School of Computing Science and Engineering

Course Code : MCAS2140 Course Name: Algorithm Analysis and Design

SINGLE SOURCE SHORTEST PATHS

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

SINGLE SOURCE SHORTEST PATHS

UNIVERSITY

- Properties of shortest paths
- Dijkstra's algorithm
- Correctness
- Analysis
- Breadth-first search

Name of the Faculty: Unnikrishnan

Paths in graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The *weight* of path $p = v_1 \to v_2 \to \mathbb{P} \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

Name of the Faculty: Unnikrishnan

Paths in graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The *weight* of path $p = v_1 \to v_2 \to \mathbb{P} \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{n} w(v_i, v_{i+1}).$$
Example:
 $y = \frac{1}{2} \frac{v_{i+1}}{2} \frac{$

Name of the Faculty: Unnikrishnan

Shortest paths

A *shortest path* from *u* to *v* is a path of minimum weight from *u* to *v*. The *shortest-path weight* from *u* to *v* is defined as

 $\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}.$

Note: $\delta(u, v) = \infty$ if no path from *u* to *v* exists. **GALGOTIAS** UNIVERSITY

Name of the Faculty: Unnikrishnan

Well-definedness of shortest paths

If a graph *G* contains a negative-weight cycle, then some shortest paths do not exist.

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Well-definedness of shortest paths

()

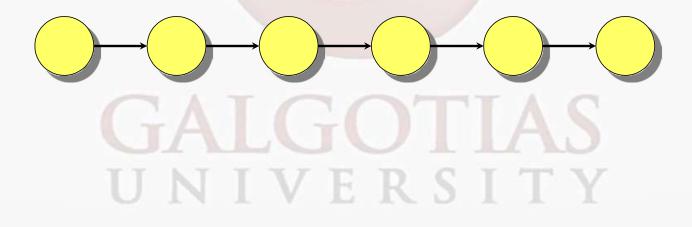
If a graph *G* contains a negative-weight cycle, then some shortest paths do not exist.

Example:

U

Name of the Faculty: Unnikrishnan

Optimal substructure

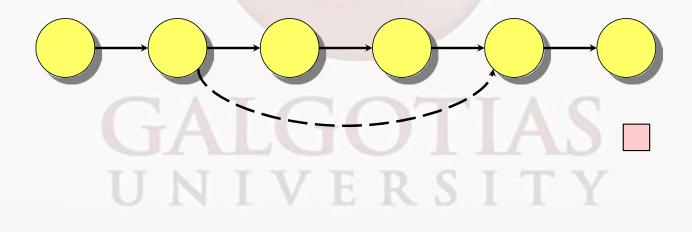

Theorem. A subpath of a shortest path is a shortest path.

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Optimal substructure **Theorem.** A subpath of a shortest path is a shortest path.

Proof. Cut and paste:



Name of the Faculty: Unnikrishnan

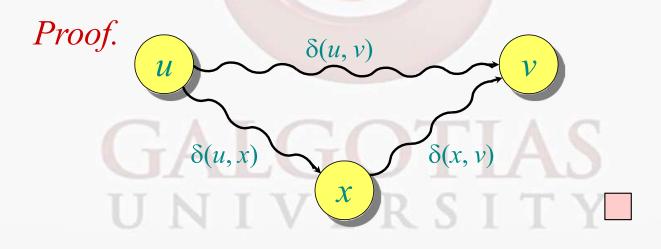
Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Name of the Faculty: Unnikrishnan

Triangle inequality


Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \le \delta(u, x) + \delta(x, v)$.

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

Triangle inequality

Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \leq \delta(u, x) + \delta(x, v)$.

Name of the Faculty: Unnikrishnan

Single-source shortest paths (nonnegative edge weights)

Problem. Assume that $w(u, v) \ge 0$ for all (u, v)

 $\in E$. (Hence, all shortest-path weights must exist.) From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.

IDEA: Greedy.

- 1. Maintain a set *S* of vertices whose shortestpath distances from *s* are known.
- 2. At each step, add to *S* the vertex $v \in V S$ whose distance estimate from *s* is minimum.
- 3. Update the distance estimates of vertices adjacent to *v*.

Name of the Faculty: Unnikrishnan

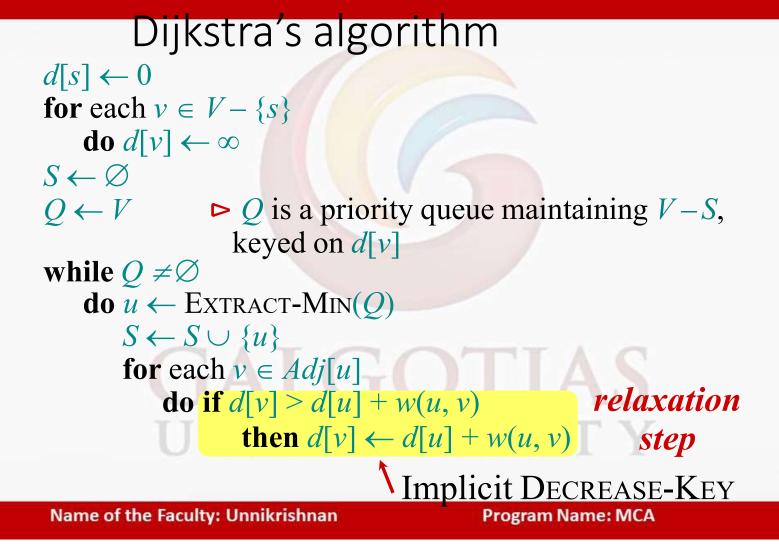
Dijkstra's algorithm $d[s] \leftarrow 0$ for each $v \in V - \{s\}$ $do \ d[v] \leftarrow \infty$ $S \leftarrow \emptyset$ $Q \leftarrow V$ $\triangleright Q$ is a priority queue maintaining V - S,

keyed on d[v]

GALGOTIAS UNIVERSITY

Name of the Faculty: Unnikrishnan

School of Computing Science and Engineering


Course Code : MCAS2140 Course Name: Algorithm Analysis and Design

Dijkstra's algorithm $d[s] \leftarrow 0$ for each $v \in V - \{s\}$ do $d[v] \leftarrow \infty$ $S \leftarrow \emptyset$ $Q \leftarrow V$ $\triangleright Q$ is a priority queue maintaining V-S, keyed on d[v]while $Q \neq \emptyset$ **do** $u \leftarrow \text{Extract-Min}(Q)$ $S \leftarrow S \cup \{u\}$ for each $v \in Adj[u]$ **do if** d[v] > d[u] + w(u, v)then $d[v] \leftarrow d[u] + w(u, v)$

Name of the Faculty: Unnikrishnan

School of Computing Science and Engineering

Course Code : MCAS2140 Course Name: Algorithm Analysis and Design

