

Lecture Notes

on

Information Theory and Coding

(Established under Galgotias University Uttar Pradesh Act No. 14 of 2011)

July 2020 (Be safe and stay at home)

What is Information?

- It is a measure that quantifies the *uncertainty* of an event with given probability Shannon 1948.
- For a discrete source with finite alphabet X = {x₀, x₁,..., x_{M-1}} where the probability of each symbol is given by P(X = x_k) = p_k

$$I(x_k) = \log \frac{1}{p_k} = -\log(p_k)$$

• If logarithm is base 2, information is given in bits.

What is Information?

• It represents the *surprise* of seeing the outcome (a highly probable outcome is not surprising).

event	probability	surprise
one equals one	1	0 bits
wrong guess on a 4-choice question	3/4	0.415 bits
correct guess on true-false question	1/2	1 bit
correct guess on a 4-choice question	1/4	2 bits
seven on a pair of dice	6/36	2.58 bits
win any prize at Euromilhões	1/24	4.585 bits
win Euromilhões Jackpot	pprox 1/76 million	pprox 26 bits
gamma ray burst mass extinction today	$< 2.7 \cdot 10^{-12}$	> 38 bits

• Expected value of information from a source.

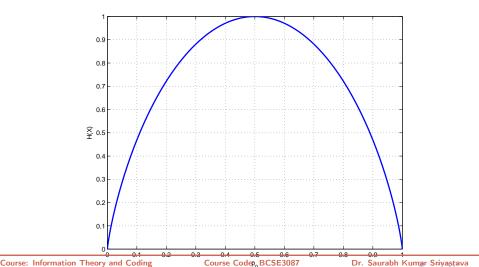
$$H(X) = E[I(x_k)] = \sum_{x \in \mathcal{X}} p_x(x)I(x_k)$$
$$= -\sum_{x \in \mathcal{X}} p_x(x)\log p_x(x)$$

Entropy of binary source

• Let X be a binary source with p_0 and p_1 being the probability of symbols x_0 and x_1 respectively.

$$\begin{aligned} H(X) &= -p_0 \log p_0 - p_1 \log p_1 \\ &= -p_0 \log p_0 - (1-p_0) \log(1-p_0) \end{aligned}$$

Entropy of binary source



• The joint entropy of a pair of random variables X and Y is given by:.

$$H(X,Y) = -\sum_{y\in\mathcal{Y}}\sum_{x\in\mathcal{X}} p_{XY}(x,y) \log p_{X,Y}(x)$$

Course: Information Theory and Coding

Course Code: BCSE3087 👍 🕞 🖓 Dr. Saurabh Kumar Srivastava