

Lecture Notes

on Greedy Algorithms: Knapsack Problem

(Established under Galgotias University Uttar Pradesh Act No. 14 of 2011)

July 2020 (Be safe and stay at home)

 A greedy algorithm makes the choice that looks best at the moment, without regard for future consequence

- A greedy algorithm makes the choice that looks best at the moment, without regard for future consequence
- The proof of the greedy algorithm producing an optimal solution is based on the following two key properties:

- A greedy algorithm makes the choice that looks best at the moment, without regard for future consequence
- The proof of the greedy algorithm producing an optimal solution is based on the following two key properties:
 - The greedy-choice property

 a globally optimal solution can be arrived at by making a locally
 optimal (greedy) choice.

- A greedy algorithm makes the choice that looks best at the moment, without regard for future consequence
- The proof of the greedy algorithm producing an optimal solution is based on the following two key properties:
 - The greedy-choice property

 a globally optimal solution can be arrived at by making a locally
 optimal (greedy) choice.
 - The optimal substructure property

an optimal solution to the problem contains within it optimal solution to subprograms.

- A greedy algorithm makes the choice that looks best at the moment, without regard for future consequence
- The proof of the greedy algorithm producing an optimal solution is based on the following two key properties:
 - The greedy-choice property

 a globally optimal solution can be arrived at by making a locally
 optimal (greedy) choice.
 - The optimal substructure property
 - an optimal solution to the problem contains within it optimal solution to subprograms.
- Greedy algorithms do not always yield optimal solutions, but for many problems they do.

Problem statement:

- Given n items $\{1, 2, \ldots, n\}$
- Item i is worth v_i , and weight w_i
- \blacktriangleright Find a most valuable subset of items with total weight $\leq W$

Problem statement:

- Given n items $\{1, 2, \ldots, n\}$
- Item i is worth v_i , and weight w_i
- \blacktriangleright Find a most valuable subset of items with total weight $\leq W$

Rule: have to either take an item or not take it ("0-1 Knapsack") – cannot take part of it.

Problem statement:

- Given n items $\{1, 2, \ldots, n\}$
- Item i is worth v_i , and weight w_i
- \blacktriangleright Find a most valuable subset of items with total weight $\leq W$

Rule: have to either take an item or not take it ("0-1 Knapsack") – cannot take part of it.

Example:

Given

i	v_i	w_i	v_i/w_i
1	6	1	6
2 3	10	2	5
3	12	3	4

Total weight W = 5

Course: Design a Alalysi a most wall able subset of tems with to be an weight $\leq W \,\, \overline{\mathrm{mr}}$. Sankit Kumar

Problem statement, mathematically – version 1: Find a subset $S \subseteq \{1, 2, ..., n\}$ such that

$$\begin{array}{ll} \textit{maximize} & \sum_{i \in \mathbb{S}} v_i \\ \textit{subject to} & \sum_{i \in \mathbb{S}} w_i \leq W \end{array}$$

Problem statement, *mathematically* – version 2:

Let
$$x = (x_1, x_2, ..., x_n)$$
, and

$$x_i = \begin{cases} 1 & i\text{-th item is in the knapsack} \\ 0 & i\text{-th item is not in the knapsack} \end{cases}$$

Then the knapsack problem is

$$\begin{array}{ll} \text{maximize} & \sum_{i=1}^n v_i x_i \\ \text{subject to} & x_i \in \{0,1\} \\ & \sum_{i=1}^n w_i x_i \leq W \end{array}$$

The brute-force algorithm

The brute-force algorithm

▶ 2^n feasible solutions

The brute-force algorithm

- \blacktriangleright 2ⁿ feasible solutions
- Total cost = $O(n \cdot 2^n)$

Three possible greedy strategies:

1. Greedy by highest value v_i

Three possible greedy strategies:

- 1. Greedy by highest value v_i
- 2. Greedy by least weight w_i

Three possible greedy strategies:

- 1. Greedy by highest value v_i
- 2. Greedy by least weight w_i
- 3. Greedy by largest value density $\frac{v_i}{w_i}$

Example

i	v_i	w_i	v_i/w_i
1	6	1	6
2	10	2	5
3	12	3	4

Total weight W = 5

Example

i	v_i	w_i	v_i/w_i
1	6	1	6
2	10	2	5
3	12	3	4

Total weight W = 5

Greedy by value density v_i/w_i :

- take items 1 and 2.
- value = 16, weight = 3
- Leftover capacity = 2

Example

i	v_i	w_i	v_i/w_i
1	6	1	6
2	10	2	5
3	12	3	4

Total weight W = 5

Greedy by value density v_i/w_i :

- take items 1 and 2.
- value = 16, weight = 3
- Leftover capacity = 2

Optimal solution

- take items 2 and 3.
- value = 22, weight = 5
- no leftover capacity

Example

i	v_i	w_i	v_i/w_i
1	6	1	6
2	10	2	5
3	12	3	4

Total weight W = 5

Greedy by value density v_i/w_i :

- take items 1 and 2.
- value = 16, weight = 3
- ► Leftover capacity = 2

Optimal solution

- take items 2 and 3.
- value = 22, weight = 5
- no leftover capacity

Question: how about greedy by highest value? by least weight?

Another example

Given the following six items with W = 100:

				Greedy by			optimal solution
i	v_i	w_i	v_i/w_i	value	weight	v_i/w_i	
1	40	100	0.4	1	0	0	0
2	35	50	0.7	0	0	1	1
3	18	45	0.4	0	1	0	1
4	4	20	0.2	0	1	1	0
5	10	10	1	0	1	1	0
6	2	5	0.4	0	1	1	1
Total value		40	34	51	55		
Total weight			100	80	85	100	

Another example

-				Greedy by			optimal solution
i	v_i	w_i	v_i/w_i	value	weight	v_i/w_i	
1	40	100	0.4	1	0	0	0
2	35	50	0.7	0	0	1	1
3	18	45	0.4	0	1	0	1
4	4	20	0.2	0	1	1	0
5	10	10	1	0	1	1	0
6	2	5	0.4	0	1	1	1
Total value		40	34	51	55		
Total weight		100	80	85	100		

All three greedy approaches generate feasible solutions, but none of them generate the optimal solution. Greedy algorithms doesn't work for the 0-1 knapsack problem!

Course: Design & Analysis of an Algorithm

Course Code: BCSE3031

Q & A? Queries are welcome on slack channel for discussion