform pH metric titration of acid against base. (K3)
CO5	Determine dissociation constant of a acid. (K2)

Text Book (s)

• Khosla, B. D.; Garg, V. C. & Gulati, A., *Senior Practical Physical Chemistry*, R.Chand& Co.: New Delhi (2011).

Reference Book (s)

Athawale, V. D. & Mathur, P. Experimental Physical Chemistry New Age

1. Surface tension measurements.
a. Determine the surface tension by (i) drop number (ii) drop weight method.
b. Study the variation of surface tension of detergent solutions with
concentration.
2. Viscosity measurement using Ostwald's viscometer.
a. Determination of viscosity of aqueous solutions of (i) polymer (ii) ethanol and
(iii) sugar at room temperature.
b. Study the variation of viscosity of sucrose solution with the concentration of
solute.
3. pH metry
a. Study the effect on pH of addition of HCl/NaOH to solutions of acetic acid,
sodium acetate and their mixtures.
b. Preparation of buffer solutions of different pH
i. Sodium acetate-acetic acid
ii. Ammonium chloride-ammonium hydroxide
c. pH metric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base.
d. Determination of dissociation constant of a weak acid.

Continuous Assessment Pattern

Internal Assessment (IA)	End Term Test (ETE)	Total Marks			
50	50	100			
Name of The Course	Nanoscience and Na	notechnology			
Course Code	BSCG1001				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject				
Corequisite	Students should ha mathematics, physics	ve fundamental know and computer application	vledge of subjects like		
Antirequisite					

L	Т	Р	С
4	0	0	4

Course Objectives:

Students will understand the basics of Nanoscience and Nanotechnology and present a comprehensive introduction to importance of Nanoscience and Nanotechnology.

Course Outcomes

CO1	Describe the basic science behind the properties of materials at the nanometer scale. (K2)				
CO2	Illustrate the concept of physical and chemical method, application and fabrication of nanostructures. (K3)				
CO3	Generalize and introduce the methods of preparation, methods of purification and applications of carbon nano materials. (K3)				
CO4	Apply the concepts of nano energy conversion materials.(K3)				
CO5	Generalize the importance of nano-catalysis. (K2)				
CO6	Formulate the rudimentary knowledge of photovoltaic devices and propose synthesis of quantum junction solar cells. (K6)				

Text Book (s)

- 5. Introduction to Nanotechnology C P Poole, Frank J. Owens, John Wiley & Sons, 2011, ISBN 978-81-265-1099-3.
- 6. Introduction to Nanoscience and Nanotechnology, KK Chattopadhyay, A N Banerjee, Phi Learning Pvt Ltd., New Delhi, 2012, ISBN-978-81-203-3608-7.
- 7. Nanotechnology Science Innovation & Opportunity, Lynn E Foster, Pearson publication, 2008, ISBN-9788131711187.
- The Chemistry of Nanomaterials C. N. R. Rao, A. Mu["]ller, A. K. Cheetham, Wiley-VCH Verlag GmbH & Co. KGaA, 2004 ISBN 3-527-30507-6

Reference Book (s)

- 6. The Evolution of Dip-pen nanolithography, D.Ginger ,H,Zang and C.A. Mirkin, Angw. Chem.. Int. Ed., 2004,43, 30-45.
- Carbon Materials and Nanotechnology, Anke Krueger, Wiley –VCH Verlag GmbH & Co., 2010, ISBN-10: 3527318038.
- 8. Nanotechnology, J.F. Mongillo Greenwood Press London, 2008, ISBN-13: 978-0-313-33880-9.
- 9. Microfabricationa and naomanufacuing, M.J Jackson, CRC Press Taylor & Francis Group 2006
- 10. Jiang Tang et al., Quantum Junction Solar Cells, Nano Lett. 2012, 12, 4889-4894

Introduction to Nanoscience and Nanotechnology, materials vs nanomaterials, Nanoscale effects on properties, Surface energies, Melting point, Optical (SPR), Magnetic, and Electrical properties, Tools to explore nanomaterials, Fundamental of Nanospintronics, Nanomedicine, Nanostructured materials, Energy conversion processes.

Unit-2 Nanomaterials preparation

Classification of Nanomaterials, Different approaches in synthesis, Nanomaterials synthesis and processing, Physical and chemical methods of synthesis, Synthesis of nanowires and fabrication of nanostructures, Lithography, Dip-pen nanolithography.

Unit-3 Carbon Materials

General introduction to carbon materials, Fullerenes, preparation, properties and application of fullerenes Carbon Nanotubes, Functionalization of nanotubes, Graphene- Preparation, properties and applications.

Unit-4 Nanomaterials in Energy Conversion devices

Unit-1 Introduction to Nanoscience and Nanotechnology

Principles of photovoltaics and photo electrochemical cell, Optical properties of SC nanomaterials, Photovoltaics cell, Silicon- Extraction, Single crystal growth, TiO2 based cells, Dye sensitization, Photoelectrochemical cells.

Unit-5 Nanocatalysis and ethics in nanotechnology

Introduction to nanocatalysis, Bulk vs nanoscale surfaces, Major properties, Applications of nanocatalysts, Societal concern of nanotechnology.

Unit- 6 Quantum Junction Solar Cells

Photovoltaic devices, Colloidal Quantum dot cells, Efficiency of solar cells

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Nanoscience and Nanotechnology lab
Course Code	BSCG1051
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject
Corequisite	Chemistry as major or one of the subjects along with Physics, Mathematics and Biology/any branch of biosciences as minor subjects at 12 th level.
Antirequisite	

10 hrs

10 hrs

10 hrs

4 hrs

10 hrs

10 hrs

	L	Т	Р	C
	0	0	4	2

Course Objectives:

Synthesis and characterization of different Nanoparticles.

Course Outcomes

CO1	Describe basics of nanoscience and nanotechnology. (K2)
CO2	Synthesis of nanoparticles by different materials. (K5)
CO3	Describe the general characteristics of nanosize materials. (K2)
CO4	Demonstrate the nanomaterials characterization by UV. (K3)
CO5	Correlate the nano-materials properties & identify appropriate applications as well as ethical aspects. (K4)

Text Book (s)

- 6. Vogel, A. I. Vogel's Qualitative Inorganic Analysis 7th Ed., Prentice Hall, 1996.
- 7. Carbon Materials and Nanotechnology, Anke Krueger, Wiley –VCH Verlag GmbH & Co., 2010.
- 8. Nanotechnology, J.F. Mongillo Greenwood Press London, 2008.
- 9. Introduction to Nanotechnology C P Poole, Frank J. Owens, John Wiley & Sons, 2011.
- 10. Microfabricationa and naomanufacuing, M.J Jackson, CRC Press

Reference Book (s)

- Carbon Materials and Nanotechnology, Anke Krueger, Wiley –VCH Verlag GmbH & Co., 2010, ISBN-10: 3527318038.
- 4. Nanotechnology, J.F. Mongillo Greenwood Press London, 2008, ISBN-13: 978-0-313-33880-9.

List of Experiments

- 23. Preparation of Ag nano particle and characterization.
- 24. Preparation and characterization of CaO nanoparticles.
- 25. Preparation and characterization of ZnO nanoparticles.
- 26. Synthesis of ZnS nanoparticles and Characterization of synthesized nanoparticles by different techniques.
- 27. Preparation of Cunanoparticles and Characterization by UV-Vis spectrophometer.

28. Synthesis of CdS nanoparticle UV-Vis and IR characterization.

- 29. Synthesis of MnO nanoparticles under optimized conditions using different Manganese salts (Manganese acetate and Manganese nitrate) and Characterization by UV-Vis spectrophometer and other characterization techniques.
- 30. Optimization and study of the size variation of Manganese oxide nanoparticles using time variation and temperature variation.
- 31. Synthesis of Nickel Oxide nanoparticles from Nickel Nitrate and optimization of conditions. Characterization by UV-Vis spectrophometer.
- 32. Synthesis of Copper nanoparticle from Copper Sulphate in presence of Ascorbic acid and optimization of conditions. UV-Visible and IR characterization.

Continuous Assessment Pattern

Internal Assessment (IA)	End (ETE)	Term	Test	Total Marks
50	50			100

Name of The Course	General Physics				
Course Code	BSCP1043				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with physics as a major subject				
Corequisite	School level knowledge in Physics				
Antirequisite	-				
		L	Т	Р	С
		4	0	0	4

Course Objectives:

General Physics is designed to inculcate the basic knowledge of quantum physics in modern technology. Student will study the laser technology and its production. They will come to know about their application in various fields of life. Students will be familiar with Optics in Interference and diffraction of light and resolving power. They will learn about dielectric materials.

Course Outcomes:

After the completion of this course, the students will be able to :

CO1	Explain the concept of Material particle and De-Broglie hypothesis.
001	
CO2	Interpret interference, diffraction and Laser with applications.
CO3	Describe the free electron theory and Fermi level.
CO4	Employ the idea of dielectric with applications.
CO5	Demonstrate the origin of magnetism and Hall effect .
CO6	Predict the new concept of achieving the superconductivity at high temperature for its feasible applications.

Text Book (s):

Arthur Beiser, S Rai Choudhury, Shobhit Mahajan, (2009), Concepts of Modern Physics, 6th Edition, Tata-McGraw Hill. ISBN- 9780070151550.

Neeraj Mehta, (2011), Applied Physics For Engineers, New Arrivals – PHI, ISBN-9788120342422.

Engineering Physics, B K Pandey, S Chaturvedi, Cengage Learning, ISBN: 137788131517611

Reference Book (s):

- 10. Robert Kolenkow, David Kleppner (2007), An Introduction to Mechanics, 1st Edition, Tata-McGraw Hill.
- 11. B.B. Laud, Lasers and Non-Linear Optics (2011), 3rd Edition, New Ages International.
- 12. William Silfvast (2002), Laser Fundamentals, Cambridge University Press.
- 13. David. J. Griffiths (2009), Introduction to Electrodynamics, 3rd Edition, PHI Learning.
- 14. Arthur Beiser (2003), Concepts of Modern Physics, 6th Edition, Tata-McGraw Hill.
- 15. Kittel (2001), Solid State Physics, 7th Edition, John Wiley & Sons.
- 16. Neil W Ashcroft and N David Mermin, (2003), Solid State Physics, Cengage Learning, ISBN-9788131500521.
- 17. Pillai S O, Solid State Physics,(2010), sixth edition, New Age International (P) Ltd. ISBN-9788122427264
- A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, M. I. Eremets. Superconductivity at 250 K in lanthanum hydride under high pressures. *Nature*, 2019; 569 (7757): 528 DOI: <u>10.1038/s41586-019-1201-8</u>

Unit-1 Quantum Mechanics

Wave-Particle duality, de-Broglie waves, Davisson & Germer Experiment (Experimental verification of de-Broglie waves), Heisenberg Uncertainty Principle and its Applications, Schrodinger's wave equations, Particle in a Box, Compton Effect.

Unit-2 Optics and LASER

12 hours

Interference: Interference of Light, Biprism experiment, displacement of fringes, interference sin thin films, wedge shaped film, Newton's rings. Diffraction: Single and double slit, Diffraction grating, Grating spectra, Rayleigh's criterion and resolving power of grating. Einstein's coefficients, Population Inversion, Three level and four level laser, Laser characteristics, He-Ne laser and applications.

Unit-3 Free electron theory

Lorentz classical free electron theory and its limitations, Drude theory of conduction, Thermal conductivity, Weidemann-Franz law, Quantum theory of free electron, Fermi level, Density of states, Fermi-Dirac distribution, Thermionic emission, Richardson equation.

Unit-4 Dielectric materials

Dielectrics introduction, Polarization and dielectric constant, Polarization mechanism: Ionic, Electronic, orientational and space charge polarization, Bound charges and their physical interpretation, Electric displacement vector, Equation of electric field inside dielectrics, Clausius–Mossotti relation, Dielectric losses, Dielectric breakdown and types, Applications of dielectric materials.

Unit-5 Magnetism

Origin of magnetization, Orbital and spin magnetic moment, Classification and properties of magnetic materials, Hall effect, Langevin's theory of diamagnetism, Hysteresis curve, soft and hard magnetic materials

Unit-6 Application of General Physics

Recent advancement in General Physics: The superconductor at the highest temperature, latest approach and description of new superconductor

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(EIE)	
30	20	50	100
Name of The Course	Physics Lab		
Course Code	BSCP1044		
Prerequisite	Students should qualify stream with physics as n	10+2 or equivalent ex najor subject	amination in Science
Corequisite	Students should have mathematics, physics an	fundamental knowled d computer applications	lge of subjects like s.
Antirequisite			
			L T P C

8 hrs

8 hrs

5 hrs

4 hrs

0	0	4	2

Course Outcomes:

CO1	Operate and handle the instruments effectively and safely in the physics laboratory -K2
CO2	Determine the Planck constant and Stefan's constant-K3
CO3	Calculate the wavelength of Laser and monochromatic light. K3
CO4	Calculate Hall coefficient and Hysteresis curve for a given material-K3
CO5	Determine the characteristics of solar cell and AC frequency -K3

Text Book (s)/Reference Book (s)

4. **<u>B.Sc. Practical Physics</u>** by C.L Arora ,S. Chand Limited, 2001.

2. **B.Sc. Practical Physics** by Harnam Singh, S. Chand Limited, 2000.

5.

- 11. Spectrometer angle of prism and minimum deviation of solid prism.
- 12. Spectrometer Grating, Wavelength of different lines of mercury spectrum.
- 13. Newton's rings- Wave length of the mono-chromatic light.
- 14. Determination of Stefan's Constant
- 15. Determination of Planck's constant
- 16. Wavelength determination of He-Ne laser
- 17. B-H curve for magnetic material
- 18. Determination of Hall coefficient
- 19. Frequency of AC mains using sonometer
- 20. Characteristics of solar cell.

Continuous Assessment Pattern

Internal Assessment (IA)	End (ETE)	Term	Test	Total Marks
50	50			100

Name of The Course	ANALYTICAL METHODS IN CHEMISTRY
Course Code	BBS05T5101
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with a minimum of 50% marks secured in Chemistry
Co-requisite	Students should have fundamental knowledge of Analytical Chemistry

Anti-requisite				
	L	T	Р	С
	3	0	0	3

Course Objectives:

1. Concept of sampling, Accuracy, Precision, Statistical test data-F, Q, and t test.

2. The course exposes students to the laws of spectroscopy and selection rules governing the possible transitions in the different regions of the electromagnetic spectra. Thermal and electroanalytical methods of analysis are also dealt with. Students are exposed to important separation methods likesolvent extraction and chromatography. The practicals expose students to latest instrumentation and they learn to detect analytes in a mixture.

Course Outcomes

CO1	Develop the knowledge of statistical analysis and to perform experiment with accuracy and precision. (K2)
CO2	Understand basic principle of instrument like Flame Photometer, UV-VISIBLE and IR spectroscopy. (K2)
CO3	Ill Understand the basic principles of Thermogravimetric analysis. (K2)
CO4	IllUnderstand the principles and how to perform pH metric, potentiometric and conductometric titrations. (K2)
CO5	Il Illustrate different extraction and chromatographic techniques for analysis of reaction mixtures.(K3)
CO6	A Analyze the use of advance instruments for characterization of compounds. (K6)

Reference Books

□ Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.

□ Willard, H.H. et al.: Instrumental Methods of Analysis, 7th Ed. Wardsworth Publishing Company, Belmont, California, USA, 1988.

□ Christian, G.D. Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.

□ Harris, D.C.: Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016.

□ Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age International Publisher, 2009. □ Skoog, D.A. Holler F.J. & Nieman, T.A. Principles of Instrumental Analysis, Cengage Learning India Ed.

Unit I: Qualitative and quantitative aspects of analysis

5 hrs

Sampling, evaluation of analytical data, errors, accuracy and precision, methods of their expression, normal law of distribution if indeterminate errors, statistical test of data; F, Q and t test, rejection of data, and confidence intervals.

Unit II:Optical methods of analysis

10 hrs

Origin of spectra, interaction of radiation with matter, fundamental laws of spectroscopy and selection rules, validity of Beer-Lambert's law. UV-Visible Spectrometry: Basic principles of instrumentation (choice of source, monochromator and detector) for single and double beam instrument; Basic principles of quantitative analysis: estimation of metal ions from aqueous solution, geometrical isomers, keto-enol tautomers.

Infrared Spectrometry: Basic principles of instrumentation (choice of source, monochromator & detector) for single and double beam instrument; sampling techniques.

Structural illustration through interpretation of data.

Unit-3: Thermal methods of analysis:

Theory of thermogravimetry (TG), basic principle of instrumentation. Techniques for quantitative estimation of Ca and Mg from their mixture

Unit-4: Electroanalytical methods

Classification of electroanalytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points.

Unit-5: Separation techniques

15 hrs

5 hrs

5 hrs

Solvent extraction: Classification, principle and efficiency of the technique. Mechanism of extraction: extraction by solvation and chelation. Technique of extraction: batch, continuous and counter current extractions. Qualitative and quantitative aspects of solvent extraction: extraction of metal ions from aqueous solution, extraction of organic species from the aqueous and nonaqueous media. Chromatography: Classification, principle and efficiency of the technique. Mechanism of separation: adsorption, partition & ion exchange. Development of chromatograms: frontal, elution and displacement methods.

Qualitative and quantitative aspects of chromatographic methods of analysis: IC, GLC, GPC, TLC and HPLC. Stereoisomeric separation and analysis: Measurement of optical rotation, calculation of Enantiomeric excess (ee)/ diastereomeric excess (de) ratios. reagents.

Unit-6 Recent Advancements in Analytical Chemistry

4 hrs

Advance Techniques in UV and IR, LC-MS and it's application, 2-D NMR and uses

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Analytical Techniques and Instrumentation

Course Code	BSCS1062					
Prerequisite	Students should qualify 10+2 or equivalent exami stream with Chemistry as major subject	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject				
Corequisite	Basic analytical techniques					
Antirequisite						
	· · · ·	L	Т	Р	С	
		0	0	4	2	

Course Objectives:

The main purpose of this laboratory is to provide the students an appreciation for basic instrumental technique. It is also aimed to provide the students a degree of competence in the laboratory skills required for accurate and precise analysis. Therefore it is expected that the students will demonstrate proficiency in the theory underlying analytical techniques.

Course Outcomes

CO1	Determine quantitatively the strength of different samples using redox, complexometric and iodometric titrations. (K4)
CO2	Employ the water and food product analysis. (K3)
CO3	Analyze different acid base mixtures by conductivity measurements. (K4)
CO4	Estimation of iron in different food products by spectrophotometric analysis. (K4)
CO5	Illustrate different chromatographic technique for analysis and separation of mixtures. (K3)

Text Book (s)

1. Vogel, A. I. Vogel's Qualitative Inorganic Analysis 7th Ed., Prentice Hall, 1996.

2. Robinson, J.W. Undergraduate Instrumental Analysis 5th Ed., Marcel Dekker, Inc., New York (1995).

- 3. Dean, J. A. Analytical Chemistry Handbook, McGraw Hill, 2004.
- 4. Christian, G.D. Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.

Reference Books

- 4. Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. Instrumental Methods of Analysis, 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California, USA, 1988. 2
- 5. Skoog, D.A., Holler, F.J. & Crouch, S. Principles of Instrumental Analysis, Cengage Learning India Edition, 2007.
- 6. Cooper, T.G. The Tools of Biochemistry, John Wiley & Sons, N.Y. USA. 16 (1977).

1. <u>Redox Titration:</u> To determine the strength of Ferrous ions in Mohr's Salt solution by titrating it against a known KMnO4 solution

2. <u>Redox Titration</u>: To determine the strength of Ferrous ions in Mohr's Salt solution by using the external indicator method

3. <u>Complexometric Titration:</u>Estimation of Calcium and Magnesium ions in Calcium carbonate sample by complexometric titration

4. <u>Complexometric Titration</u>:Estimation of Ni²⁺ ions in a given solution by the formation of Ni-DMG complex

5. <u>Analysis of Water Sample:</u> Estimation of total hardness in a given hard water sample.

6. <u>Analysis of Water Sample:</u> Determination of Dissolved Oxygen (DO) in a given water sample

7. Perform the following **Conductometric** titrations:

v. Strong acid vs. strong base

vi. Weak acid vs. strong base

vii. Strong acid vs. weak base

8. <u>Analysis of Food Products:</u>Identification of adulterants in food items such as in Milk and Honey

9. <u>Analysis of Food Products:</u>Determining Vitamin C concentration in food products.

10. <u>Chromatography:</u> Paper chromatographic technique on separation of different mixtures.

Continuous Assessment Pattern

Internal Assessment (IA)	End	Term	Test	Total Marks
	(ETE)			

50	50	100

Name of The Course	ORGANIC CHEMISTRY I				
Course Code	BSCC2001				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject				
Corequisite	Basic knowledge of Organic Chemistry				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

The course develop a sound knowledge on Organic Chemistry.In this course to establish the applications of these concepts, the functional groups- alkanes, alkenes, alkynes and aromatic hydrocarbons- are introduced and the chemistry of these compounds will be explained with the help of various mechanism, reactions, energy diagrams and rules. The constitution of the course strongly aids in the paramount learning of the concepts and their applications.

Course Outcomes

CO1	Explain the basics of organic compounds and various reaction involved in organic chemistry (K2)
CO2	Develop skills to Illustrate various stereochemical processes, projections, optical isomerism and nomenclature. (K3)
CO3	Identify the chemistry and reactions of aliphatic hydrocarbons. (K3)
CO4	Apply the basic understanding in conformational analysis of alkanes and cyclohexane. (K3)
CO5	Simplify basic principles and different chemical reactions of aromatic compounds. (K4)
CO6	Elaborate the knowledge of recent advancement in the field of organic chemistry. (K6)

Reference Books:

7. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt.

Ltd. (Pearson Education).

- 8. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 9. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education.
- 10. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds, Wiley: London, 1994.
- 11. Kalsi, P. S. Stereochemistry Conformation and Mechanism, New Age International, 2005.

12. McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning IndiaEdition, 2013.

Unit-1: Basics of Organic Chemistry

Organic Compounds: Classification, and Nomenclature, Hybridization, Shapes of molecules, Influence of hybridization on bond properties. *Electronic Displacements:* Inductive, electromeric, resonance and mesomeric effects, hyperconjugation and their applications; Dipole moment; Organic acids and bases; their relative strength. Homolytic and Heterolytic fission with suitable examples. Curly arrow rules, formal charges; Electrophiles and Nucleophiles; Nucleophilcity and basicity; Types, shape and their relative stability of Carbocations, Carbanions, Free radicals and Carbenes. Introduction to types of organic reactions and their mechanism: Addition, Elimination and Substitution reactions.

Fischer Projection, Newmann and Sawhorse Projection formulae and their interconversions; Geometrical isomerism: cis-trans and, syn-anti isomerism E/Z notations with C.I.P rules.

Optical Isomerism: Optical Activity, Specific Rotation, Chirality/Asymmetry, Enantiomers, Molecules with two or more chiral-centres, Distereoisomers, meso structures, Racemic mixture and resolution. Relative and absolute configuration: D/L and R/S designations.

Unit-3: Chemistry of Aliphatic Hydrocarbons-I

B. Carbon-Carbon sigma bonds

Chemistry of alkanes: Formation of alkanes, Wurtz Reaction, Wurtz-Fittig Reactions, Free radical substitutions: Halogenation -relative reactivity and selectivity.

B. Carbon-Carbon pi bonds:

Formation of alkenes and alkynes by elimination reactions, Mechanism of E1, E2, E1cb reactions. Saytzeff and Hofmann eliminations.

Reactions of alkenes: Electrophilic additions their mechanisms (Markownikoff/ Anti Markownikoff addition), mechanism of oxymercuration-demercuration, hydroboration- oxidation, ozonolysis, reduction (catalytic and chemical), syn and anti-hydroxylation (oxidation). 1,2-and 1,4-addition reactions in conjugated dienes and, Diels-Alder reaction; Allylic and benzylic bromination and mechanism, e.g. propene, 1-butene, toluene, ethyl benzene.

Reactions of alkynes: Acidity, Electrophilic and Nucleophilic additions. Hydration to form carbonyl compounds, Alkylation of terminal alkynes.

Unit-4: Chemistry of Aliphatic Hydrocarbons-I

8 hrs

Cycloalkanes and Conformational Analysis

Types of cycloalkanes and their relative stability, Baeyer strain theory, Conformation analysis of alkanes: Relative stability: Energy diagrams of cyclohexane: Chair, Boat and Twist boat forms; Relative stability with energy diagrams.

Unit-5:Aromatic Hydrocarbon

8 hrs

Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions and heterocyclic compounds with suitable examples. Electrophilic aromatic substitution: halogenation, nitration, sulphonation and Friedel-Craft's alkylation/acylation with their mechanism. Directing effects of the groups.

10 hrs

10 hrs

10 hrs

Unit-6: Recent Advancement	t in Organic Chemistry
----------------------------	------------------------

4 hrs

Sustainable and Green Chemical reactions with applications

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End	Term	Test	Total Marks
		(ETE)			
30	20	50			100

Name of The Course	ORGANIC CHEMISTRY I LAB				
Course Code	BSCC2051				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject				
Corequisite	Students should have fundamental knowledge of Organic chemistry				
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives:

Perform crystallization and determine boiling point and melting point of organic compound.

Course Outcomes

CO1	Understand the basics of organic analysis and calibration of apparatus (K2).
CO2	Purification of organic compounds by crystallization method (K2).
CO3	Determination of boiling point and melting point of organic compounds (K2).
CO4	Separate the mixture of organic compounds by different chromatographic techniques (K3).
CO5	Measure the readings accurately and handle apparatus safely. K2

Text Book (s)

Vogel's Textbook of Quantitative Chemical Analysis, Jeffery, G.H., Bassett, J., Mendham, J., Denney, R.C., **5th Edn.**, Longman Scientific & Technical, England, (*John Wiley and Sons Inc, 605 Third Avenue, New York NY 10158*).

Reference Book (s)

Mann, F.G. & Saunders, B.C. *PracticalOrganicChemistry*, PearsonEducation (2009).

□Furniss,B.S.;Hannaford,A.J.;Smith,P.W.G.;Tatchell,A.R.*PracticalOrganic Chemistry*,5thEd.,Pearson(2012)

Unit-1 1. Checking the calibration of the thermometer 2. Purification of organic compounds by crystallization using the following solvents: Water a. Alcohol b. Alcohol-Water c. Unit-2 3. Determination of the melting points of above compounds and unknown organic compounds(meltingpointapparatus) 4. Effectofimpuritiesonthemeltingpoint-mixed meltingpoint of two unknown organic compounds 5. Determination of boiling point of liquid compounds. (boiling point lower than and more than100°Cbydistillationandcapillarymethod) Unit-3 a. Separationofamixtureoftwoaminoacidsbyascendingandhorizontalpaper chromatography b. Separationofamixtureoftwosugarsbyascendingpaperchromatography c. Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer chromatography (TLC).

Continuous Assessment Pattern

Practical IA	Practical ETE	Total Marks
50	50	100

Name of The Course	PHYSICALCHEMISTRY II				
Course Code	BSCC2002				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject				
Corequisite	Students should have fundamental knowledge of Physical Chemistry				
Antirequisite	Antirequisite				
		L	Т	Р	С
		4	0	0	4

Course Objectives:

1. The aim of this course is to make students understand the concepts of energy, heat, work, enthalpy, entropy, free energies and the relation between them.

2. To apply these processes, extend the thermodynamic properties to the system of variable compositions, equilibrium and colligative properties.

Course Outcomes

CO1	Demonstrate the concepts of thermodynamics. (K3)
CO2	Determine the enthalpy, its application and the factors affecting the enthalpy of the reaction. (K4)
CO3	Describe Partial molar quantities and thermodynamic functions. (K2)
CO4	Describe the different criteria of thermodynamic equilibrium and derive equilibrium constants. (K2)
CO5	Determine the factors affecting various colligative properties of the solution. (K4)
CO6	Elaborate the knowledge of recent advancement in the field of physical chemistry. (K6)

Text Books

2. Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry10th Ed., Oxford University Press (2014).

Reference Books

- 4. Castellan, G. W. *Physical Chemistry*4th Ed. Narosa (2004).
- 5. Engel, T. & Reid, P. *Physical Chemistry* 3rd Ed. Pearson (2013).
- 6. Levine, I.N. Physical Chemistry6th Ed., Tata Mc Graw Hill (2010).

Unit-1 Chemical Thermodynamics

18 hrs

Intensive and extensive variables; state and path functions; isolated, closed and open systems; zeroth law of thermodynamics.

First law:Concept of heat, q, work, w, internal energy, U, and statement of first law; enthalpy, H, relation between heat capacities, calculations of q, w, U and H for reversible, irreversible and free expansion of gases (ideal and van der Waals) under isothermal and adiabatic conditions.

Second Law:Concept of entropy; thermodynamic scale of temperature, statement of the second law of thermodynamics; molecular and statistical interpretation of entropy; Calculation of entropy change for reversible and irreversible processes, Entropy changes for Ideal gas.

Third Law:Statement of third law, concept of residual entropy, calculation of absolute entropy of molecules. Free Energy Functions:Gibbs and Helmholtz energy; variation of S, G, A with T, V, P; Free energy change and spontaneity. Relation between Joule-Thomson coefficient and other thermodynamic parameters; inversion temperature; Gibbs-Helmholtz equation; Maxwell relations; thermodynamic equation of state. . Isotherms of real gases and their comparison with van der Waals isotherms

Unit-2Thermochemistry

Hess's Law, Heats of reactions: standard states; enthalpy of formation of molecules and ions and enthalpy of combustion and its applications; calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data, effect of temperature (Kirchhoff's Law and equations) and pressure on enthalpy of reactions. Adiabatic flame temperature, explosion temperature.

Unit-3 Systems of Variable Composition

8 hrs

Partial molar quantities, dependence of thermodynamic parameters on composition; Gibbs- Duhem equation, chemical potential of ideal mixtures, change in thermodynamic functions in mixing of ideal gases.

Unit-4 Chemical Equilibrium

Criteria of thermodynamic equilibrium, degree of advancement of reaction, chemical equilibria in ideal gases, concept of fugacity. Thermodynamic derivation of relation between Gibbs free energy of reaction and reaction quotient. Coupling of exoergic and endoergic reactions. Equilibrium constants and their quantitative dependence on temperature, pressure and concentration. Free energy of mixing and spontaneity; thermodynamic derivation of relations between the various equilibrium constants Kp, Kc and Kx. Le Chatelier principle (quantitative treatment); equilibrium between ideal gases and a pure condensed phase.

Unit-5 Solutions and Colligative Properties

Dilute solutions; lowering of vapour pressure, Raoult's and Henry's Laws and their applications. Excess thermodynamic functions.

Thermodynamic derivation using chemical potential to derive relations between the four colligative properties [(i) relative lowering of vapour pressure, (ii) elevation of boiling point, (iii) Depression of freezing point, (iv) osmotic pressure] and amount of solute. Applications in calculating molar masses of normal, dissociated and associated solutes in solution.

Unit 6 Recent advancement in Physical chemistry

4 hrs

Solar Cells, Water treatment, Photochemistry

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	PHYSICAL CHEMISTRY II LAB				
Course Code	BSCC2052				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject				
Corequisite	Students should have fundamental knowledge of Physical Chemistry				
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives:

Students will able to operate calorimeter to determine heat capacity and enthalpy of ionization.

Course Outcomes

8 hrs

8hrs

CO1	Determine the heat capacity using calorimetric technique. (K4)
CO2	Calculate the enthalpy of ionization of ethanoic acid. (K4)
CO3	Determine the enthalpy of hydration of copper sulphate. (K4)
CO4	Determine the basicity/proticity of polyprotic acid by thermochemical method. (K4)
CO5	Describe the solubility of benzoic acid and calculate the enthalpy value. (K2)

Text Books

 Khosla, B. D.; Garg, V. C. & Gulati, A., Senior Practical Physical Chemistry, R.Chand & Co.: New Delhi (2011).

Reference Books

- 2. Athawale, V. D. & Mathur, P. Experimental Physical Chemistry New Age.
- 8. Determination of heat capacity of a calorimeter for different volumes using change of enthalpy data of a known system (method of back calculation of heat capacity of calorimeter from known enthalpy of solution or enthalpy of neutralization).
- 9. Determination of heat capacity of the calorimeter and enthalpy of neutralization of hydrochloric acid with sodium hydroxide.
- 10. Calculation of the enthalpy of ionization of ethanoic acid.
- 11. Determination of heat capacity of the calorimeter and integral enthalpy (endothermic and exothermic) solution of salts.
- 12. Determination of basicity/proticity of a polyprotic acid by the thermochemical method in terms of the changes of temperatures observed in the graph of temperature versus time for different additions of a base. Also calculate the enthalpy of neutralization of the first step.
- 13. Determination of enthalpy of hydration of copper sulphate.
- 14. Study of the solubility of benzoic acid in water and determination of ΔH .

Continuous Assessment Pattern

Practical IA	Practical ETE	Total Marks
50	50	100

Name of The Course	INORGANIC CHEMISTRY II
Course Code	BSCC2003

Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject				
Corequisite	Basic knowledge of Inorganic Chemistry				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

To make students aware about the basic knowledge of Inorganic Chemistry.

Course Outcomes

CO1	Illustrate the basic principles and processes of metallurgy. K2
CO2	Catergorize various classes of acids and bases adopting the basic concepts. K4
CO3	Interpret the properties and applications of s- and p- block elements. K2
CO4	Illustrate the structure, preparation and application of p-block elements.K2
CO5	Simplify the molecular shapes and properties of noble gas compounds.K4
CO6	Elaborate the recent development in the application of s and p block elements. K6

Reference Books:

Lee, J.D. Concise Inorganic Chemistry, ELBS, 1991.

Douglas, B.E; Mc Daniel, D.H. & Alexander, J.J. Concepts & Models of

Inorganic Chemistry 3rd Ed., John Wiley Sons, N.Y. 1994.

□ Greenwood, N.N. & Earnshaw. Chemistry of the Elements, ButterworthHeinemann.

1997.

□ Cotton, F.A. & Wilkinson, G. Advanced Inorganic Chemistry, Wiley, VCH, 1999.

□ Miessler, G. L. & Donald, A. Tarr. Inorganic Chemistry 4th Ed., Pearson, 2010. Atkin, P. Shriver & Atkins' Inorganic Chemistry 5th Ed. Oxford University Press

8 hrs				
Chief modes of occurrence of metals based on standard electrode potentials. Ellingham diagrams for reduction of metal oxides using carbon and carbon monoxide as reducing agent. Electrolytic Reduction, Hydrometallurgy, wet cyanide process for silver & gold. Methods of purification of metals: Electrolytic, van Arkel-de Boer process and Mond's process, Zone refining.				
8 hrs				
strength of acids, types of , Hard and Soft Acids and				

Inert pair effect, Relative stability of different oxidation states, diagonal relationship and anomalous behaviour of first member of each group. Allotropy and catenation. Complex formation tendency of s and p block elements. Hydrides and their classification ionic, covalent and interstitial.

Unit-4: Compounds p block Elements

12 hrs

Study of the following compounds with emphasis on structure, bonding, preparation, properties and uses. Borates, borohydrides (diborane) carboranes and graphitic compounds, silanes, Oxides and oxoacids of nitrogen, Phosphorus and chlorine. Peroxo acids of sulphur, interhalogen compounds, and basic properties of halogens

Unit-5: Noble Gases

10 hrs

Occurrence and uses, rationalization of inertness of noble gases, Clathrates; preparation and properties of XeF_2 , XeF_4 and XeF_6 ; Nature of bonding in noble gas compounds (Valence bond treatment and MO treatment for XeF2). Molecular shapes of noble gas compounds (VSEPR theory).

Unit-6: Application of s and p block elements and Noble gases 4 hrs

Recent advancement and development in field of compounds of s and p block elements and Noble gases.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	INORGANIC CHEMISTRY II LAB				
Course Code	BSCC2053				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject				
Corequisite	Students should have fundamental knowledge Inorganic Chemistry				
Antirequisite					
		L	Т	Р	C
		0	0	4	2

Course Objectives:

To introduce different experiments to test basic understanding of Inorganic Chemistry.

Course Outcomes

CO1	Estimate the strength of Copper using sodium thiosulphate solution.
CO2	Calculate the strength of Dissolved Oxygen in a given water sample.
CO3	Estimate the strength of available Chlorine in bleaching powder.

CO4	Estimate the amount of metals in a given sample complexometrically.
CO5	Synthesize various types of double salts.

Reference Book (s)

Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.

(A) Iodometric Titrations

(i) Estimation of Cu(II) using sodium thiosulphate solution.

(ii) Estimation of dissolved oxygen in given sample of water.

(iii) Estimation of available chlorine in bleaching powder.

(B) Complexometric Titrations

- (i) Estimation of calcium in a given sample.
- (ii) Estimation of magnesium in a given sample.
- (iii) Estimation of zinc using EDTA solution.

(C) Inorganic preparations

- (i) Mohr Salt
- (ii) Preparation of Aluminium potassium sulphate KAl(SO₄)₂.12H₂O (Potash alum) or Chrome alum.

Continuous Assessment Pattern

Internal Assessment (IA)	End 7 (ETE)	Ferm Test	Total Marks
50	50		100

Name of The Course	ORGANIC CHEMISTRY II
Course Code	BSCC2004
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject
Corequisite	Basic Concepts of Organic Chemistry
Antirequisite	

L	Т	Р	С
4	0	0	4

Course Objectives: The objective is to study various mechanisms related to nucleophilic and electrophilic substitutions, structure, reactivity and preparation methods.

Course Outcomes

CO1	Identify and differentiate the mechanism of nucleophilic substitution reactions and eliminations reactions in alkyl halides and aryl halides along with the stereochemistry. (K3)
CO2	Explain the preparation and compare the properties and relative reactivity of 1°, 2°, 3° alcohols, phenols and ethers.(K2)
CO3	Discuss Structure, reactivity and preparation; of carbonyl compounds and differentiate the Nucleophilic additions, and Nucleophilic addition-elimination reactions along with related named reactions.(K6)
CO4	Analyze the preparation methods and properties of carboxylic acid derivatives. (K4)
CO5	Discuss the preparation methods and reactions of sulphur containing compounds. (K6)
CO6	Identify the role of different reaction mechanisms in recent development.(K3)

Text Book (s)

· Morrison, R. T. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt.

Ltd. (Pearson Education).

· Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd.

(Pearson Education).

Reference Book (s)

· Graham Solomons, T.W. Organic Chemistry, John Wiley & Sons, Inc.

· McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India

Edition, 2013.

Unit-1 Chemistry of Halogenated Hydrocarbons:

Alkyl halides: Methods of preparation, nucleophilic substitution reactions $-S_N1$, S_N2 and S_Ni mechanisms with stereochemical aspects and effect of solvent etc.; nucleophilic substitution vs. elimination. Aryl halides: Preparation, including preparation from diazonium salts. nucleophilic aromatic substitution; SNAr, Benzyne mechanism.Relative reactivity of alkyl and aryl halides towards nucleophilic substitution reactions. Organometallic compounds of Mg and Li – Use in synthesis of organic compounds.

Unit-2 Alcohols	Phenols	Ethers	and E	novides:	
Unit-2 Alcohols	, i nenois	, L'uners	anu L	positics.	

Alcohols: preparation, properties and relative reactivity of 1°, 2°, 3° alcohols, Bouvaelt-Blanc Reduction; Preparation and properties of glycols: Oxidation by periodic acid and lead tetraacetate, Pinacol-Pinacolone rearrangement; Phenols: Preparation and properties; Acidity and factors effecting it, Ring substitution reactions, Reimer-Tiemann and Kolbe's-Schmidt Reactions, Fries and Claisen rearrangements with mechanism; Ethers and Epoxides: Preparation and reactions with acid.

Unit-3 Carbonyl Compounds

Structure, reactivity and preparation; Nucleophilic additions, Nucleophilic addition-elimination reactions with ammonia derivatives with mechanism; Mechanisms of Aldol and Benzoin condensation, Knoevenagel condensation, Claisen-Schmidt, Perkin, Cannizzaro and Wittig reaction, Beckmann and Benzil-Benzilic acid rearrangements, haloform reaction and Baever Villiger oxidation, α-substitution reactions, oxidations and reductions (Clemmensen, Wolff-Kishner, LiAlH₄, NaBH₄, Michael addition. Active methylene compounds: Keto-enol tautomerism. Preparation and synthetic applications of diethyl malonate and ethyl acetoacetate.

Unit-4 Carboxylic Acids and their Derivatives8 hrs

Preparation, physical properties and reactions of monocarboxylic acids: Typical reactions of maleic and fumaric acids; Preparation and reactions of acid chlorides, anhydrides, esters and amides; Comparative study of nucleophilic sustitution at acyl group -Mechanism of acidic and alkaline hydrolysis of esters, Claisen condensation, Dieckmann and Reformatsky reactions, Hofmannbromamide degradation and Curtius rearrangement.

708

Preparation and reactions of thiols, thioethers and sulphonic acids.

Unit-6 Recent applications of organic reaction mechanism

Identify the role of different reaction mechanisms in recent development

12 hrs

14hrs

12 hrs

4hrs

4 hrs

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	ORGANIC CHEMISTRY-II Lab					
Course Code	BSCC2054					
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject					
Corequisite	Basic analytical techniques	Basic analytical techniques				
Antirequisite	Antirequisite					
	·	L	Т	Р	С	
		0	0	4	2	

Course Objectives: The objective is to analyse the presence of extra elements and functional groups in organic compounds.

Course Outcomes

CO1	Analyze qualitatively the presence of extra elements (K4).
CO2	Perform the tests of functional groups in unknown organic compounds (K4).
CO3	Identify the functional groups in unknown organic compounds (K4).
CO4	Handle the apparatus and perform the tests accurately.

Text Book (s)

· Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education(2009)

· Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical OrganicChemistry, 5th Ed., Pearson (2012)

Reference Book (s)

· Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry:Preparation and Quantitative Analysis, University Press (2000).

· Ahluwalia, V.K. & Dhingra, S. Comprehensive Practical Organic Chemistry: Qualitative Analysis, University Press (2000).

- 1. Detection of extra elements.
- 2. Functional group test for nitro, amine and amide groups.
- 3. Qualitative analysis of unknown organic compounds containing simple functional

groups (alcohols, carboxylic acids, phenols and carbonyl compounds)

Continuous Assessment Pattern

	Internal Assessment (IA)	End (ETE)	Term	Test	Total Marks				
	50	50			100				
N	ame of The Course	Industria	l Chen	nistry	L				
C	Course Code	BBS05T5	5102						
P	rerequisite	Students stream wi	should th Cher	qualify nistry a	7 10+2 or equivalent examinations a major subject.	inatio	n in	Scie	nce
C	Co-requisite	Students s and uses	should h	ave fui	ndamental knowledge of Ino	rgani	c coi	mpou	nds
A	anti-requisite								
						L	Τ	Р	C
						3	0	0	3

Course Objectives:

The course introduces learners to the diverse roles of inorganic materials in the industry. It gives an insight into how these raw materials are converted into products used in day to day life. Students learn about silicates, fertilizers, surface coatings, batteries, engineering materials for mechanical construction as well as the emerging area of nano-sized materials. The course helps develop the interest of students in the frontier areas of inorganic and material chemistry.

Course Outcomes

CO1	Explain the composition and applications of the different kinds of glass.(K2)
CO2	State the composition of cement and discuss the mechanism of setting of cement(K3)
CO3	Explain the suitability of fertilizers for different kinds of crops and soil. (K2)

CO4	E Explain the process of formulation of paints and the basic principle behind the protection offered by the surface coatings. (K2)
CO5	List and analyze the properties of engineering materials for mechanical construction used in day to day life. (K3)
CO6	Elaborate the recent advancements in Industrial Chemistry and analyze their fruitfulness for sustainable environment. (K6)

Reference Books

West, A. R., Solid State Chemistry and Its Application, Wiley

□ □ Smart, L. E., Moore, E. A., Solid State Chemistry An Introduction CRC Press Taylor & Francis.

□ □ Rao, C. N. R., Gopalakrishnan, J. New Direction of Solid State Chemistry, Cambridge University Press.

□ □ Felder, R. M. and Rousseau, R.W., Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi, 2005.

□ Atkins, Peter, and Tina Overton. Shriver and Atkins' inorganic chemistry. Oxford University Press, USA, 2010.

□ □ Kingery, W. D., Bowen H. K. and Uhlmann, D. R. Introduction to Ceramics, Wiley Publishers, New

Delhi, 1976.

□ □ Kent, J. A. (ed) Riegel's Handbook of Industrial Chemistry, 9 th Ed., CBS Publishers, New Delhi, 1997

□ □ Jain, P. C. and Jain, M. Engineering Chemistry, Dhanpat Rai & Sons, Delhi 2015

□ □Gopalan, R., Venkappayya, D. and Nagarajan, S. Engineering Chemistry, Vikas Publications, New Delhi, 2004.

□ □ Sharma, B. K. Engineering Chemistry, Goel Publishing House, Meerut, 2015

Unit 1: Silicate Industries	5 hrs
<i>Glass</i> : Glassy state and its properties, classification (silicate ar and processing of glass. Composition and properties of glass w	nd non-silicate glasses). Manufacture ool and optical fibre.
Unit 2: Ceramics and Cement	5 hrs
Ceramics: Brief introduction to types of ceramics. glazing of ce	eramics.
<i>Cement</i> : Manufacture of Portland cement and the setting proce settingcements, eco-friendly cement (slag cement), pozzolana c	ess, Different types of cements: quick cement.
Unit 3: Fertilizers	5 hrs

Different types of fertilizers (N, P and K). Importance of fertilizers, chemistry involved in the manufacture of the fertilizers, Biofertilizers and it's application

Unit-4: Surface Coatings:

15 hrs

Brief introduction to and classification of surface coatings, paints and pigments: formulation, composition and related properties, pigment volume concentration (PVC)and critical pigment volume concentration (CPVC), fillers, thinners, enamels and emulsifying agents. Special paints: heat retardant, fire retardant, eco-friendly paints, plastic paints, water and oil paints. Preliminary methods for surface preparation, metallic coating (electrolytic and electroless with reference to chrome plating and nickel plating), metal spraying and anodizing, Lubricants and bioadditives.

Unit-5: Engineering materials for mechanical construction 10 hrs

Classification, Composition, characteristics and applications of various types of irons, steels, thermoplastics, thermosets and composite materials and dendrimers.

Unit-6: Future Trends of Industrial Chemistry 4 hrs

Biofuel and Bioenergy, Biodiesel and it's application, Advantages of Biolubricant, Biomass to Bioenergy.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	PHYSICAL CHEMISTRY-III				
Course Code	BBS05T2101				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject.				
Corequisite	Students should have fundamental knowledge of Physical Chemistry				
Antirequisite	Antirequisite				
		L	Т	Р	С
		4	0	0	4

Course Objectives:

1. Understand concepts of phase, co-existence of phases, phase diagram, CST and distribution law.

2. Understand surface phenomenon, adsorption isotherms, BET Equation.

3. Apply and analyze the principles of Electrochemistry.

Course Outcomes

CO1	Understand the principles of phase equilibrium diagram for one and two component system with its applications. (K2)
CO2	Determine the theoretical and experimental methods of chemical kinetics. (K3)
CO3	Generalize different theories of adsorption and Illustrate different principles and mechanism of catalytic reactions. (K3)
CO4	Describe basic concepts of conductance and applications of conductance measurement (K2)
CO5	Solve the problems based on laws related to electrochemistry, solubility product and hydrolysis constant of salts and Calculate EMF of Cell (K3)
CO6	

Text Book (s)

- Peter Atkins & Julio De Paula, Physical Chemistry 10th Ed., Oxford University Press(2014)
- Castellan, G. W. Physical Chemistry, 4th Ed., Narosa (2004).
- McQuarrie, D. A. & Simon, J. D., Molecular Thermodynamics, Viva Books Pvt. Ltd.:New Delhi (2004).
- Engel, T. & Reid, P. Physical Chemistry 3rd Ed., Prentice-Hall (2012).
- • Mortimer, R. G. Physical Chemistry 3rd Ed., Elsevier: NOIDA, UP (2009).
- Barrow, G. M., Physical Chemistry 5th Ed., Tata McGraw Hill: New Delhi (2006).

Unit-1 Phase Equilibria 12 hrs

Concept of phases, components and degrees of freedom, derivation of Gibbs Phase Rule for nonreactive and reactive systems; Clausius-Clapeyron equation and its applications to solid liquid, liquid-vapour and solid-vapour equilibria, phase diagram for one component systems, with applications.

Phase diagrams for systems of solid-liquid equilibria, Binary solutions: Gibbs-Duhem-Margules equation, its derivation and applications to fractional distillation of binary miscible liquids (ideal and nonideal), azeotropes.

Unit-2 Chemical Kinetics

Order and molecularity of a reaction, rate laws in terms of the advancement of a reaction, differential and integrated form of rate expressions up to second order reactions, experimental methods of the determination of rate laws, kinetics of complex reactions (integrated rate expressions up to first order only): (i) Opposing reactions (ii) parallel reactions and (iii) consecutive reactions and steady-state approximation in reaction mechanisms (iv) chain reactions.

Temperature dependence of reaction rates; Arrhenius equation; activation energy. Collision theory of reaction rates.

Unit-3 Surface chemistry and Catalysis

08 hrs

12 hrs

Physical adsorption, chemisorption, adsorption isotherms, Types of catalyst, specificity and selectivity, mechanisms of catalyzed reactions at solid surfaces; effect of particle size and efficiency of nanoparticles as catalysts. Enzyme catalysis, Michaelis-Menten mechanism, acid-base catalysis.

Arrhenius theory of electrolytic dissociation. Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Molar conductivity at infinite dilution. Kohlrausch law of independent migration of ions. Debye-Hückel-Onsager equation.

Ionic velocities, mobilities and their determinations, transference numbers and their relation to ionic mobilities, determination of transference numbers using Hittorf and Moving Boundary methods. Applications of conductance measurement: (i) degree of dissociation of weak electrolytes, (ii) ionic product of water (iii) solubility and solubility product of sparingly soluble salts, (iv) Conductometric titrations, and (v) Hydrolysis constants of salts.

Unit-5 Electrochemistry	
Chit's Electrochemistry	

16 hrs

Quantitative aspects of Faraday's laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials. Chemical cells, reversible and irreversible cells with examples. Electromotive force of a cell and its measurement, Nernst equation; Standard electrode (reduction) potential and its application to different kinds of half-cells. Application of EMF measurements in determining (i) free energy, enthalpy and entropy of a cell reaction, (ii) equilibrium constants, and (iii) pH values, using hydrogen, quinone-hydroquinone, glass electrodes. Concentration cells with and without transference, liquid junction potential; determination of activity coefficients and transference numbers.

Unit-6 Recent Advancement in	Electrochemistry	04 hrs
------------------------------	------------------	---------------

Application of nanotubes and nanoparticles in electrochemistry towards biosensing, Electrochemistry towards Scanning Electron Microscopy

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	PHYSICAL CHEMISTRY -III LAB				
Course Code	BBS05P2101				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with a minimum of 50% marks secured in Chemistry				
Corequisite	Students should have fundamental knowledge of Physical Chemistry.				
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives:

- 3. Measure critical temperature, distribution co-efficient and study the kinetics of reactions.
- 4. Study of Potentiometric titrations of a combination of different types of solutions.

Course Outcomes

CO1	Determine the composition and critical solution temperature for phenol-water system.(K4)
CO2	Estimate the distribution of acetic/benzoic acid between water and cyclohexane. (K3)
CO3	Determine the kinetics of different chemical reaction and Asses Freundlich and Langmuir isotherms for adsorption. (K4)
CO4	Measure equivalent conductance, degree of dissociation and dissociation constant of a weak acid conductometrically. (K3)
CO5	Perform various types of Potentiometric titrations. (K4)

Text Book (s)

- □ Khosla, B. D.; Garg, V. C. & Gulati, A. Senior Practical Physical Chemistry, R.
- Chand & Co.: New Delhi (2011).
- Garland, C. W.; Nibler, J. W. & Shoemaker, D. P. Experiments in Physical Chemistry
- 8th Ed.; McGraw-Hill: New York (2003).
- □ Halpern, A. M. & McBane, G. C. Experimental Physical Chemistry 3rd Ed.; W.H.
- Freeman & Co.: New York (2003).

I. Determination of critical solution temperature and composition of the phenol-water system and to study the effect of impurities on it.

II. Distribution of acetic/ benzoic acid between water and cyclohexane.

III. Study the kinetics of the following reactions.

a. Acid hydrolysis of methyl acetate with hydrochloric acid.

b. Saponification of ethyl acetate.

IV. Adsorption: Verify the Freundlich and Langmuir isotherms for adsorption of acetic acid on

activated charcoal.

V. Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid.

VI. Perform the following **Potentiometric** titrations:

- iv. Strong acid vs. strong base
- v. Weak acid vs. strong base
- vi. Dibasic acid vs. strong base
- viii. Potassium dichromate vs. Mohr's salt

Continuous Assessment Pattern

Practical IA	Practical ETE	Total Marks
50	50	100

Name of The Course	INORGANIC CHEMISTRY-III				
Course Code	BSCC2006				
Prerequisite	Students should qualify 10+2 or equivalent exaministream with Chemistry as major subject	natio	n in	Scie	nce
Corequisite	Students should have fundamental knowledge of Inc	organ	ic C	hemis	stry
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

The course introduces the students to coordination compounds which find manifold applications in diverseareas like qualitative and quantitative analysis, metallurgy, as catalysts in industrial processes as medicines, paints and pigments as well as in life. The student is also familiarized with the d and f block elements and gets an idea about horizontal similarity in a period in addition to vertical similarity in a group.

Course Outcomes

CO1	Illustrate about basic concepts of various theories in Coordination chemistry (K2)
CO2	Analyze different properties of complex compounds on the basis theories of coordination chemistry. (K4)

CO3	Generalize the various properties and chemistry of some important transition metal compounds. (K3)
CO4	Describe the properties of Lanthanoids and Actinoids. (K2)
CO5	Determine the different reaction rates, kinetics and reaction mechanisms. (K4)
CO6	Elaborate the recent advancements in Coordination chemistry. (K6)

Text Book (s)

Huheey, J.E., Inorganic Chemistry, Prentice Hall, 1993.

Reference Book (s)

Durcell, K.F & Kotz, J.C. Inorganic Chemistry W.B. Saunders Co, 1977.

🗆 Lippard, S.J. & Berg, J.M. Principles of Bioinorganic Chemistry Panima Publishing

Company 1994.

Cotton, F.A. & Wilkinson, G, Advanced Inorganic Chemistry Wiley-VCH, 1999

□ Basolo, F, and Pearson, R.C. Mechanisms of Inorganic Chemistry, John Wiley &

Sons, NY, 1967.

□ Greenwood, N.N. & Earnshaw A. Chemistry of the Elements, ButterworthHeinemann,

1997.

Unit-1 Coordination Chemistry I	6 hrs
Werner's theory, IUPAC nomenclature of coordination compounds, i compounds. Stereochemistry of complexes with 4 and 6 coordination num (inner and outer orbital complexes), electroneutrality principle and back b	somerism in coordination hbers. Valence bond theory bonding.
Unit-2 Coordination Chemistry II	10 hrs
Crystal field theory, measurement of Δo . Calculation of CFSE in weak ar pairing energies, factors affecting the magnitude of Δo . Evidences of 0 octahedral, square planar geometry. Qualitative aspect of Ligand field and	nd strong fields, concept of CFT. Jahn-Teller theorem, d MO Theory.
Unit-3 Transition Elements	14 hrs
General group trends with special reference to electronic configuration magnetic and catalytic properties, ability to form complexes. Stability of Difference between the first, second and third transition series.	, colour, variable valency, of various oxidation states.
Chemistry of Cr Mn, Fe and Co in various oxidation states (excluding compounds of Cr, K ₂ Cr ₂ O ₇ , KMnO ₄ , K ₄ [Fe(CN) ₆], K ₃ [Fe(CN) ₆], Na ₂ [Fe([C0(NH ₃) ₆]Cl ₃ .	their metallurgy). Peroxo CN) ₅ NO], Na ₃ [Co(NO ₂) ₆],
Unit-4 Lanthanoids and Actinoids	8 hrs
Electronic configuration, oxidation states, colour, spectral and magnet contraction, separation of lanthanoides (ion-exchange method only).	tic properties, lanthanoide

Unit-5 Reaction Kinetics and Mechanism	12hrs
Introduction to inorganic reaction mechanisms. Substitution	reactions in square planar complexes

Trans effect, theories of trans effect, Thermodynamic (Chelate, HSAB) and Kinetic stability (Labile and Inert), Kinetics of octahedral substitution, Ligand field effects and reaction rates.

Unit-6 Recent Advancements in Coordination Chemistry

4 hrs

N-donor ligands in coordination chemistry, Heteroaromatic alcohol as Ligands, coordination clusters and coordination polymers

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total N	Iark	S	
30	20	50	100			
Name of The Course	INORGANIC CHEMI	STRY III LAB				
Course Code	BSCC2056					
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject					
Corequisite	Students should have fundamental knowledge of Inorganic Chemistry					
Antirequisite						
			L	Т	Р	С
			0	0	4	2

Course Objectives:

Students will able to perform gravimetric analysis and synthesize complex compounds.

Course Outcomes

CO1	Analyze the concept of gravimetric analysis. (K3)
CO2	Estimate the amount of different ions gravimetrically. (K5)
CO3	Synthesize different inorganic coordination complexes. (K6)
CO4	Analyze the principles involved in chromatographic separations. (K3)
CO5	Employ paper chromatographic technique for separation of metal ions. (K3)

Text Book (s)

Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.

- 9. Estimation of nickel (II) using Dimethylglyoxime (DMG).
- 10. Estimation of copper as CuSCN
- 11. Estimation of iron as Fe₂O₃ by precipitating iron as Fe(OH)₃.
- 12. Preparations of Tetraamminecopper(II) sulphate, [Cu(NH₃)₄]SO₄.H₂O
- 13. Preparations of Cis and trans K[Cr(C₂O₄)₂.(H₂O)₂] Potassium dioxalatodiaquachromate (III)
- 14. Preparations of Potassium tris(oxalato)ferrate(III)
- 15. Chromatographic separations by paper chromatographic separation of Ni (II) and Co (II)
- 16. Paper chromatographic separation of Cu (II) and Cd (II)

Continuous Assessment Pattern

Internal Assessment (IA)	External Exam (ETE)	Total Marks
50	50	100

Name of The Course	ORGANIC CHEMISTRY III				
Course Code	BSCC2007				
Prerequisite	Students should qualify 10+2 or equivalent examination Chemistry as major subject	in S	cien	ce str	eam with
Corequisite	Students should have fundamental knowledge of Organic	c Che	emis	try	
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives: The objective is to study the preparation methods and chemical & medicinal properties of nitrogen containing compounds, polynuclear hydrocarbons, heterocyclic compounds, alkaloids & terpenes.

Course Outcomes

CO1	Illustrate preparation methods and chemical properties of nitrogen containing compounds. (K3)
CO2	Determine structure and preparation methods of polynuclear hydrocarbons. (K2)
CO3	Generalize classification, synthesis methods and reaction. mechanisms of heterocyclic compounds. (K3)
720

SCHOOL OF BASIC AND APPLIED SCIENCES

CO4	Determine structure, preparation methods, properties and medicinal importance alkaloids.(K3)	of
CO5	Deduce the structures of various terpenes along with their synthetic methods. (K3)	
CO6	Compile the recent therapeutic uses of Alkaloids and Terpenes. (K6)	

Text Book (s)

· Morrison, R. T. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India)Pvt. Ltd. (Pearson Education).

· Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd.(Pearson

- Education).
- · Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products),

Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

· Acheson, R.M. Introduction to the Chemistry of Heterocyclic compounds, JohnWelly & Sons (1976).

Reference Book (s)

Graham Solomons, T.W. Organic Chemistry, John Wiley & Sons, Inc.

- · McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage LearningIndia Edition, 2013.
- · Kalsi, P. S. Textbook of Organic Chemistry 1st Ed., New Age International (P)Ltd. Pub.
- · Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; Organic Chemistry, Oxford University Press.
- · Singh, J.; Ali, S.M. & Singh, J. Natural Product Chemistry, Prajati Parakashan(2010).

Unit-1 Nitrogen Containing Functional Groups

Preparation and important reactions of nitro and compounds, nitriles and isonitriles Amines: Effect of substituent and solvent on basicity; Preparation and properties: Gabriel phthalimide synthesis, carbylamine reaction, Mannich reaction, Hoffmann's exhaustive methylation, Hofmann-elimination reaction; Distinction between 1°, 2° and 3° amines with Hinsberg reagent and nitrous acid. Diazonium Salts: Preparation and their synthetic applications.

Unit-2 Polynuclear Hydrocarbons

Reactions of naphthalene, phenanthrene and anthracene Structure, Preparation and structure elucidation.

Unit-3 Heterocyclic Compounds

6 hrs

16 hrs

Classification and nomenclature, Structure, aromaticity in 5-numbered and 6-membered rings containing one heteroatom; Synthesis, reactions and mechanism of substitution reactions of: Furan, Pyrrole (Paal-Knorr synthesis, Knorr pyrrole synthesis, Hantzsch synthesis), Thiophene, Pyridine (Hantzsch synthesis), Pyrimidine, Structure elucidation of indole, Fischer indole synthesis and Madelung synthesis), Structure elucidation of quinoline and isoquinoline, Skraup synthesis, Friedlander's synthesis, Knorr quinoline synthesis, DoebnerMiller synthesis. Derivatives of furan: Furfural

Unit-4 Alkaloids

5 hrs

6 hrs

4 hrs

Natural occurrence, General structural features, Isolation and their physiological action, Hoffmann's exhaustive methylation, Emde's modification, Structure elucidation and synthesis of Nicotine. Medicinal importance of Nicotine, Quinine, Morphine, Cocaine, and Reserpine.

Unit-5 Terpenes

Occurrence, classification, isoprene rule; Elucidation of stucture and synthesis of Citral, Neral and α -terpineol.

Unit-6 Recent advancement in Natural Product Chemistry

Advance Therapeutic use of Alkaloids and Terpenes, Advance use of Heterocyclic compounds

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	ORGANIC CHEMISTRY III Lab				
Course Code	BSCC2057				
PrerequisiteStudents should qualify 10+2 or equivalent examination in Scien stream with Chemistry as major subject			nce		
Corequisite Basic knowledge of Organic Chemistry					
Antirequisite					
		L	Т	Р	С

0 0 4 2

Course Objectives: The objective is to synthesize different organic compounds.

Course Outcomes

CO1	Prepare acetyl derivatives of amines both by conventional and green method.(K3)
CO2	Prepare acetyl derivatives of phenols both by conventional and green method.(K3)
CO3	Synthesize benzoyl derivatives of anilines and phenols.(K5)
CO4	Synthesize nitro derivative of salicylic acid both by conventional and green method.(K5)
CO5	Produce hydrolyzed derivative of ester or amide and semicarbazide derivatives of carbonyl compounds.(K3)

Text Book (s)/ Reference Books

🗆 Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education

(2009)

□ Furniss, B.S., Hannaford, A.J., Smith, P.W.G. & Tatchell, A.R. Practical Organic

Chemistry, 5th Ed. Pearson (2012)

□ Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry:

Preparation and Quantitative Analysis, University Press (2000).

□ Ahluwalia, V.K. & Dhingra, S. Comprehensive Practical Organic Chemistry: Qualitative

Analysis, University Press (2000).

Organic preparations:

i. Acetylation of one of the following compounds: amines (aniline, o-, m-, p-toluidines

and o-, m-, p-anisidine) and phenols (\beta-naphthol, vanillin, salicylic

acid) by any one method:

a. Using conventional method.

b. Using green approach

ii. Benzolyation of one of the following amines (aniline, o-, m-, p- toluidines and o-,

m-, p-anisidine) and one of the following phenols (β -naphthol, resorcinol, pcresol)

by Schotten-Baumann reaction.

iii. Nitration of any one of the following:

- a. Acetanilide/nitrobenzene by conventional method
- b. Salicylic acid by green approach (using ceric ammonium nitrate).
- iv. Hydrolysis of amides and esters.
- v. Semicarbazone of any one of the following compounds: acetone, ethyl methyl

ketone, cyclohexanone, benzaldehyde.

The above derivatives should be prepared using 0.5-1g of the organic compound. The solid

samples must be collected and may be used for recrystallization, melting point and TLC.

Continuous Assessment Pattern

Internal Assessment (IA)	End (ETE)	Term	Test	Total Marks
50	50			100

Name of The Course	Green Chemistry				
Course Code	BSCC 2101				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject				
Co-requisite	Students should have the basic knowledge of various green chemistry principles and various other alternate methods that can be opted in place of the conventional methods.				
Anti-requisite					
		L	Т	Р	C
		4	0	0	4

Course Objectives:

This course involves the basic understanding about various green chemistry principles, alternate routes, designing of green reactions and the future trends.

Course Outcomes

CO1	Identify the scope of environmental studies and its need in present day society. (K3)
CO2	Illustrate the 12 basic principles of Green Chemistry. (K2)

CO3	Explain the upcoming new trends in green chemistry synthesis and some real world experiences. (K2)
CO4	Identify the use of Microwaves and Ultrasonic waves in Green Chemistry. (K3)
CO5	Analyze the role of sustainable development in Green Chemistry. (K4)
CO6	Compile the various latest green technologies based on green chemistry principles. (K6)

Text Book (s)

- Ahluwalia, V.K. & Kidwai, M.R. New Trends in Green Chemistry, Anamalaya Publishers (2005).
- □ Anastas, P.T. & Warner, J.K.: *Green Chemistry Theory and Practical*, Oxford University Press (1998).
- □ Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker (2001).
- □ Cann, M.C. & Connely, M.E. *Real-World cases in Green Chemistry*, American Chemical Society, Washington (2000).

Reference Book (s)

- □ Ryan, M.A. & Tinnesand, M. *Introduction to Green Chemistry*, American Chemical Society, Washington (2002).
- □ Lancaster, M. *Green Chemistry: An Introductory Text* RSC Publishing, 2nd Edition, 2010.

Unit 1 Introduction to Green Chemistry	6 hrs
What is Green Chemistry? Need for Green Chemistry. G	oals of Green Chemistry. Limitations/
Obstacles in the pursuit of the goals of Green Chemistry.	
Unit 2 Principles of Green Chemistry and Designing a	Chemical synthesis 15 hrs
Twelve principles of Green Chemistry with their explanation the following:	s and examples and special emphasis on
Designing a Green Synthesis using these principl maximum incorporation of the materials used in the Economy, calculation of atom economy of the rea elimination reactions.	es; Prevention of Waste/ byproducts; e process into the final products, Atom arrangement, addition, substitution and
□ Green solvents– supercritical fluids, water as a solv	ent for organic reactions, ionic liquids,

- fluorous biphasic solvent.
- □ Energy requirements for reactions alternative sources of energy: use of microwaves and ultrasonic energy.
- □ Use of catalytic reagents, comparison of heterogeneous and homogeneous catalysis.
- □ Prevention of chemical accidents designing greener processes, inherent safer design, principle of ISD, subdivision of ISD, minimization, simplification, substitution, moderation and limitation.

Strengthening/ development of analytical techniques to prevent and minimize the generation
of hazardous substances in chemical processes.

Unit-3 Green Synthesis of Some compounds

5 hrs

10 hrs

Green Synthesis of the following compounds: adipic acid, catechol, disodium iminodiacetate (alternative to Strecker synthesis).

Unit-4: Green Reactions and some real world cases

- 4. Microwave assisted reactions in water: Hofmann Elimination, methyl benzoate to benzoic acid, oxidation of toluene and alcohols; Diels-Alder reaction and Decarboxylation reaction.
- 5. Ultrasound assisted reactions: Sonochemical Simmons-Smith Reaction (Ultrasonic alternative to Iodine)
- 6. Surfactants for carbon dioxide replacing smog producing and ozone depleting solvents with CO2 for precision cleaning and dry cleaning of garments.

Unit-5 Sustainable development and future trends	8 hrs
Oxidation reagents and catalysts; Biomimetic, multifunctional sustainable development and Zero Waste Technology, innovative pr	reagents, Green chemistry in oducts.
Unit-6 Latest advancements in Green chemistry and technology	6hrs
Negative effect of heavy metals on humans and environment, Future and sustainable future of science and technology, Green economy.	status of green chemistry, Green

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term (ETE)	Test	Total Marks
30	20	50		100

Course Code	Course Name	L	Т	Р	С
BBS09T2411	RESEARCH METHODOLOGY AND STATISTICS	2	0	0	2

Course Objective: The objective of the course is to impart research based knowledge to the students. They would be taught the various ways of data collection, research methodologies adopted in different settings, and statistical methods.

Course Outcome:

CO1	Students will get separately familiar with terms research and methodology, respectively.
CO2	Identifying different type of research sampling and research design.
CO2	Students will understand raw data, primary data, secondary data and their different methods of collection.

CO4	Students will appraise the application of sampling through statistics.
CO5	Students will get familiar with different descriptors of statistics to analyse data both quantitatively and qualitatively.
CO6	Students will develop the statistical analysis indulges in modern research for drug designing.

Text & References:

- Broota, K. D., Experimental designs in psychological research, Wiley eastern, New York, 1992.
- Guilford, Statistics in Psychology and Education, McGraw Hill, New York, 1986.
- J T Walker, Statistics in Criminology and Criminal Justice analysis and Interpretation •
- Leo, A., & Hoekman, D. H. (1995). Exploring QSAR. American Chemical Society.
- Chanin Nantasenamat, Chartchalerm Isarankura-Na-Ayudhya, Thanakorn Naenna, Virapong Prachayasittikul, A Practical Overview of Quantitative Structure- Activity Relationship. EXCLI Journal 2009:8:74-88.
- Wiktor Pronobis, Alexandre Tkatchenko, and Klaus-Robert Muller, J. Chem. Theory Comput. 2018, 14, 2991-3003

Unit-2 : Research in Scientific and Social Settings 5hrs Research Design: Research Sampling, rationale for using a particular sampling procedure, Probability. **Unit-3: Tools of Data Collection** 5hrs Data and its types, Methods for Collecting Data, Observation method, Questionnaire, Other Methods **Unit- 4: Introduction to Statics** 4hrs Introduction to statistics (Biostatistics); Sample and Population, parametric and non parametric statistics. 5hrs

and research in science; Introduction to Research Methodology, Research methodology in science.

Unit- 5: Descriptive Statistics

Unit-1: Introduction to Research Methodology

Measures of central tendency; Measures of dispersion and deviation; graphical representation of the data.Correlation and Regression

Unit 6: Recent research advances

Descriptors, Quantitative structure-activity relationship (QSAR), Quantitative structure-property relationship(QSPR), Drug designing.

3 hrs

6 hrs Definition, concept

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Organic Chemistry IV					
Course Code	BBS05T3101					
Prerequisite	Students should qualify 10+2 or equivalent examines stream with Chemistry as major subject	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject				
Corequisite	Students should have fundamental knowledge of Org	ganic	Che	emistr	y	
Antirequisite						
		L	Т	Р	С	
		4	0	0	4	

Course Objectives:

The focus area of this course is on the chemistry of biomolecules i.e. amino acids, peptides, proteins, enzymes, carbohydrates and lipids. Through the study of energetics in biological systems, it aims to build the concept of metabolism for biological systems more lucid.

Course Outcomes

CO1	Describe the components structure and reaction of nucleic acid. (K2)
CO2	Illustrate the classification, synthesis, structure and properties of amino acids. (K3)
CO3	Determine the mechanism of enzyme action and role different factors. (K3)
CO4	Categorize the Carbohydrates and their biological importance (K2)
CO5	Illustrate the metabolism, formation and mechanism of ATP to understand the concept of energy in biosystems. (K3)
CO6	Compile the advance therapeutic uses of different biomolecules. (K6)

Reference Books:

- 6. Berg, J.M., Tymoczko, J.L. & Stryer, L. (2006) *Biochemistry*. 6th Ed. W.H. Freeman and Co.
- 7. Nelson, D.L., Cox, M.M. &Lehninger, A.L. (2009) *Principles of Biochemistry. IVEdition.* W.H. Freeman and Co.

- 8. Murray, R.K., Granner, D.K., Mayes, P.A. &Rodwell, V.W. (2009) *Harper'sIllustrated Biochemistry*. XXVIII edition. Lange Medical Books/ McGraw-Hill.
- 9. Manual of Biochemistry Workshop, 2012, Department of Chemistry, University of Delhi.
- 10. Arthur, I. V. Quantitative Organic Analysis, Pearson.

Unit 1 Nucleic Acids

Components of nucleic acids, Nucleosides and nucleotides;Structure, synthesis and reactions of: Adenine, Guanine, Cytosine, Uracil and Thymine; Structure of polynucleotides.

Unit 2 Amino Acids, Peptides and Proteins

Amino acids, Peptides and their classification. α -Amino Acids - Synthesis, ionic properties and reactions. Zwitterions, p*K*a values, isoelectric point and electrophoresis; Study of peptides: determination of their primary structures-end group analysis, methods of peptide synthesis. Synthesis of peptides using N-protecting, Cprotecting and C-activating groups -Solid-phase synthesis.

Unit3 Enzymes

Introduction, classification and characteristics of enzymes. Salient features of active site of enzymes.Mechanism of enzyme action (taking trypsin as example), factors affecting enzyme action, coenzymes and cofactors and their role in biological reactions, specificity of enzyme action (including stereospecificity), enzyme inhibitors and their importance, phenomenon of inhibition (competitive, uncompetitive and non-competitive inhibition including allosteric inhibition).

Unit 4 Carbohydrates

Occurrence, classification and their biological importance.Monosaccharides: Constitution and absolute configuration of glucose and fructose, epimers and anomers, mutarotation, determination of ring size of glucose and fructose, Haworth projections and conformational structures; Interconversions of aldoses and ketoses; Killiani- Fischer synthesis and Ruff degradation;Disaccharides – Structure elucidation of maltose, lactose and sucrose.Polysaccharides – Elementary treatment of starch, cellulose and glycogen.

Unit 5 Lipids & Concept of Energy in Biosystems

Introduction to oils and fats; common fatty acids present in oils and fats, Hydrogenntion of fats and oils, Saponification value, acid value, iodine number. Reversion and rancidity. Cells obtain energy by the oxidation of foodstuff (organic molecules). Introduction to metabolism (catabolism, anabolism). ATP: The universal currency of cellular energy, ATP hydrolysis and free energy change. Agents for transfer of electrons in biological redox systems: NAD⁺, FAD.Conversion of food to energy: Outline of catabolic pathways of carbohydrate-glycolysis, fermentation, Krebs cycle. Overview of catabolic pathways of fat and protein. Interrelationship in the metabolic pathways of protein, fat and carbohydrate. Caloric value of food, standard caloric content of food types.

Unit 6 Bio-medical Applications of Biomolecules

Recent advances in Biomolecules as therapeutic Agents

Continuous Assessment Pattern

8 hrs

10hrs

4 hrs

10hrs

12 hrs

8 hrs

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total N	1ark	s	
30	20	50	100			
Name of The Course	ORGANIC CHEMIST	RY -IV LAB				
Course Code	BBS05P3101					
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject					
Corequisite	Students should have fu	ndamental knowledge o	f Organic	c Che	emist	ry
Antirequisite						
			L	Т	Р	C
			0	0	4	2

Course

Objectives:

Students will able to estimate amino acids and determine saponification value and Iodine number of an oil or a fat

Course Outcomes

CO1	Estimation and titration of gycine. (K4)
CO2	Analyze the action and effect of temperature of amylase. (K3)
CO3	Determine the saponification value and Iodine number of an oil or a fat. (K4)
CO4	Extract and characterize organic compounds from plant products (K5)
CO5	Prepare and Characterize different dyes. (K5)

Text Book (s)/ Reference Book (s)

- Manual of Biochemistry Workshop, 2012, Department of Chemistry, University of Delhi.
- Arthur, I. V. Quantitative Organic Analysis, Pearson

Experiment 1. Estimation of glycine by Sorenson's formalin method.

Experiment 2. Study of the titration curve of glycine.

Experiment 3. Study of the action of salivary amylase on starch at optimum conditions.

Experiment 4. Effect of temperature on the action of salivary amylase.

Experiment 5. Saponification value of an oil or a fat.

Experiment 6. Determination of Iodine number of an oil/ fat

Exp.7. Extraction of caffeine from tea leaves.
Exp.8. Preparation of sodium polyacrylate.
Exp.9. Preparation of methyl orange.

Continuous Assessment Pattern

Practical IA	Practical ETE	Total Marks
50	50	100

Name of The Course	Physical Chemistry IV				
Course Code	BSCC3002				
Prerequisite	Students should qualify 10+2 or equivalent examin stream with Chemistry as major subject	natio	n in	Scie	nce
Corequisite	Students should have fundamental knowledge of Phy	ysica	l Ch	emist	ry
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

1. The objective of this course is to identify the limitations of classical mechanics and the need of quantum chemistry.

2. To familiarize the students with postulates of quantum chemistry and apply them to derive

equations for various models and hydrogen atoms.

Course Outcomes

CO1	Describe fundamentals concepts of quantum mechanics and its applications. (K2)
CO2	Determine the properties and shape of molecules by various theories of chemical bonding. (K3)
CO3	Distinguish the electromagnetic radiation with molecules and various types of spectra. (K4)
CO4	Apply the method of various spectroscopic techniques for characterization and analysis. (K3)
CO5	Explain photochemical reactions with example. (K2)
CO6	Compile recent advancements in different field of physical chemistry(K6)

Text Book (s)/Reference Book (s)

- 6. Banwell, C. N. &McCash, E. M. *Fundamentals of Molecular Spectroscopy* 4th Ed. Tata McGraw-Hill: New Delhi (2006).
- 7. Chandra, A. K. Introductory Quantum Chemistry Tata McGraw-Hill (2001).
- 8. House, J. E. Fundamentals of Quantum Chemistry 2nd Ed. Elsevier: USA (2004).
- 9. Kakkar, R. Atomic & Molecular Spectroscopy: Concepts & Applications, Cambridge University Press (2015).

10. Lowe, J. P. & Peterson, K. Quantum Chemistry, Academic Press (2005).

Unit 1 Quantum Chemistry	12 hrs

Postulates of quantum mechanics, quantum mechanical operators, Schrödinger equation and its application to free particle and "particle-in-a-box" (rigorous treatment), quantization of energy levels, zero-point energy and Heisenberg Uncertainty principle; wavefunctions, probability distribution functions, nodal properties, Extension to two and three dimensional boxes, separation of variables, degeneracy.Qualitative treatment of simple harmonic oscillator model of vibrational motion: Setting up of Schrödinger equation and discussion of solution and wavefunctions. Vibrational energy of diatomic molecules and zero-point energy.Angular momentum: Commutation rules, quantization of square of total angular momentum and z-component. Rigid rotator model of rotation of diatomic molecule.Schrödinger equation, transformation to spherical polar coordinates.Separation of variables. Spherical harmonics. Discussion of solution .Qualitative treatment of hydrogen atom and hydrogen-like ions: setting up of Schrödinger equation in spherical polar coordinates, radial part, quantization of energy (only final energy expression). Average and most probable distances of electron from nucleus.

Setting up of Schrödinger equation for many-electron atoms (He, Li). Need for approximation methods. Statement of variation theorem and application to simple systems (particle-in-a-box, harmonic oscillator, hydrogen atom).

Unit 2 Chemical bonding:

Covalent bonding, valence bond and molecular orbital approaches, LCAO-MO treatment of H2⁺. Bonding and antibonding orbitals.Qualitative extension to H2. Comparison of LCAO-MO and VB treatments of H2 (only wavefunctions, detailed solution not required) and their limitations. Refinements of the two approaches (Configuration Interaction for MO, ionic terms in VB).Qualitative description of LCAO-MO treatment of homonuclear and heteronuclear diatomic molecules (HF, LiH).Localised and non-localised molecular orbitals treatment of triatomic (BeH2, H2O) molecules. Qualitative MO theory and its application to AH2 type molecules.

Unit 3	Molecular	Spectroscopy 1	[:
--------	-----------	----------------	----

Interaction of electromagnetic radiation with molecules and various types of spectra; Born-Oppenheimer approximation.

Rotation spectroscopy: Selection rules, intensities of spectral lines, determination of bond lengths of diatomic and linear triatomic molecules, isotopic substitution.

10 hrs

10 hrs

Vibrational spectroscopy: Classical equation of vibration, computation of force constant, amplitude of diatomic molecular vibrations, anharmonicity, Morse potential, dissociation energies, fundamental frequencies, overtones, hot bands, degrees of freedom for polyatomic molecules, modes of vibration, concept of group frequencies. Vibration-rotation spectroscopy: diatomic vibrating rotator, P, Q, R branches.

Unit 4 Molecular Spectroscopy II:

10 hrs

8 hrs

Raman spectroscopy: Qualitative treatment of Rotational Raman effect; Effect of nuclear spin, Vibrational Raman spectra, Stokes and anti-Stokes lines; their intensity difference, rule of mutual exclusion.

Electronic spectroscopy: Franck-Condon principle, Morse potential energy curve for diatomic molecules, electronic transitions, singlet and triplet states, terms, symbols, fluorescence and phosphorescence, dissociation and predissociation, calculation of electronic transitions of polyenes using free electron model, Walsh Diagrams.

Nuclear Magnetic Resonance (NMR) spectroscopy: Principles of NMR spectroscopy, Larmor precession, chemical shift and low resolution spectra, different scales, spin-spin coupling and high resolution spectra, interpretation of PMR spectra of organic molecules.

Electron Spin Resonance (ESR) spectroscopy: Its principle, hyperfine structure, ESR of simple radicals.

Unit 5 Photochemistry

Characteristics of electromagnetic radiation, Lambert-Beer's law and its limitations, physical significance of absorption coefficients. Laws, of photochemistry, quantum yield, actinometry, examples of low and high quantum yields, photochemical equilibrium and the differential rate of photochemical reactions, photosensitised reactions, quenching. Role of photochemical reactions in biochemical processes, photostationary states, chemiluminescence.

Unit 6	Recent Advancement in Physical Chemistry	04 hrs

Comparative study of classical, statistical and quantum mechanics, applications of spectroscopic and photochemical techniques

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	PHYSICAL CHEMISTRY -IV LAB					
Course Code	BSCC3052					
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with a minimum of 50% marks secured in Chemistry					
Corequisite	Students should have fundamental knowledge of Physical Chemistry					
Antirequisite	Antirequisite					
	· ·	L	Т	Р	С	
		0	0	4	2	

Course Objectives:

Students will able to operate UV spectrophotometer and Colorimeter.

Course Outcomes

CO1	Recognize basic laboratory rules and basic principles of lab safety. (K2)
CO2	Operate the UV/Visible spectroscopy and analyse, determine theparameter of solutions. (K4)
CO3	Estimate the 200-350 nm UV spectra of the given compounds in water. (K3)
CO4	Determine the concentrations, kinetics and dissociation constant by using Colourimetry. (K4)
CO5	Perform colorimetric analysis of compounds using UV spectrophotometer. (K4)

Text Book (s)/Reference Book (s)

- Khosla, B. D.; Garg, V. C. & Gulati, A., *Senior Practical Physical Chemistry*, R. Chand & Co.: New Delhi (2011).
- Garland, C. W.; Nibler, J. W. & Shoemaker, D. P. *Experiments in PhysicalChemistry* 8th Ed.; McGraw-Hill: New York (2003).
- Halpern, A. M. & McBane, G. C. *Experimental Physical Chemistry 3rdEd.;* W.H. Freeman & Co.: New York (2003).

UV/Visible spectroscopy

Experiment 1. Study the 200-500 nm absorbance spectra of KMnO4 and $K_2Cr_2O_7$ (in 0.1 M H₂SO₄) and determine the λ max values. Calculate the energies of the two transitions in different units (J molecule⁻¹, kJ mol⁻¹, cm⁻¹, eV).

Experiment 2. Study the pH-dependence of the UV-Vis spectrum (200-500 nm) of K₂Cr₂O₇.

Experiment 3. Record the 200-350 nm UV spectra of the given compounds (acetone, acetaldehyde, 2-propanol, acetic acid) in water. Comment on the effect of structure on the UV spectra of organic compounds.

Colourimetry

Experiment 4. Verify Lambert-Beer's law and determine the concentration of CuSO₄/KMnO₄/ K₂Cr₂O₇ in a solution of unknown concentration

Experiment 5. Determine the concentrations of KMnO₄and K₂Cr₂O₇in a mixture.

Experiment 6. Study the kinetics of iodination of propanone in acidic medium.

Experiment 7. Determine the amount of iron present in a sample using 1,10-

phenathroline.

Experiment 8.Determine the dissociation constant of an indicator (phenolphthalein).

Experiment 9.Study the kinetics of interaction of crystal violet/ phenolphthalein with sodium hydroxide.

Experiment 10. Analysis of the given vibration-rotation spectrum of HCl(g).

Continuous Assessment Pattern

Internal Assessment (IA)	End Term (ETE)	Test	Total Marks
50	50		100

Name of The Course	INORGANIC CHEMISTRY IV						
Course Code	BSCC3003						
Prerequisite	Students should qualify 10+2 or equivalent exaministream with Chemistry as major subject	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject					
Corequisite	Students should have the basic knowledge of Inorga	Students should have the basic knowledge of Inorganic chemistry					
Antirequisite							
	·	L	Т	Р	C		
		4	0	0	4		

Course Objectives:

3. To impart the knowledge of key concepts of Organometallic compounds

4. To present a comprehensive introduction to inorganic chemistry.

Course Outcomes

CO1	Analyze the inorganic cations, anions and solubility products. K4
CO2	Illustrate the structures of mononuclear and binuclear carbonyls and its MO diagram. K3
CO3	Correlate the basic reactions and concept of metal alkyls and ferrocene. K4
CO4	Determine the beneficiary and toxic role of ions in biological and medicinal system. K4
CO5	Illustrate the catalytic properties of Organometallic in industrial processes. K3
CO6	Discuss the recent development in field of organometallic compounds. K6

Text Book (s)

- Svehla, G. Vogel's Qualitative Inorganic Analysis, 7th Edition, Prentice Hall, 1996.
- Cotton, F.A.G.; Wilkinson & Gaus, P.L. Basic Inorganic Chemistry 3rd Ed.; Wiley India,
- Huheey, J. E.; Keiter, E.A. & Keiter, R.L. *Inorganic Chemistry, Principles of Structure and Reactivity* 4th Ed., Harper Collins 1993, Pearson, 2006.
- Sharpe, A.G. Inorganic Chemistry, 4th Indian Reprint (Pearson Education) 2005
- Douglas, B. E.; McDaniel, D.H. & Alexander, J.J. *Concepts and Models in Inorganic Chemistry3rd Ed.*, John Wiley and Sons, NY, 1994.
- Greenwood, N.N. & Earnshaw, A. *Chemistry of the Elements, Elsevier 2nd Ed*, 1997 (Ziegler Natta Catalyst and Equilibria in Grignard Solution).

Reference Book (s)

- . Lee, J.D. Concise Inorganic Chemistry 5th Ed., John Wiley and sons 2008.
- Powell, P. Principles of Organometallic Chemistry, Chapman and Hall, 1988.
- Shriver, D.D. & P. Atkins, Inorganic Chemistry 2nd Ed., Oxford University Press, 1994.
- Basolo, F. & Pearson, R. *Mechanisms of Inorganic Reactions: Study of Metal Complexes in Solution 2nd Ed.*, John Wiley & Sons Inc; NY.
- Purcell, K.F. & Kotz, J.C., Inorganic Chemistry, W.B. Saunders Co. 1977
- Miessler, G. L. & Tarr, D.A. Inorganic Chemistry 4th Ed., Pearson, 2010.
- Collman, J. P. *et al. Principles and Applications of Organotransition Metal Chemistry*. Mill Valley, CA: University Science Books, 1987.
- Crabtree, R. H. *The Organometallic Chemistry of the Transition Metals. j* New York, NY: John Wiley, 2000.
- Spessard, G. O. & Miessler, G.L. *Organometallic Chemistry*. Upper Saddle River, NJ: Prentice-Hall, 1996.

Unit-1: Theoretical Principles in Qualitative Analysis (H₂S Scheme)

Basic principles involved in analysis of cations and anions and solubility products, common ion effect. Principles involved in separation of cations into groups and choice of group reagents. Interfering anions (fluoride, borate, oxalate and phosphate) and need to remove them after Group II. Analysis of anions and cations.

Unit-2 Organometallic Compounds

Definition and classification of organometallic compounds on the basis of bond type. Concept of hapticity of organic ligands. Metal carbonyls: 18 electron rule, electron count of mononuclear, polynuclear and substituted metal carbonyls of 3d series. General methods of preparation (direct combination, reductive carbonylation, thermal and photochemical decomposition) of mono and binuclear carbonyls of 3d series. Structures of mononuclear and binuclear carbonyls of Cr, Mn, Fe, Co and Ni using VBT.
-acceptor behaviour of CO (MO diagram of CO to be discussed), synergic effect and use of IR data to explain extent of back bonding.

Unit-3 Metal Alkyls and Aryls

8 hrs

10 hrs

8 hrs

4 hrs

Metal Alkyls: Important structural features of methyl lithium (tetramer) and trialkyl aluminium (dimer), concept of multicentre bonding in these compounds. Role of triethylaluminium in polymerisation of ethene (Ziegler - Natta Catalyst). Ferrocene: Preparation and reactions (acetylation, alkylation, metallation, Mannich Condensation). Aromaticity. Comparison of aromaticity and reactivity with that of benzene.

Unit-4 Bioinorganic Chemistry

Metal ions present in biological systems, classification of elements according to their action in biological system. Geochemical effect on the distribution of metals. Sodium / K-pump, carbonic anhydrase and carboxypeptidase. Excess and deficiency of some trace metals.

Toxicity of metal ions (Hg, Pb, Cd and As), reasons for toxicity, Use of chelating agents in

medicine. Iron and its applications in bio-systems, Haemoglobin; Storage and transfer of iron.

Unit-5 Catalysis by Organometallic Compounds

Study of the following industrial processes and their mechanism:1. Alkene hydrogenation (Wilkinsons Catalyst), 2. Hydroformylation (Co salts)3. Wacker Process, 4. Synthetic gasoline (Fischer Tropsch reaction)5. Synthesis gas by metal carbonyl complexes

Unit -6 Application of organometallic compounds

Recent Advancement and development in the field organometallic compounds and their uses.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term	Test	Total Marks
		(ETE)		
30	20	50		100

14 hrs

10 hrs

Name of The Course	INORGANIC CHEMISTRY IV Lab				
Course Code	BSCC3053				
Prerequisite	Students should have the knowledge of atoms, elements, anions and cations.				
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives:

- 3. To impart the knowledge of key concepts of analysis of cations and anions.
- 4. To present a comprehensive introduction to inorganic chemistry.

Course Outcomes

CO1	Analyze qualitatively the mixtures containing anions and cations. K4
CO2	Evaluate the spot tests by spectrophotometric method. K5
CO3	Synthesis of inorganic complexes and its Ligand exchange reactions. K5
CO4	Test the spectrochemical series. K4
CO5	Synthesize Ammine complex of Ni(II) and its ligands. K5

Text Book (s)

- Vogel's *Qualitative Inorganic Analysis*, Revised by G. Svehla. Pearson Education, 2002.
- Marr & Rockett Practical Inorganic Chemistry. John Wiley & Sons 1972.

Reference Book (s)

• Vogel's *Qualitative Inorganic Analysis,* Revised by G. Svehla. Pearson Education, 2002.

Unit-1:

Qualitative semi micro analysis of mixtures containing 3 anions and 3 cations. Emphasis should be given to the understanding of the chemistry of different reactions. The following radicals are suggested:

 $CO_3^{2^-}$, NO_2^{-} , S_2^{-} , $SO_3^{2^-}$, $S_2O_3^{2^-}$, CH_3COO^- , F^- , Cl^- , Br^- , I^- , NO_3^- , $BO_3^{3^-}$, $C_2O_4^{2^-}$, $PO_4^{3^-}$, NH_4^+ , K^+ , Pb^{2^+} , Cu^{2^+} , Cd^{2^+} , Bi^{3^+} , Sn^{2^+} , Sb^{3^+} , Fe^{3^+} , Al^{3^+} , Cr^{3^+} , Zn^{2^+} , Mn^{2^+} , Co^{2^+} , Ni^{2^+} , Ba^{2^+} , Sr^{2^+} , Ca^{2^+} , Mg^{2^+}

Unit-2

Mixtures should preferably contain one interfering anion, **or** insoluble component (BaSO₄, SrSO₄, PbSO₄, CaF₂ or Al₂O₃) **or** combination of anions e.g. CO_3^{2-} and SO_3^{2-} , NO^{2-} and NO^{3-} , Cl⁻ and Br⁻, Cl⁻ and I⁻, Br⁻ and I⁻, NO³⁻ and Br⁻, NO³⁻ and I⁻.

Spot tests should be done whenever possible.

Unit-3

Measurement of 10 Dq by spectrophotometric method

Unit-4

Verification of spectrochemical series

Unit-5

Synthesis of ammine complexes of Ni(II) and its ligand exchange reactions (e.g. bidentate ligands like acetylacetone, DMG, glycine) by substitution method.

Continuous Assessment Pattern

Practical IA	Practical ETE	Total Marks
50	50	100

Name of The Course	ORGANIC CHEMISTRY V				
Course Code	BBS05T3102				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject				
Corequisite	Students should have fundamental knowledge of Organic Chemistry				
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

The core course of Organic Chemistry V deals with some classes of organic compounds finding applications in everyday life namely; polymers, dyes, lipids and pharmaceutical compounds. The chemistry of these compounds in general will be explained through naturally occurring and synthetic compounds. The course also introduces the learner to various tools and techniques for identifying and characterizing the organic compounds through their interactions with electromagnetic radiation viz. IR, NMR and UV- Visible spectroscopy

Course Outcomes

CO1	1. Explain the concepts of UV,IR and NMR spectra of simple organic molecules. (K2)
COI	1. Explain the concepts of 0 v, it and third spectra of simple organic molecules. (R2)

CO2	Analyze and apply UV,IR and NMR spectroscopy for identification of organic compounds. (K4)
CO3	3. Generalize the Classification, structure and therapeutic uses of pharmaceutical compounds. (K2)
CO4	4. Compare synthetic and natural dyes with their structure elucidation. (K4)
CO5	5. Demonstrate different types of polymer and characterize them. (K2)
CO6	11. Elaborate Modern Spectroscopic techniques & its applications .(K6)

Text Book (s)/Reference Book (s)

- Kalsi, P. S. Textbook of Organic Chemistry 1st Ed., New Age International (P) Ltd. Pub.
- Morrison, R. T. & Boyd, R. N. *Organic Chemistry*, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- Billmeyer, F. W. Textbook of Polymer Science, John Wiley & Sons, Inc.
- Gowariker, V. R.; Viswanathan, N. V. & Sreedhar, J. *Polymer Science*, New Age International (P) Ltd. Pub.
- Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- Graham Solomons, T.W. Organic Chemistry, John Wiley & Sons, Inc.
- McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013.
- Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; Organic Chemistry, Oxford University Press.
- Singh, J.; Ali, S.M. & Singh, J. *Natural Product Chemistry*, Prajati Prakashan (2010). Kemp, W. *Organic Spectroscopy*, Palgrave.
- Pavia, D. L. et al. Introduction to Spectroscopy 5th Ed. Cengage Learning India Ed.2015

Unit-1 Organic Spectroscopy I	12 hrs
General principles Introduction to absorption and emission spectrosc	copy.
<i>UV Spectroscopy:</i> Types of electronic transitions, λ max, Chro Bathochromic and Hypsochromic shifts, Intensity of absorption; App calculation of λ max for the following systems: α , β unsaturated aldel and esters; Conjugated dienes: alicyclic, homoannular and hetero systems (aldehydes, ketones and dienes); distinction between cis and	mophores and Auxochromes, lication of Woodward Rules for hydes, ketones,carboxylic acids pannular; Extended conjugated l trans isomers.
<i>IR Spectroscopy:</i> Fundamental and non-fundamental molecular vibrof O, N and S containing functional groups; Effect of H-bonding, c size on IR absorptions; Fingerprint region and its significance; a analysis.	rations; IR absorption positions conjugation, resonance and ring application in functional group
Unit-2 Organic Spectroscopy II	8 hrs

NMR Spectroscopy: Basic principles of Proton Magnetic Resonance, chemical shift and factors influencing it; Spin – Spin coupling and coupling constant; Anisotropic effects in alkene, alkyne, aldehydes and aromatics, Interpretation of NMR spectra of simple compounds. Applications of IR, UV and NMR for identification of simple organic molecules

Unit-3 Pharmaceutical Compounds: Structure and Importance

10 hrs

Classification, structure and therapeutic uses of antipyretics: Paracetamol (with synthesis), Analgesics: Ibuprofen (with synthesis), Antimalarials: Chloroquine (with synthesis). An elementary treatment of Antibiotics and chloramphenicol, Medicinal values of curcumin (haldi), azadirachtin (neem), vitamin C and antacid (ranitidine).

Unit-4 Dyes

8 hrs

12 hrs

Classification, Colour and constitution; Mordant and Vat Dyes; Chemistry of dyeing; Synthesis and applications of: Azo dyes – Methyl Orange and Congo Red (mechanism of Diazo Coupling); Triphenyl Methane Dyes -Malachite Green, Rosaniline and Crystal Violet; Phthalein Dyes – Phenolphthalein and Fluorescein; Natural dyes –structure elucidation and synthesis of Alizarin and Indigotin; Edible Dyes with examples.

Unit-5 Polymers

Introduction and classification including di-block, tri-block and amphiphilic polymers; Number average molecular weight, Weight average molecular weight, Degree of polymerization, Polydispersity Index. Polymerisation reactions -Addition and condensation -Mechanism of cationic, anionic and free radical addition polymerization; Metallocene-based Ziegler-Natta polymerisation of alkenes; Preparation and applications of plastics – thermosetting (phenol-formaldehyde, Polyurethanes) and thermosoftening (PVC, polythene); Fabrics – natural and synthetic (acrylic, polyamido, polyester); Rubbers – natural and synthetic: Buna-S, Chloroprene and Neoprene; Vulcanization; Polymer additives; Introduction to liquid crystal polymers; Biodegradable and conducting polymers with examples.

Unit-6 Modern Spectroscopic techniques

8hrs

Raman Spectroscopy: Standard Raman Spectroscopy vs Resonance-enhanced Raman Spectroscopy , Mass Spectrometry-: Introduction of theory, ionization methods, molecule fragmentation & applications, Photoelectron spectroscopy: x-ray and Auger photoelectron spectroscopy & applications

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Battery Technology
Course Code	BBS05T5103
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with Chemistry as major subject

Corequisite	Basic knowledge Electrochemistry.	of	Thermodynamics,	Chemic	al 1	Kinet	tics	and
Antirequisite								
					L	Τ	Р	C
					3	0	0	3

Course Objectives:

To impart knowledge of advanced electrochemistry and relevant analytical techniques

Course Outcomes

CO1	E Explain the basic physical concepts of thermodynamics and kinetics involved in electrochemical reactions (K2)
CO2	Ill Illustrate the characterization methods of batteries and interpret concepts describing battery performance (K2)
CO3	Interpret the recent developments battery systems. (K3)
CO4	Analyze the requirements of battery systems for automotive applications and understand the modelling of battery systems (K4)
CO5	Explain solar energy conversion in terms of nanotechnology (K2)
CO6	Compile the recent advanced technologies adopted by Battery Industry. (K6)

Reference Book (s)

- T.Minami, M.Tatsumisago, M.Wakihara, C. Iwakura, S. Kohijiya, Solid state ionics for batteries, Springer Publication, 2009
- 9. Sandeep Dhameja, Electric Vehicle Battery Systems, Newnes publication, 2001
- **10.** Bard, Allen J., and Larry R. Faulkner. Electrochemical Methods: Fundamentals and Applications. 2nd ed., Wiley– VCH, Verlag, GmbH, 2000
- 11. Masataka Wakihara and Osamu Yamamoto, Lithium ion Batteries Fundamental and Performance, Wiley– VCH, Verlag GmbH, 1999
- 12. Robert A.Huggins, Advanced Batteries Materials science aspects, Springer, 2009
- 13. Nanoscience and Nanotechnology: Fundamentals of Frontiers by M.S. Ramachandra Rao, Shubra Singh
- 14. Introduction to Nanotechnology By Charles P. Poole, Jr., Frank J. Owens.

Unit-1 Introduction to Electrochemical energy storage	8 hrs			
Introduction to battery technologies, Electromotive force- Reversible cells	- Relation between			
electrical energy and energy content of a cell-Free energy changes and electron	motive force in cell-			
Current challenges in Energy storage Technologies.				
Unit-2 Major Battery Chemistry Development and testing	10 hrs			
Battery performance evaluation- Primary battery - Service time- Voltage data-	Service life – ohmic			
load curve- Effect of operating temperature on service life. Secondary batteries	s- Discharge curves,			
Terminal voltages- Plateau voltage -Lead acid Batteries - Construction and app	olication.			
Unit-3 Recent Technologies	10 hrs			

Recent development of electrode materials in lithium ion batteries- Recent development of solid electrolytes and their application to solid state batteries-Polymer solid electrolytes for lithium ion

conduction– Thin Film solid state Batteries: Fundamentals, Constriction and application – Super Capacitors: Fundamental, Construction and application.

Unit-4 Batteries for Automotives – Future prospects

Degrees of vehicle electrification - Battery size vs. application -USABC and DOE targets for vehicular energy storage systems - Analysis and Simulation of batteries - Equivalent circuit and life modeling – Environmental concerns in battery production – recycling of batteries

Unit-5 Improvements in solar energy conversion and storage 10 hrs

Better energy-efficient lighting; stronger and lighter materials that will improve energy transportation efficiency; Energy Storage: Fuel Cells, Carbon Nanotubes for energy storage, Hydrogen Storage in Carbon Nanotubes, Use of nanoscale catalysts to save energy and increase the productivity in industry, Rechargeable batteries based on Nanomaterials, Nanoscale optical, liquid crystal and magnetic devices

Unit-6 Future Trends of Battery Technology

4 hrs

8 hrs

Recent Advance technology adopted in Battery Industry

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

SEMESTER-VI

Sl No	Course Code	Name of the Course				Assessment Pattern			
Couc	Coue	Juc	L	Т	Р	С	IA	MTE	ETE
1	BSCC3151	Project	-	-	-	12	50		50

Course Objectives:

The major project will help the students to have a hand on experience and practical knowledge of the theory papers studied so far. It will enable them to tackle practical problems and expose them to industrial experience. Course Outcomes

CO1	Survey literature for the topic of the project.(K4)
CO2	Correctly interpret the literature review before starting any individual experiment (K3)
CO3	Propose novel reaction routes and pathways for an chemical reaction(K6)
CO4	Interpret the results and data obtained from any experiment clearly, interpret the results and
	data obtained; records experiments orderly for future reference and draw clear and logical
	conclusions & assemble in presentations and reports.(K4)
CO5	Demonstrate leadership skills and effective teamwork while working and prepare
	themselves for their future career in industry or academics (K6)

Continuous Assessment Pattern

Internal Assessment (IA)	External Assessment (ETE)	Total Marks
50	50	100

Name of The Course	NOVEL INORGANIC SOLIDS				
Course Code	BSCC 3102				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with a minimum of 50% marks secured in Chemistry				
Co-requisite	Students should have fundamental knowledge of Inorganic chemistry				
Anti-requisite					
	·	L	Т	Р	С
		4	0	0	4

Course Objectives:

Solid-state chemistry also referred as material chemistry currently has emerged with great focus on novelinorganic solids. It has found enormous applications in both industrial and research arenas and have helped toshape modern day recyclable adsorbents and catalysts. Novel inorganic-organic hybrid nanocomposites havereceived a lot of attention because of their abundance and cost-effective nature they can be utilized ascatalysts, as a nano reactor to host reactants for synthesis and for the controlled release of biomolecules.Materials such as semiconductors, metals, composites, nanomaterials, carbon or high-tech ceramics make lifeeasier in this era and are great sources of industrial growth and technological changes. Therefore, its exposure to the undergraduates with science backgrounds can groom them for future researches.

Course Outcomes

CO1	Understand the mechanism of solid-state synthesis and explain about the different characterization techniques and their principle			
CO2	Understand the concept of nanomaterials, their synthesis and properties.			
CO3	Ill Appreciate the existence of bioinorganic nanomaterials.			
CO4	E Explain the importance of composites, conducting polymers and their applications			
CO5	Understand the usage of solid materials in various instruments, batteries, etc. which help them to appreciate the real life importance of these materials			
CO6	Compile recent advancements in Novel Inorganic Solids.			

Reference Books

□ Shriver & Atkins. Inorganic Chemistry, Peter Alkins, Tina Overton, Jonathan Rourke, Mark Weller and Fraser Armstrong, 5th Edition, Oxford University Press (2011-2012)

□ Adam, D.M. Inorganic Solids: An introduction to concepts in solid-state structural chemistry. John Wiley & Sons, 1974.

□ Poole, C.P. & Owens, F.J. Introduction to Nanotechnology John Wiley & Sons, 2003.

□ Rodger, G.E. Inorganic and Solid State Chemistry, Cengage Learning India Edition, 2002.

Unit I: Synthesis and modification of inorganic solids and their Importance 16 hrs

Conventional heat and beat methods, Co-precipitation method, Sol-gel methods, Hydrothermal method, Ion-exchange and Intercalation methods. Solid electrolytes – Cationic, anionic, mixed Inorganic pigments – coloured solids, white and black pigments. Molecular material and fullerides, molecular materials & chemistry – one-dimensional metals, molecular magnets, inorganic liquid crystals.

Unit II: Nanomaterials

8 hrs

8 hrs

10 hrs

4 hrs

Overview of nanostructures and nanomaterials: classification.

Preparation of gold and silver metallic nanoparticles, self-assembled nanostructures-control of nanoarchitecture-one dimensional control. Carbon nanotubes and inorganic nanowires. Bio-inorganic nanomaterials, DNA and nanomaterials, natural and antisical nanomaterials, bionano composites..

Unit-3: Introduction to engineering materials for mechanical construction: 8 hrs

Composition, mechanical and fabricating characteristics and applications of various types of cast irons, plain carbon and alloy steels, copper, aluminum and their alloys like duralumin, brasses and bronzes cutting tool materials, super alloys thermoplastics, thermosets and composite materials.

Unit-4:Composite materials

Introduction, limitations of conventional engineering materials, role of matrix in composites, classification, matrix materials, reinforcements, metal-matrix composites, polymer-matrix composites, fibre-reinforced composites, environmental effects on composites, applications of composites.

Unit-5: Speciality polymers

Conducting polymers - Introduction, conduction mechanism, polyacetylene, polyparaphenylene and polypyrrole, applications of conducting polymers, Ion-exchange resins and their applications. Ceramic & Refractory: Introduction, classification, properties, raw materials, manufacturing and applications.

Unit-6: Recent Advancements in Novel Inorganic Solids

Recent trends and Application of Novel Inorganic Solids

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	POLYMER CHEMISTRY
Course Code	BSCC 3103

Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with a minimum of 50% marks secured in Chemistry				
Co-requisite	Students should have fundamental knowledge of Polymers				
Anti-requisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

The primary objective of this paper is to help the student to know about the synthesis, properties and applications of polymers.

Course Outcomes

CO1	Understand about different mechanisms of polymerization and also polymerization techniques.
CO2	Evaluate kinetic chain length of polymers based on their mechanism and differentiate
	between polymers and copolymers
CO3	Ill Differentiate between glass transition temperature (Tg) and crystalline melting point (Tm)
CO4	K Develop knowledge about solid and solution properties of polymers
CO5	Learn properties and applications of various useful polymers in our daily life.
CO6	Compile recent advancement and technology adopted in the field of Polymer Chemistry.

Reference Books

□ R.B. Seymour & C.E. Carraher: Polymer Chemistry: An Introduction, Marcel Dekker, Inc. New York, 1981.□ G. Odian: Principles of Polymerization, 4th Ed. Wiley, 2004.

□ F.W. Billmeyer: Textbook of Polymer Science, 2nd Ed. Wiley Interscience, 1971.

□ P. Ghosh: Polymer Science & Technology, Tata McGraw-Hill Education, 1991.

□ R.W. Lenz: Organic Chemistry of Synthetic High Polymers. Interscience Publishers, New York, 1967.

Unit I:Introduction and history of polymeric materials	4 hrs		
Different schemes of classification of polymers, Polymer nomenclature, Molecular forces and chemical bonding in polymers, Texture of Polymers.			
Unit II:Functionality and its importance 6 hrs			
Criteria for synthetic polymer formation, classification of polymerization processes, Relationships between functionality, extent of reaction and degree of polymerization.			
Unit-3:Kinetics of Polymerization:	6 hrs		

Mechanism and kinetics of step growth, radical chain growth, ionic chain (both cationic and anionic) and coordination polymerizations, Mechanism and kinetics of copolymerization, polymerization techniques.

Unit-4:Crystallization and crystallinity:

24 hrs

4 hrs

Determination of crystalline melting point and degree of crystallinity, Morphology of crystalline polymers, Factors affecting crystalline melting point. Determination of molecular weight of polymers (Mn, Mw, etc) by end group analysis, viscometry, light scattering and osmotic pressure methods. Molecular weight distribution and its significance. Polydispersity index. Glass transition temperature (Tg) and determination of Tg, Factors affecting glass transition temperature (Tg).

Polymer Solution – Criteria for polymer solubility, Solubility parameter, Thermodynamics of polymer solutions, entropy, enthalpy, and free energy change of mixing of polymers solutions, Flory-Huggins theory, Lower and Upper critical solution temperatures.

Unit-5: Properties of Polymers (Physical, thermal, Flow & Mechanical Properties) hrs

10

Brief introduction to preparation, structure, properties and application of the following polymers: polyolefins, polystyrene and styrene copolymers, poly(vinyl chloride) and related polymers, poly(vinyl acetate) and related polymers, acrylic polymers, fluoro polymers, polyamides and related polymers. Phenol formaldehyde resins (Bakelite, Novalac), polyurethanes, silicone polymers, polydienes, Polycarbonates, Conducting Polymers, [polyacetylene, polyaniline, poly(p-phenylene sulphide polypyrrole, polythiophene)].

Recent advancement in Polymers and their application

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	MOLECULAR MODELLING & DRUG DESIGN				
Course Code	BSCC 3104				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with a minimum of 50% marks secured in Chemistry				
Co-requisite	Students should have fundamental knowledge of Drugs				
Anti-requisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

The primary objective of this paper is to help the student to know about molecular modeling, simulation and designing of drugs.

Course Outcomes

CO1	Understandthe concepts of molecular modeling.
CO2	Differentiate between bond stretching and bending vibrations.
CO3	Ill Develop the knowledge of computer simulation.
CO4	K Understand Molecular Dynamics & Monte Carlo Simulation
CO5	Learn how to predict structure and design of drugs.
CO6	Analyze recent trends going on in the field of Molecular modeling and drug design.

Reference Books

□ A.R. Leach, Molecular Modelling Principles and Application, Longman, 2001.

□ J.M. Haile, Molecular Dynamics Simulation Elementary Methods, John Wiley and Sons, 1997.

□ Satya Prakash Gupta, QSAR and Molecular Modeling, Springer - Anamaya Publishers, 2008.

Unit I: Introduction to Molecular Modelling:	8 hrs			
Introduction. Useful Concepts in Molecular Modelling:	Coordinate Systems. Potential Energy			
Surfaces. Molecular Graphics. Surfaces				
Unit II: Force Fields:	10 hrs			
Fields. Bond Stretching. Angle Bending. Introduction to	nonbonded interactions. Electrostatic			
interactions. van der Waals Interactions. Hydrogen bonding	in Molecular Mechanics.			
Unit-3: Energy Minimization and Computer Simulation	10 hrs			
Minimization and related methods for exploring the energy	v surface. Non-derivative method, First			
and second order minimization methods. Simple thermodynamic properties and Phase Space.				
Boundaries. Analyzing the results of a simulation and estimate	ating Errors.			
Unit-4:Molecular Dynamics & Monte Carlo Simulation	10hrs			
Molecular Dynamics Simulation Methods. Molecular Dyn	amics using simple models. Molecular			
Dynamics with continuous potentials. Molecular Dynamics	s at constant temperature and pressure.			
Metropolis method. Monte Carlo simulation of polymers.				
Unit-5: Structure Prediction and Drug Design	12 hrs			
Structure prediction - Introduction to comparative Modeling. Sequence alignment. Constructing and				
Structure based de novo ligand design				
Structure based de novo ngand design,				
Drug Discovery – Chemoinformatics – QSAR.				
Unit-6: Recent Trends in Molecular Modeling and Drug	Designing 4 hrs			

Advance technology adapted for modelling and Drug Design

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100

Name of The Course	Computational Chemistry				
Course Code	BSCC 2102				
Prerequisite	Students should qualify 10+2 or equivalent examination in Science stream with a minimum of 50% marks secured in Chemistry				
Co-requisite	Students should have fundamental knowledge of Computer and Mathematics				
Anti-requisite					
		L	Т	Р	C
		4	0	0	4

Course Objectives:

The objective of this course is to introduce the students to fundamental mathematical techniques and basic computer skills that will help them in solving chemistry problems.

Course Outcomes

CO1	Explain most commonly used commands and library functions used in Computer BASIC programming. (K2)			
CO2	Develop algorithm to solve problems and write corresponding programs in BASIC. (K3)			
CO3	Design BASIC programs for performing calculations involved in labory experiments and research work. (K4)			
CO4	Practice various spreadsheet software to perform calculations and plot graphs. (K3)			
CO5	Eloborate recent advancements in Computational Chemistry. (K6)			

Text Books

- 3. V. Rajaraman, Fortran 90, Prentice Hall (India), New Delhi (1997)
- 4. C. Xavier, Fortran 77 and Numerical Methods, New Age International Pvt. Ltd. Publishers, New Delhi (1994)

Reference Books

- 3. S. Lipschutz and A. Poe, Schaum's Outline Series Theory and Problems of Programming with Fortran including structured Fortran, Mc Graw Hill Book Company, Singapore (1982)
- 4. K. V. Raman, *Computers in Chemistry*, Tata McGraw Hill (1993).

Unit I:Basics	14 hrs			
Constants, variables, bits, bytes, binary and ASCII formats, arithmetic expressions, hierarchy of operations, inbuilt functions. Elements of the BASIC language. BASIC keywords and commands. Logical and relative operators. Strings and graphics. Compiled versus interpreted languages.				
Unit II: C Programming:	12 hrs			
Introduction; style of C language ,character and key , relational , logical and bitwise operators in C, terr operator input and output in C : content , conditional statement in loop. Storage classes in C functions arra statement , preprocessor- define and includes simple	Introduction; style of C language ,character and key words, variables and constants in C, arithmetic , relational , logical and bitwise operators in C, ternary, cast, & and * pointer operators, Size of operator input and output in C : content , conditional and switch statement in C; break and continue statement in loop. Storage classes in C functions array and pointers C, structure and unions, types of statement , preprocessor- define and includes simple programming in C.			
Unit-3 Molecular Modelling	12 hrs			
Elementary ideas of molecular mechanics and practical MO methods. Computation of stable state energies and geometries of molecules; vibrational states and electron distribution; Potential energy surfaces.				
Unit-4 Numerical methods	12 hrs			
Roots of equations: Numerical methods for roots of Differential calculus: Numerical differentiation. (Trapezoidal and Simpson's rule), probability d equations: Matrix manipulation: addition, multiplicat Unit-5 Recent Trends in Computational Chemistr	equations: Quadratic formula, iterative method. Integral calculus: Numerical integration istributions and mean values. Simultaneous tion. Handling of experimental data. Ty 4 hrs			
Recent Advancements in Computational Chemistry a	and Application			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
30	20	50	100