
GRAPHS

GRAPHS
• Graph representation
• Minimum spanning trees
• Optimal substructure
• Greedy choice
• Prim’s greedy MST algorithm

Graphs (review)
Definition. A directed graph (digraph)
G = (V, E) is an ordered pair consisting of
• a set V of vertices (singular: vertex),
• a set E V V of edges.

In an undirected graph G = (V, E), the edge
set E consists of unordered pairs of vertices.

In either case, we have |E | = O(V 2). Moreover,
if G is connected, then | E | | V | – 1, which
implies that lg |E | = (lgV).

(Review CLRS, Appendix B.)

A[i, j] =

The adjacency matrix of a graph G = (V, E), where
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]
given by

1 if (i, j) E,
0 if (i, j) E.

Adjacency-Matrix representation

Adjacency-Matrix representation

A[i, j] =

The adjacency matrix of a graph G = (V, E), where
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]
given by

1 if (i, j) E,
0 if (i, j) E.

A 1 2 3 4
2 1 1 0 1 1 0

2 0 0 1 0
3 4 3 0 0 0 0

4 0 0 1 0

(V 2) storage
 dense
representation.

An adjacency list of a vertex v V is the list Adj[v]
of vertices adjacent to v.

2 1

3 4

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

Adjacency-Matrix representation

Adjacency-list representation
An adjacency list of a vertex v V is the list Adj[v]
of vertices adjacent to v.

2 1

3 4

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

For undirected graphs, |Adj[v] | = degree(v).
For digraphs, |Adj[v] | = out-degree(v).

Adjacency-list representation
An adjacency list of a vertex v V is the list Adj[v]
of vertices adjacent to v.

2 1

3 4

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

For undirected graphs, | Adj[v] | = degree(v).
For digraphs, |Adj[v] | = out-degree(v).

Handshaking Lemma: vV degree(v) = 2 | E | for
undirected graphs adjacency lists use (V + E)
storage — a sparse representation.

Minimum spanning trees
Input: A connected, undirected graph G = (V, E)
with weight function w : E R.
• For simplicity, assume that all edge weights are

distinct. (CLRS covers the general case.)

Minimum spanning trees
Input: A connected, undirected graph G = (V, E)
with weight function w : E R.
• For simplicity, assume that all edge weights are

distinct. (CLRS covers the general case.)

Output: A spanning tree T — a tree that connects
all vertices — of minimum weight:

w(T) w(u,v) .
(u,v)T

Example of MST

6 12
5

14

3

8

10

9

15
7

Example of MST

6 12
5

14

3

8

10

9

15
7

Optimal substructure

MST T:

(Other edges of G
are not shown.)

u

v

Remove any edge (u, v) T.

Optimal substructure
MST T:

(Other edges of G
are not shown.)

u

v

Remove any edge (u, v) T.

Optimal substructure
MST T:

(Other edges of G
are not shown.)

Remove any edge (u, v) T. Then, T is partitioned
into two subtrees T1 and T2.

T1

T2
u

v

Optimal substructure
MST T:

(Other edges of G
are not shown.)

T1

T2
u

v

Optimal substructure

Remove any edge (u, v) T. Then, T is partitioned
into two subtrees T1 and T2.
Theorem. The subtree T1 is an MST of G1 = (V1, E1),
the subgraph of G induced by the vertices of T1:

V1 = vertices of T1,
E1 = { (x, y) E : x, y V1 }.

Similarly for T2.

MST T:

(Other edges of G
are not shown.)

