

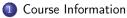
Lecture Notes

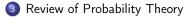
on

Information Theory and Coding

(Established under Galgotias University Uttar Pradesh Act No. 14 of 2011)

July 2020 (Be safe and stay at home)





Information Measures

What is Information Theory?

- IT is a branch of math (a strictly deductive system). (C. Shannon, The bandwagon)
- \bullet General statistical concept of communication. (N. Wiener, What is IT?)
- It was build upon the work of Shannon (1948)
- It answers to two fundamental questions in Communications Theory:
 - What is the fundamental limit for information compression?
 - What is the fundamental limit on information transmission rate over a communications channel?

What is Information Theory?

- Mathematics: Inequalities
- Computer Science: Kolmogorov Complexity
- Statistics: Hypothesis Testings
- Probability Theory: Limit Theorems
- Engineering: Communications
- Physics: Thermodynamics
- Economics: Portfolio Theory

Communications Systems

• The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. (Claude Shannon: A Mathematical Theory of Communications, 1948)

Digital Communications Systems

- Source
- Source Coder: Convert an analog or digital source into bits.
- Channel Coder: Protection against errors/erasures in the channel.
- Modulator: Each binary sequence is assigned to a waveform
- Channel: Physical Medium to send information from transmitter to receiver. Source of randomness.
- Demodulator, Channel Decoder, Source Decoder, Sink.

Digital Communications Systems

- Modulator + Channel = Discrete Channel.
- Binary Symmetric Channel.
- Binary Erasure Channel.

Review of Probability Theory

- Axiomatic Approach
- Relative Frequency Approach

Axiomatic Approach

- Application of a mathematical theory called *M*easure Theory.
- It is based on a triplet

$$(\Omega, \mathcal{F}, P)$$

where

- Ω is the sample space, which is the set of all possible outcomes.
- *F* is the *σ*-algebra, which is the set of all possible events (or combinations of outcomes).
- *P* is the probability function, which can be any set function, whose domain is Ω and the range is the closed unit interval [0,1]. It must obey the following rules:
 - $P(\Omega) = 1$
 - Let A be any event in \mathcal{F} , then $P(A) \ge 0$.
 - Let A and B be two events in \mathcal{F} such that $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$.

Axiomatic Approach: Other properties

- Probability of complement: $P(\overline{A}) = 1 P(A)$.
- $P(A) \le 1$.
- $P(\emptyset) = 0.$
- $P(A \cup B) = P(A) + P(B) P(A \cap B).$

Conditional Probability

• Let A and B be two events, with P(A) > 0. The conditional probability of B given A is defined as:

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

- Hence, $P(A \cap B) = P(B|A)P(A) = P(A|B)P(B)$
- If $A \cap B = \emptyset$ then P(B|A) = 0.
- If $A \subset B$, then P(B|A) = 1.