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Proof. Cut and paste:

w(T) = w(u, v) + w(T1) + w(T2).
If T1were a lower-weight spanning tree than T1 for

G1, then T = {(u, v)}  T1 T2 would be a  
lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?
•Yes.
Great, then dynamic programming may work!
•Yes, but MST exhibits another powerful property  
which leads to an even more efficient algorithm.
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Greedy-choice property  
A locally optimal choice  
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Theorem. Let T be the MST of G = (V, E),  
and let A  V. Suppose that (u, v)  E is the  
least-weight edge connecting A to V – A.  
Then, (u, v)  T.
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Proof of theorem
Proof. Suppose (u, v)  T. Cut and paste.

 V – A

u
(u, v) = least-weight edge  
connecting A to V – A

T : v

 A

Consider the unique simple path from u to v in T.

Swap (u, v) with the first edge on this path that  
connects a vertex in A to a vertex in V – A.

A lighter-weight spanning tree than T results.



Prim’s algorithm
IDEA: Maintain V – A as a priority queue Q. Key  
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A.
Q  V
key[v]  for all v  V
key[s]  0 for some arbitrary s  V
while Q  

do u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)

[v]  u
DECREASE-KEY

At the end, {(v, [v])} forms the MST.



Example of Prim’s algorithm
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