
Topic: Frobenius Method 
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If x = x0 is a regular singular point of given ODE, then 

there exists one solution of the form

where the number r is a constant to be determined. 

The series will converge at least on some interval 

0 < x – x0 < R. 

Frobenius’ Theorem
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Example : Frobenius’ Method

• Because x = 0 is a regular singular point of
(1)

we try to find a solution                                .
Now, 

Ch5_3
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Example Contd…
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Example Contd…

which implies r(3r – 2)c0 = 0
(k + r + 1)(3k + 3r + 1)ck+1 – ck = 0, k = 0, 1, 2, …

Since nothing is gained by taking c0 = 0, then
r(3r – 2) = 0 (2)

and

(3)

From (2), r = 0, 2/3, when substituted into (3), 

Ch5_5

,2,1,0,
)133)(1(

1 =
++++

=+ k
rkrk

c
c k

k



Example Contd…

r1 = 2/3, k = 0,1,2,…     (4)

r2 = 0, k = 0,1,2,… (5)
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Example Contd…

From (4) From(5)
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Example Contd…

These two series both contain the same multiple c0. Omitting this term, 
we have

(6)

(7)
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Example Contd…

By the ratio test, both (6) and (7) converges for all finite value of x, that 
is, |x| < . Also, from the forms of (6) and (7), they are linearly 
independent. Thus the solution is

y(x) = C1y1(x) + C2y2(x),   0 < x < 
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Indicial Equation
• Equation (2) is called the indicial equation, where the values of r are 

called the indicial roots, or exponents. 

• If x = 0 is a regular singular point of (1), then p = xP and q = x2Q are 
analytic at x = 0. 

Ch5_10



0)]([)]([ 22 =++ yxQxyxxPxyx

Thus the power series expansions
p(x) = xP(x) = a0＋a1x＋a2x2＋…
q(x) = x2Q(x) = b0＋b1x＋b2x2＋… (8)

are valid on intervals that have a positive radius of convergence. 
By multiplying (2) by x2, we have

(9)

After some substitutions, we find the indicial equation,   r(r – 1) 
+ a0r + b0 = 0 (10)
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Example 
Solve

Solution
Let                             , then
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Example Contd…

which implies  r(2r – 1) = 0 (1)

(2)
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Example Contd…

From (1), we have r1 = ½ , r2 = 0.
Foe r1 = ½ , we divide by k + 3/2 in (2) to obtain

(3)

Foe r2 = 0 , (2) becomes

(4)
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Example Contd… From (3) From (4)
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Example Contd…

Thus for r1 = ½ 

for r2 = 0 

and on (0, ), the solution is y(x) = C1y1 + C2y2.
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