

Lecture Notes

on

Analysis of an Algorithm

(Established under Galgotias University Uttar Pradesh Act No. 14 of 2011)

July 2020 (Be safe and stay at home)

Recurrence

• When an algorithm contains a recursive call to itself, it's running time can be described by a recurrence or recurrence equation.

•
$$\mathsf{T}(\mathsf{n}) = \begin{cases} O(1); ifn < 1\\ 2T(\frac{n}{2}) + n; otherwise \end{cases}$$

Solving Recurrence Relations

- 1 Substitution Method
- 2 Master's Method
- 3 Recurence-tree Method

Substitution Method: Problem 01

$$T(n) = \begin{cases} O(1); ifn \le 1\\ T(n-1)+n); otherwise \end{cases} T(n) = T(n-1)+n$$

= T(n-2)+T(n-1)+n
= T(n-3)T(n-2)+T(n-1)+n
:
:
= 1+2+3+.....+n
= $\frac{n(n+1)}{2}$
= $(n^2)^2$

Problem 02:

$$T(n) = \begin{cases} O(1); ifn \le 1\\ n * T(n-1); otherwise \end{cases} T(n) = n^{*}T(n-1)$$

= n^{*}[(n-1)^{*}T(n-2)]
= n^{*}[(n-1)^{*}(n-2)^{*}T(n-3)]
:
: Repeat (n-1) times
= n^{*}(n-1)^{*}(n-2)^{*}.....^{*}T(n-(n-1))
= n^{*}(n-1)^{*}(n-2)^{*}.....^{*}2^{*}1
= O(n^{n})

Problem 03:

$$\mathsf{T}(\mathsf{n}) = \begin{cases} O(1); ifn <= 1\\ T(\frac{n}{2}) + c; otherwise \end{cases}$$

assume
$$n = 2^k$$

 $log_2n = k$
 $= [T(\frac{n}{2^2}) + c] + c$
 $= [T(\frac{n}{2^3}) + c] + 2c$
 $= T(\frac{n}{2^4}) + 4c$
:

$$: Repeat'k'times \\ = T(\frac{n}{2^k}) + k.c \\ = T(\frac{n}{n}) + log_2 n.c \\ = 1 + c.log_2 n \\ = O(log_2 n)$$

Course: Design & Analysis of an Algorithm

Practice Questions:

1.
$$T(n) = \begin{cases} O(1); ifn \le 1\\ 2T(\frac{n}{2}) + n; otherwise \end{cases}$$

2.
$$T(n) = \begin{cases} O(1); ifn \le 1\\ 8T(\frac{n}{2}) + n^{2}; otherwise \end{cases}$$

3.
$$T(n) = \begin{cases} O(1); ifn \le 1\\ 7T(\frac{n}{2}) + n^{2}; otherwise \end{cases}$$

4.
$$T(n) = \begin{cases} O(1); ifn \le 1\\ 3T(\frac{n}{2}) + n^{2}; otherwise \end{cases}$$

Q & A? Queries are welcome on slack channel for discussion