Course Code: BTEE3011 Course Name: Power Electronics

INSULATED GATE BIPOLAR TRANSISTOR (IGBT)

IGBT Module

Course Code: BTEE3011 Course Name: Power Electronics

IGBT: Insulated-Gate Bipolar Transistor

- Combination BJT and MOSFET
 - High Input Impedance (MOSFET)
 - Low On-state Conduction Losses (BJT)
- High Voltage and Current Ratings
- Symbol

Course Code: BTEE3011 Course Name: Power Electronics

Course Code: BTEE3011 Course Name: Power Electronics

IGBT Equivalent Circuit for V_{GE}<V_T

Course Code: BTEE3011

Course Name: Power Electronics

IGBT Equivalent Circuit for V_{GE}>V_T

Name of the Faculty: Saravanan D

Program Name: B.Tech-EE/EEE

Course Code: BTEE3011 Course Name: Power Electronics

IGBT Output Characteristics

Course Code: BTEE3011 Course Name: Power Electronics

IGBT Transfer Characteristic

Course Code: BTEE3011 Course Name: Power Electronics

Characteristic	Symbol	Definition
		(For ratings, see the relevant technical datasheets.)
Gate leakage current	I _{GES}	The gate-emitter current that flows when the rated voltage
		is applied across the gate and the emitter with the collector
		and emitter electrodes shorted
Collector cut-off current	I _{CES}	The collector-emitter current that flows when the rated
		voltage is applied across the collector and the emitter with
		the gate and emitter electrodes shorted
Gate-emitter cut-off voltage	V _{GE(OFF)}	The gate-emitter voltage at which the rated collector
		current flows when the rated collector-emitter voltage is
		applied
Collector-emitter saturation	V _{CE(sat)}	The collector-emitter voltage when the rated gate-emitter
voltage		voltage is applied and the collector current is at the rated
		value
Diode forward voltage*8	V _F	The emitter-collector voltage when the rated forward
		current is applied to the freewheeling diode of an IGBT

Name of the Faculty: Saravanan D

Program Name: B.Tech-EE/EEE

IGBT Used as a Switch

Course Code: BTEE3011 Course Name: Power Electronics

Course Code: BTEE3011 Course Name: Power Electronics

Characteristic	Symbol	Definition
		(For ratings, see the relevant technical datasheets.)
Input capacitance	Cies	The capacitance between the gate and the emitter at the rated gate-emitter voltage, collector-
		emitter voltage, and frequency
Turn-on delay time	td(on)	The time it takes for the collector current to reach 10% of the rated value at turn-on from the time
		at which the gate voltage is 10% of the rated value (inductive load)
Rise time	tr	The time it takes for the collector current to rise from 10% to 90% of its rated value at turn-on
Turn-on time	ton	The time it takes for the collector current to reach either 90% of its rated value (in the case of a
		resistive load) or 10% of the drain-source voltage (in the case of an inductive load) at turn-on from
		the time at which the gate voltage is 10% of the rated value
Turn-off delay time	td(off)	The time it takes for the drain-source voltage to reach 10% at turn-off from the time at which the
		gate voltage is 90% of the maximum rated value
Fall time	tf	The time it takes for the collector current to fall from 90% to 10% of its rated value at turn-off
Turn-off time	toff	The time it takes for the collector current to reach 10% of its rated value at turn-off from the time
		at which the gate voltage is 90% of the maximum rated value
Switching loss	Eon	The amount ofenergy lost during turn-on until the collector-emitter voltage reaches the rated
(Turn-on loss)		value
Switching loss	Eoff	The amount of energy lost during turn-off until the collector-emitter voltage reaches the rated
(Turn-off loss)		value
Reverse recovery	trr	The period of time during which reverse recovery current flows through the freewheeling diode
time(*10)		under the rated conditions that is connected in anti-parallel between the collector and the emitter

Name of the Faculty: Saravanan D

Program Name: B.Tech-EE/EEE