Course Code : MSB21T2001

Course Name: HR Metrics & Analytics

HR Metrics & Analytics MSB21T2001

GALGOTIAS UNIVERSITY

Name of the Faculty: Mamta Gaur

Course Code : MSB21T2001

Course Name: HR Metrics & Analytics

Index-Session 24

S. No.	Specifications	Slide Number
1	Session Objectives	3
2	Recap	4
3	Concept discussion	5
4	Visualization of the concept	6
5	Demonstration	7- 14
6	Thanks	15
	UNIVERSIIS	

Name of the Faculty: Mamta Gaur

Course Code : MSB21T2001

Course Name: HR Metrics & Analytics

session Objectives- Topics to be discussed

Regression

GALGOTIAS UNIVERSITY

Name of the Faculty: Mamta Gaur

Course Name: HR Metrics & Analytics

Recap of Session 26 1.DATA VISUALIZATION OR HR REPORT VISUALIZATION

2. PERFORMING ROOT CAUSE ANALYSIS

3. DATAFICATION OF HUMAN RESOURCES

Course Code : MSB21T2001

Before we come and discuss regression, let us look at a famous quote by Ronald Coase. He said, "If you torture the data long enough, it will confess." And, regression is one of the techniques that is frequently used to make the data confess. Let us look at a few interesting hypotheses, which people have come up with. The first one says, "Good looking couples are more likely to have girl child." Personally, I like this hypotheses because I have a daughter, and at least statistically, I'm good looking. The next is vegetarians miss fewer flights, women use camera phone more than men, lefthanded men earn more money, smokers are better salespeople, and those who whistle at workplace are efficient. Now, organizations use these hypotheses to add value. For example, let us look at women use camera phone more than men. If there is a company which makes cellphones; now they can target women and claim that those phones are great for taking photos. And, similarly, smokers are better salespeople. If a company is looking for salespeople, then in the interview they can ask whether they smoke. So, this is how some of these hypotheses are actually used.

UNIVERSITY

Regression is one of the techniques and also one of the powerful techniques. But, they may have used simple hypotheses testing techniques such as Z-test, or T-test, or F-test, and so on. So, we don't know, really, how they actually prove these hypotheses. Now, let us look at what is regression. Regression is a tool for finding existence of an association relationship between a dependent variable (Y) and one or more independent variables in the study. The relationship can be linear or non-linear. Regression is a statistical relationship. So, we had to understand the difference between a mathematical relationship and a statistical relationship. Let us look at a mathematical relationship. We have $Y = \beta 0 + \beta 1X$. So, what do we mean by that? If we know the value of X, we can predict the value of Y exactly, whereas in a statistical relationship, we'll have the relationship as $Y = \beta 0 + \beta 1X + \epsilon$. So, here with the knowledge of X, we'll not be able to predict the value of Y exactly. There will be always some error.

UNIVERSITY

Let us come back and see the nomenclature used in regression. We call a dependent variable or a response variable that measures outcome of a study, also called outcome variable. In the case of die-another-day case, the total cost of treatment is a response variable or outcome variable. And an independent variable or explanatory variables explains the changes in the response variable. So, if you want to understand why the total treatment cost changes, we may have to look at the variables like the patient's height, weight, and the past medical history. So, with that information, we believe that we may be able to tell the value of outcome variable. Regression often sets the values of explanatory variable to see how it affects the response variable. It is important to understand that regression model establishes existence of an association between two variables, but not causation. This is very, very important for the students to understand.

GALGOTIAS UNIVERSITY

Course Code : MSB21T2001

Course Name: HR Metrics & Analytics

Now, there are techniques like counter factual models and graphical models that can be used for establishing causal relationship. But, we're not going to look at those techniques in this particular course. Here, I have given a table which basically gives us a list of different names used to represent Dependent Variable and Independent Variable. It is also important to understand that dependent variable doesn't mean that it depends on the values of independent variable. Just name that we use in a regression model. And also, regression is not designed to capture causality. The purpose of regression is to predict the value of dependent variable given the value(s) of independent variable(s).

GALGOTIAS UNIVERSITY

Regression is one of the most frequently used tool in predictive analytics, and let us see why. Whenever we talk about companies, they use many different key performance indicators. So, key performance indicators such as market share, or if I have to use specific example, in case of dieanother-day hospital, they were interested in finding the total cost of treatment. So, you take any organization, there will be a list of key performance indicator. And I will like to know, how these KPIs are affected because of changes in some other factor. So, that's why regression is very important. Let us look at some specific examples under different functional areas of management. When we talk about finance, Capital Asset Pricing Model is an important model, which everybody uses, and at this nothing but a regression model nonperforming assets, probability of default, chance of bankruptcy, and credit risk. Many times, people use regression to find these KPIs. When we talk about marketing, people like to know what will be the sales and what will be the market share, customer satisfaction, customer churn, customer retention, and customer life time value.

These are important measures in marketing and, again, researchers use regression to calculate or predict these values. In Operations, things like inventory requirement, productivity, and efficiency, again, this can be calculated or predicted using regression model. In HR or Human Resource Management, things like job satisfaction and attrition can be understood using regression model. For example, company may like to know which employees likely to churn. So, they can develop regression model to find out what is the risk associated with the employee that he or she may likely to churn in the near future.

GALGOTIAS UNIVERSITY

You must have read the caselet die-another-day hospital. In that, the protagonist is interested in knowing what will be the treatment cost at the time of admission for a patient. Now, to find the treatment cost or to predict the treatment cost, they used factors like age, weight, past medical history, or even if there are blood reports, they can use the information from the blood report to predict the total treatment cost in that case. Now, there are large number of applications. So, let me give you few more generic examples how regression is used. For example, if we are talking about marketing in detail, questions like how to improve success probability of a new product, what is the impact of food label on purchase decision, which promotion is more effective. So, some of these questions can be answered using regression models. These are few examples from banking and Finance: What is a risk associated with a customer? Which customer is likely to default? What percentage of loans is likely to result in a loss? And, how to identify most profitable customer? There are large number of such questions. One can find answer to those questions using regression model. That's why regression is one of the most popular tools in predictive analytics.

UNIVERSITY

Course Code : MSB21T2001

Course Name: HR Metrics & Analytics

SUMMARY OUTPUT								
Regression	Statistics							
Multiple R	0.213802259							
R Square	0.045711406							
Adjusted R Square	0.037624214							
Standard Error	0.397565779							
Observations	120							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	0.893397727	0.893397727	5.652321465	0.019039702			
Residual	118	18.65090874	0.158058549					
Total	119	19.54430647						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	11.80404812	0.180542158	65.38111796	1.55176E-94	11.44652549	12.16157074	11.44652549	12.16157074
Body Weight	0.007477239	0.003145052	2.377461139	0.019039702	0.00124918	0.013705299	0.00124918	0.013705299

Name of the Faculty: Mamta Gaur

Course Code : MSB21T2001

Course Name: HR Metrics & Analytics

R.No	kody wright	Cost of Treatment	uN(Treatment coct)	(6-8bar)		
	1 22	Gard Namani 4.642 0.645 0.645 0.645 0.645	0(hannet au) 11.00030 11.70030 13.70030 13.70030 13.70037	576 576		
	1 11	13,007	11.70075833	529		
	4 25	1,24,664 1,69,760	11.73449979 12.2002239	445		
	4 14	La Carlos La Carlos La Carlos La Carlos La Carlos	4.100000 4.000000 4.000000 4.000000 4.000000 4.000000	400		
	2 26 8 22	1.82,736	11.81452878 12.02405505	400		
	9 22	123,188	11.72145411	261		
	10 40	2026 URDA URDA URDA URDA	12 2000/0. 21 3000000 22 300007 23 300075	256		
	41	1,77,874	12.00003071	225		
	12 41 24 41	1,20,223	11.8/341717 11.8/2/5215	225		
	15 42	135,622 1,91,666	11.42756315 11.60062392	196		
	16 43 17 43	2025 2020 2020 2020 2020 2020	200000 1020000 0.00000 100000 100000 201000 0.0000 0.0000	169		
	18 43	1,07,465	12.16534026	169		
	19 43 20 44	1,52,346 1,89,827	11.66970607 12.97345303	169		
:	21 64	1,00,027 2,00,73 1,73,567	12 5886238 12 82766865	144		
	22 65 23 65	122,60 13,006 2,60,66	12.202066 12.222564 12.25694776	121		
:	24 45	2,64,666	12 5940775	121		
	5 5 6	1,0,4,74	11.9600326	121		
	22 46	1420 1480 1480 1480 1480	1 500005 1 500005 2 115005 1 500054	100		
	2 U 29 U	1,4,7,6 1,6,64 1,75,156	12,8002,91	81		
	20 40	12,506	1.1 10000 1.07000 1.00000 1.00000 1.00000 1.00000 1.27000	81		
	2 0	1440 1403 1403 1403	11.585739 11.5276278	81 81		
	22 48	1,6(2)9	12.01196427	64		
	a	124.05	11.7722601	49		
	22 69 22 (4)	2048 2048 2046 2058	11.772.0031 11.772.0031 12.3776027	49 ~		
	2 10 10 10 10 10 10 10 10 10 10 10 10 10	1,75,680 1,84,870 1,92,697	12 1053382	a 26		
	20 20	132,007	11.7000016	*		
		(3),90],41,20	12.130441	a X		
	2 12 12 12 12 12 12 12 12 12 12 12 12 12	4550 2400 2406 2406	1 107000 1 107000 1 10000 1 10000 1 20000 1 20000 1 20000	25		
	α 8	1,0,000 1,6,7,20 2,0,673	11.244000 11.20650 11.20650 12.007204 13.007004 13.007004	9		
	6 B	2,0,00	12.4196576			
	0 54	- 20,0,000 2,0,0,00 2,2,0,0,00	12.4310002	4		
	ak 54	1,2,0,5,6	12.0072816	4		
	50	5,058 2,080 6,027 5,027 5,028 5,028 4,028 4,028	Li MONOM Diamonary Li MONOM Li MONOM	1		
	14 15 17 17 17 17 17 17 17 17 17 17 17 17 17	1,6,221	11.90702306	1		
	a 55		1.0000001 1.2.960002	1		
	54 55 77	423,660	12.94810522	0		
	24 24 24 24 24 24 24 24 24 24 24 24 24 2	2.0459 10308 10308 10460 2.546	La 20000 Y La 20000 La 20000 La 20100 La 2010 La 2010 La 2010 La 2010 La 2010	0		
	57 56 09 56	1,8,5,61	12 1722689	0		
	54	1,0,40	12.0046429	0		
	60 56 55 55 55 55 55 55 55 55 55 55 55 55		11846551	0		
	Q 2	100.01 100.04	12.2003/066	1		
	G 52	10,34	11.9076601	1		
	5 52 52 52 52 52 52 52 52 52 52 52 52 52	4005 1400 1400 1400 1400	1.3000007 27.700090 27.66000 1.860000 1.8750007	4		
	6 50 50 50 50 50 50 50 50 50 50 50 50 50	1.61,188	12 1601352	4		
		10,00	1.0.001.000 2.4.440.006 1.0.270.005 1.0.210.006			
	69 59 70 59	1,60,066	12.666/5166	•		
	21 59	2.04/16 4.64/07 4.1020	12.01347562			
	72 59 73 60	1.22,000	11.79817207	9		
	60	10.33 2.000 2.3.00 2.3.00 2.3.00	LI NEUXA DI NEUXA IL STALLA LI STALLA LI STALLA	16		
	% 60 % 60	2,2%,4%	12.53831419 12.3427385	16		
	77 60	3,04,652 1,38,093	12.2300468	16		
	n 6	1.23,000	11.035409	16		
	61	12389 NGG0 NGG0 NGG0 NGG0	12.80705362	25		
	81 D	1.05; 593 2.44, 300	12.00004	×		
	8 62 F	LAND		*		
	8 G	15,941	11.9010675			
	a	1,00,006	11.50080027	49		
	87 64 88 64	5,4,534 1,53,471	12.15060168 12.440007	64 64		
	8 64	3040 UKKO UKKO UKKO	12 A 60500 21 10 20 000 21 20 20 000 21 20 20 000 11 20 20 000	64		
	nu 64 91 64	1,62,667 1,30,667	12/02/4851 11.902/1111	64 64		
	64 00	1.24,555	1 1 200705 11 314605 12 44605 13 44605	64		
	44 65	4,14,60	12.940665	81		
	86 66 66 66 66 66 66 66 66 66 66 66 66 6	4440 3030 3040 3040 3040	12.44250426	81		
	an 65	1,2,530	12 200007 12 200007 12 2000007 12 2000007 12 200007	81		
	a 0		12.0166751	121		
	a 0	1,00,477	12.7016630 12.2046588 12.2066620	121		
	01 68	1,45,200 2,05,155	11.884/0207 12.5955590	144		
	22 70	- 00-4-00 1,07,02	11 0486610	196		
2	04 70 76 71	1038 1480 2480 2483	1 5 556109 11 77 5667 12 0 20155 13 13 2016	196		
	as 71	2,12,207	12 2666941	225		
	07 72 78	47).59 1,44,89	12.0820643 11.87782709	256		
2	09 72	1 AAUF 2013 4 Alas 4 Alas 4 Alas 4 Alas 4 Alas 4 Alas 4 Alas	12 760096 12 760096 13 7500096	289		
1	10 72	228,214 180.204	12 11820007	289		
1	12 74	1,80,500	12.57660265	224		
1	11 N	105,000	13.3 19685 23.326379 23.056375 23.056385	361		
1	15 77	1.6(,22	12.8051865	441		
1	16 77 12 78	120,100	11.70008137 12.50836120	641 684		
-	18 78	1.00,000	11.7968/27 21.006/274 21.0076/4 21.0076/4	484		
1	19 78 20 78	KAUR AKUT KAUT KAUR KAUR	11.917036 11.6653869	484		
× Xáz	n 54		551	15086		
All full F			Contraction of the second s	BADA		
Name of the Faculty: Mamta Gaur Program Name: MB/						
Hume of the ru	curry mannea ouan		Program Name: MBA			

Course Code : MSB21T2001

Course Name: HR Metrics & Analytics

REFERENCES

- Bhattacharya ,Deepak (2019). HR Metrics and Analytics, Pearson
- Batt, R. (2002). Managing customer services: Human resource practices, quit rates, and sales growth. Academy of Management Journal, 45(3), 587–597.
- Becker, B. E., & Gerhart, B. (1996). Human resources and organizational performance: Progress and prospects. Academy of Management Journal [Special Issue: Human Resources and Organizational Performance], 39(4): 779–801.
- Becker, Gary, S. (1962). Investment in human capital: A theoretical analysis. Journal of Political Economy, 70(2), 437–448.
- (1964). Human capital. New York: National Bureau for Economic Research.
- Beer, M., Spector, R., Lawrence, P., Quinn Mills, D., & Walton, R. (1984). Human resource management: A general managers perspective. Glencoe, IL: Free Press.
- Begin, J.P. (1993). Identifying patterns in HRM systems: Lessons learned from organizational theory. In J. Shaw, P. Kirkbride and K. Rowlands (Eds.), Research in Personnel and Human Resource Management, 3 (pp. 3–20), Greenwich, CT: JAI Press.

VERSITY

• Bhattacharyya, D. K. (2012). Human resource management (3rd ed.). New Delhi: Excel Books

Name of the Faculty: Mamta Gaur

In case, you find any difficulty in understanding the concepts of lecture, please feel free to contact.

Dr Mamta Gaur 9891121396 mamtagaur@galgotiasuniversity.edu.in Thanks