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• Properties of shortest paths
• Dijkstra’s algorithm
• Correctness
• Analysis
• Breadth-first search



Paths in graphs

k1

Consider a digraph G = (V, E) with edge-weight  
function w : E  R. The weight of path p = v1 
v2   vk is defined to be

w( p) w(vi ,vi1).
i1
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Consider a digraph G = (V, E) with edge-weight  
function w : E  R. The weight of path p = v1 
v2   vk is defined to be

w( p) w(vi ,vi1).
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Example:

w(p) = –2



Shortest paths
A shortest path from u to v is a path of  
minimum weight from u to v. The shortest-
path weight from u to v is defined as

(u, v) = min{w(p) : p is a path from u to v}.

Note: (u, v) =  if no path from u to v exists.



Well-definedness of shortest  paths

If a graph G contains a negative-weight cycle,  
then some shortest paths do not exist.
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Optimal substructure

Theorem. A subpath of a shortest path is a  
shortest path.



Optimal substructure
Theorem. A subpath of a shortest path is a  
shortest path.

Proof. Cut and paste:
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Triangle inequality

Theorem. For all u, v, x  V, we have
(u, v)  (u, x) + (x, v).



Triangle inequality

Theorem. For all u, v, x  V, we have
(u, v)  (u, x) + (x, v).

Proof.

x

u v(u, v)

(u, x) (x, v)



Single-source shortest paths  (nonnegative edge weights)
Problem. Assume that w(u, v)  0 for all (u, v)
 E. (Hence, all shortest-path weights must  
exist.) From a given source vertex s  V, find  
the shortest-path weights (s, v) for all v  V.

IDEA: Greedy.
1. Maintain a set S of vertices whose shortest-

path distances from s are known.
2. At each step, add to S the vertex v  V – S

whose distance estimate from s is minimum.
3. Update the distance estimates of vertices  

adjacent to v.



Dijkstra’s algorithm
d[s]  0
for each v  V – {s}

do d[v] 
S 
Q  V Q is a priority queue maintaining V – S,  

keyed on d[v]



Dijkstra’s algorithm
d[s]  0
for each v  V – {s}

do d[v] 
S 
Q  V Q is a priority queue maintaining V – S,  

keyed on d[v]
while Q  

do u  EXTRACT-MIN(Q)
S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v]  d[u] + w(u, v)
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relaxation  
step

Implicit DECREASE-KEY




