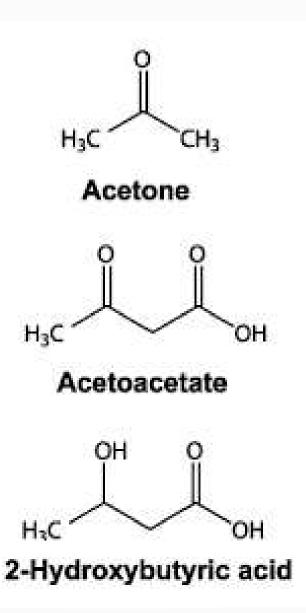
School of Basic and Applied Sciences

Course Code : MSBC6004

Course Name: Protein, Lipid and Nucleotide Metabolism

KETONE BODIES


GALGOTIAS UNIVERSITY

Name of the Faculty: Dr. Pratichi Singh

Program Name: M.Sc Biochemistry¹

Introduction

- Ketone bodies are metabolic products that are produced in excess during excessive breakdown of fatty acids.
- Acetoacetate, acetone and β-hydroxybutyrate are collectively known as ketone bodies (acetone bodies).
- Only the first two are true ketones while βhydroxybutyrate does not possess a keto (C=O) group.
- Ketone bodies are water-soluble and energy yielding.
- In a normal man, concentration of ketone bodies in the blood is usually less than 3 mg/100ml.

SIGNIFICANCE OF KETONE BODIES

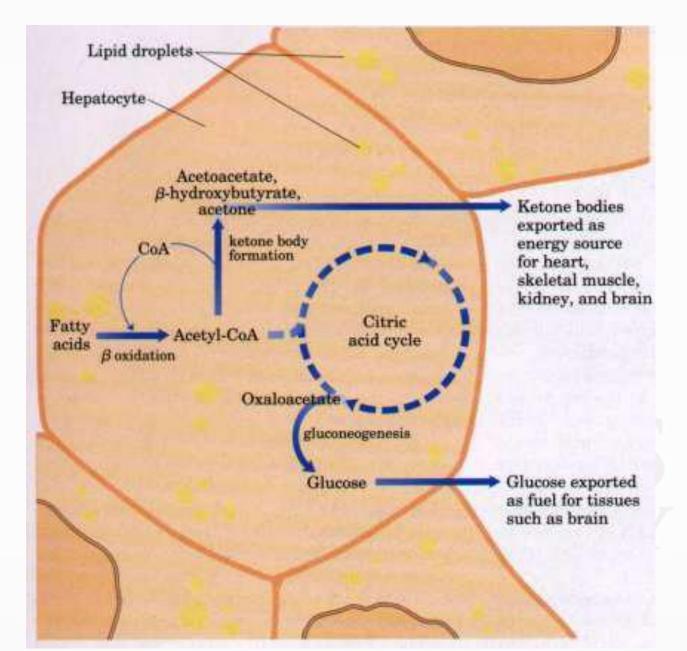
Alternate source to glucose for energy needs

 Ketone bodies represent an alternative to glucose for the provision of energy to the cells.

Production of ketone bodies under conditions of cellular energy deprivation

- Ketone bodies are produced when excessive fatty acids are being oxidized (because of increased adipose tissue lipolysis) and glucose availability to the cells is limited.
- Such situations are seen in conditions such as diabetes mellitus and starvation.

Utilization of ketone bodies by the brain


- Brain normally utilizes glucose for energy needs.
- Although ketone bodies cannot completely replace glucose for energy needs in the brain, brain gets adapted to oxidize ketone bodies during prolonged fasting and starvation.

Sy athenis Acetyle COA + Acetyle COA 1 Thidase Acctoacty & COA HMG LOA Synthese HING COA B - hydroxy & - methy equitarye con (Acetoacelaste) + Acetyle COA B-qui - Butyrate DH. ca 2 X Acetone - JB-OH Butysote unligation, Extra hepatic time liver, RBC B-ON- Bytypate NADUA JEM Sycempton Condenses Thisphorase Succinate 2 Acitoacetyl con Con SII (condeness 20 ATP 2.5 ATP Acetyl COA + Acetyl COA > 22.5 21.5

A (Kie) in bload + ketonemia Ketoneria keton's (BM) Diabetic kets acidoris DAA

5

Ketone body formation and export from the liver

DEFINITION

• • Ketosis is a disorder of excessive production of ketone bodies.

- • Excessive ketone bodies are produced mainly in two conditions:
- 1. Starvation (carbohydrate deprivation)
- 2. Uncontrolled diabetes mellitus (impaired uptake of glucose by the peripheral tissues).)

BIOCHEMICAL AND CLINICAL FINDINGS

• The important features of ketosis are ketonemia, ketonuria, acetone odor of breath, metabolic acidosis and hyperkalemia.

1. Ketonemia

• In ketosis, the plasma concentration of ketone bodies is well above normal

limits. The condition is called ketonemia.

2. Ketonuria

• When the concentration of ketone bodies significantly increased (above

70mg/dl) in plasma, they appear in urine. The condition is called ketonuria.

3. Acetone in breath

• Acetone is also excreted by the lungs and produces a characteristic odor in

breath (acetone odor of breath).

4. Metabolic acidosis

- Metabolic acidosis is caused by excessive accumulation of β-hydroxybutyrate and acetoacetate.
- 5. Hyperkalemia
- Acidosis results in the shift of potassium from intracellular to extracellular compartment.

BIOCHEMICAL DIAGNOSIS

- 1. β-hydroxybutyrate in plasma
- 2. Acetoacetate in urine
- 3. Rothera's test

MANAGEMENT

- 1. Provision of glucose to the tissues
- Ketosis is suppressed by restoring adequate level of carbohydrate metabolism.
- 2. Correction of electrolyte imbalance and acid-base imbalance
- Metabolic acidosis is corrected by bicarbonate administration.
- Correction of metabolic acidosis also reverses hyperkalemia.

References

- Stryer, Lubert (1995). Biochemistry (Fourth ed.). New York: W.H. Freeman and Company. pp. 510–515, 581–613, 775–778. ISBN 0-7167-2009-4.
- Koeslag, J.H.; Noakes, T.D.; Sloan, A.W. (1980). "Post-exercise ketosis". Journal of Physiology. **301**: 79-90. doi:10.1113/jphysiol.1980.sp013190. PMC 1279383. PMID 6997456.
- Clarke, DD; Sokoloff, L (1999). Siegel, GJ; Agranoff, BW; Albers, RW (eds.). Basic Neurochemistry: Molecular, Cellular and Medical Aspects (6th ed.). Philadelphia: Lippincott-Raven.