
SINGLE SOURCE SHORTEST PATHS

SINGLE SOURCE SHORTEST PATHS

• Properties of shortest paths
• Dijkstra’s algorithm
• Correctness
• Analysis
• Breadth-first search

Paths in graphs

k1

Consider a digraph G = (V, E) with edge-weight
function w : E  R. The weight of path p = v1 
v2   vk is defined to be

w(p) w(vi ,vi1).
i1

Paths in graphs

k1

v
1 v

2

v
3 v

4

v
5

4 –2 –5 1

Consider a digraph G = (V, E) with edge-weight
function w : E  R. The weight of path p = v1 
v2   vk is defined to be

w(p) w(vi ,vi1).
i1

Example:

w(p) = –2

Shortest paths
A shortest path from u to v is a path of
minimum weight from u to v. The shortest-
path weight from u to v is defined as

(u, v) = min{w(p) : p is a path from u to v}.

Note: (u, v) =  if no path from u to v exists.

Well-definedness of shortest paths

If a graph G contains a negative-weight cycle,
then some shortest paths do not exist.

Well-definedness of shortest paths
If a graph G contains a negative-weight cycle,
then some shortest paths do not exist.

Example:

u v

…

< 0

Optimal substructure

Theorem. A subpath of a shortest path is a
shortest path.

Optimal substructure
Theorem. A subpath of a shortest path is a
shortest path.

Proof. Cut and paste:

Optimal substructure
Theorem. A subpath of a shortest path is a
shortest path.

Proof. Cut and paste:

Triangle inequality

Theorem. For all u, v, x  V, we have
(u, v)  (u, x) + (x, v).

Triangle inequality

Theorem. For all u, v, x  V, we have
(u, v)  (u, x) + (x, v).

Proof.

x

u v(u, v)

(u, x) (x, v)

Single-source shortest paths (nonnegative edge weights)
Problem. Assume that w(u, v)  0 for all (u, v)
 E. (Hence, all shortest-path weights must
exist.) From a given source vertex s  V, find
the shortest-path weights (s, v) for all v  V.

IDEA: Greedy.
1. Maintain a set S of vertices whose shortest-

path distances from s are known.
2. At each step, add to S the vertex v  V – S

whose distance estimate from s is minimum.
3. Update the distance estimates of vertices

adjacent to v.

Dijkstra’s algorithm
d[s]  0
for each v  V – {s}

do d[v] 
S 
Q  V Q is a priority queue maintaining V – S,

keyed on d[v]

Dijkstra’s algorithm
d[s]  0
for each v  V – {s}

do d[v] 
S 
Q  V Q is a priority queue maintaining V – S,

keyed on d[v]
while Q  

do u  EXTRACT-MIN(Q)
S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v]  d[u] + w(u, v)

Dijkstra’s algorithm
d[s]  0
for each v  V – {s}

do d[v] 
S 
Q  V Q is a priority queue maintaining V – S,

keyed on d[v]
while Q 

do u  EXTRACT-MIN(Q)
S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v]  d[u] + w(u, v)

relaxation
step

Implicit DECREASE-KEY

