
GRAPHS

MINIMUM SPANNING TREES

Proof of optimal substructure
MST

Proof. Cut and paste:
w(T) = w(u, v) + w(T1) + w(T2).

If T1were a lower-weight spanning tree than T1 for
G1, then T = {(u, v)} T1 T2 would be a
lower-weight spanning tree than T for G.

Proof of optimal substructure
Proof. Cut and paste:

w(T) = w(u, v) + w(T1) + w(T2).
If T1were a lower-weight spanning tree than T1 for

G1, then T = {(u, v)} T1 T2 would be a
lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?
•Yes.

Proof of optimal substructure
Proof. Cut and paste:

w(T) = w(u, v) + w(T1) + w(T2).
If T1were a lower-weight spanning tree than T1 for

G1, then T = {(u, v)} T1 T2 would be a
lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?
•Yes.
Great, then dynamic programming may work!
•Yes, but MST exhibits another powerful property
which leads to an even more efficient algorithm.

Hallmark for “greedy” algorithms

Greedy-choice property
A locally optimal choice

is globally optimal.

Hallmark for “greedy” algorithms

Greedy-choice property
A locally optimal choice

is globally optimal.

Theorem. Let T be the MST of G = (V, E),
and let A V. Suppose that (u, v) E is the
least-weight edge connecting A to V – A.
Then, (u, v) T.

Proof of theorem

 A
 V – A

u

Proof. Suppose (u, v) T. Cut and paste.

T: v

(u, v) = least-weight edge
connecting A to V – A

Proof of theorem

 A
 V – A

u

Consider the unique simple path from u to v in T.

(u, v) = least-weight edge
connecting A to V – A

Proof. Suppose (u, v) T. Cut and paste.

T: v

Proof of theorem

 A
 V – A

u
(u, v) = least-weight edge
connecting A to V – A

Proof. Suppose (u, v) T. Cut and paste.

T: v

Consider the unique simple path from u to v in T.

Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V – A.

Proof of theorem
Proof. Suppose (u, v) T. Cut and paste.

 V – A

u
(u, v) = least-weight edge
connecting A to V – A

T : v

 A

Consider the unique simple path from u to v in T.

Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V – A.

A lighter-weight spanning tree than T results.

Prim’s algorithm
IDEA: Maintain V – A as a priority queue Q. Key
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A.
Q V
key[v] for all v V
key[s] 0 for some arbitrary s V
while Q

do u EXTRACT-MIN(Q)
for each v Adj[u]

do if v Q and w(u, v) < key[v]
then key[v] w(u, v)

[v] u
DECREASE-KEY

At the end, {(v, [v])} forms the MST.

Example of Prim’s algorithm

 A
 V – A

0

6 12

14

3

8

10

 5 9

15
7

Example of Prim’s algorithm

 A
 V – A

0

6 12

14

3

8

10

 5 9

15
7

Example of Prim’s algorithm

 A
 V – A

0

6 12

14

3

8

10

15

 5 9
7

Example of Prim’s algorithm

 A
 V – A

0

6 12

14

3

8

10

15

 5 9
7

Example of Prim’s algorithm

 A
 V – A

 0

6 12

5

14

3

8

10

15

9

7

Example of Prim’s algorithm

 A
 V – A

 0

6 12

5

14

3

8

10

15

9

7

Example of Prim’s algorithm

 A
 V – A

 0

6 12

5

14

3

8

10

15

9

7

Example of Prim’s algorithm

 A
 V – A

 0

6 12

5

14

3

8

10

15

9

7

Example of Prim’s algorithm
 A
 V – A

 0

6 12

5

14

3

8

10

15

9

7

Example of Prim’s algorithm

 A
 V – A

 0

6 12

5

14

3

8

10

15

9

7

Example of Prim’s algorithm

 A
 V – A

 0

6 12

5

14

3

8

10

15

9

7

Example of Prim’s algorithm

 A
 V – A

 0

6 12

5

14

3

8

10

15

9

7

Example of Prim’s algorithm

 A
 V – A

 0

6 12

5

14

3

8

10

15

9

7

