

Lecture Notes

on

Master's Method

(Established under Galgotias University Uttar Pradesh Act No. 14 of 2011)

July 2020 (Be safe and stay at home)

Master's Method

To apply master's method, recurrence relation should be in the form of:

 $T(n) = a.T(\frac{n}{b}) + \theta(n^k log^p n);$ where a>=1, b>1, k>=0 & p-> real number

- 1 if $a > b^k then T(n) = \theta(n^{\log_b^a})$
- 2 if $a < b^k then$
- 2.1 if p>=0 then $T(n) = \theta(n^k log^p n)$ 2.2 if p<0 then $T(n) = O(n^k)$
- 3 if $a=b^k then$

3.1 if p>-1 then
$$T(n) = \theta(n^{\log_b^a} \log^{p+1} n)$$

3.2 if p=-1 then $T(n) = \theta(n^{\log_b^a} \log \log n)$
3.3 if p<-1 then $T(n) = \theta(n^{\log_b^a})$

Problem 01:

$$T(n) = 3T(\frac{n}{2}) + n^2$$

compare it with:
$$T(n) = a.T(\frac{n}{b}) + \theta(n^k log^p n)$$

a=3, b=2, k=2, p=0

$$a < b^k \dots 3 < 4$$
 and $p >= 0$
Apply case 2.1
 $T(n) = \theta(n^k \log^p n)$
 $= \theta(n^2 \log^0 n)$
 $= \theta(n^2)$

Problem 02:

$$T(n) = 4T(\frac{n}{2}) + n^2$$

compare it with:
$$T(n) = a.T(\frac{n}{b}) + \theta(n^k log^p n)$$

a=4, b=2, k=2, k=2, p=0

$$a = b^k \dots 4 = 2^2$$
 and $p > -1$
Apply case 3.1
 $T(n) = \theta(n^{\log_b^a} \log^{p+1} n)$
 $= \theta(n^{\log_2^2} \log^{0+1} n)$
 $= \theta(n^2 \log n)$

Problem 03:

$$T(n) = T(\frac{n}{2}) + n^2$$

compare it with:
$$T(n) = a.T(\frac{n}{b}) + \theta(n^k log^p n)$$

a=1, b=2, k=2, p=0

$$a < b^k \dots 1 = 2^2$$
 and $p >= 0$
Apply case 2.1
 $T(n) = \theta(n^k log^p n)$
 $= \theta(n^2 log^0 n) = \theta(n^2)$

Problem 04:

$$T(n) = 16T(\frac{n}{4}) + n$$

compare it with:
$$T(n) = a.T(\frac{n}{b}) + \theta(n^k log^p n)$$

$$\begin{array}{l} \mathsf{a}{=}16, \ \mathsf{b}{=}4, \ \mathsf{k}{=}1, \ \mathsf{p}{=}0 \\ a > b^k \ \dots 16 = 4^1 \\ \mathsf{Apply \ case \ 1} \\ T(n) = \theta(n^{log_b^a}) \\ = \theta(n^{log_4^{a^2}}) \\ = \theta(n^2) \end{array}$$

Problem 05:

$$T(n) = 2T(\frac{n}{2}) + nlogn$$

compare it with:
$$T(n) = a.T(\frac{n}{b}) + \theta(n^k log^p n)$$

a=2, b=2, k=1, p=1

$$a = b^k \dots 2 = 2^1 \& p > -1$$

Apply case 3.1
 $T(n) = \theta(n^{\log_b^a} \log^{p+1} n)$
 $= \theta(n^{\log_2^2} \log^{1+1} n)$
 $= \theta(n \log^2 n)$

Cases where Master's method doesn't apply

- 1 $T(n) = 2^n T(\frac{n}{2}) + n^n$ a should be constant.
- 2 $T(n) = 0.5T(\frac{n}{2}) + \frac{1}{n}$ a should be greater than or equal to 1.
- 3 $T(n) = 64T(\frac{n}{8}) n^2 logn$ function should be positive
- 4 $T(n) = 2^n T(\frac{n}{2}) + n^n$ a is not constant.

Practice Questions

1
$$T(n) = T(\frac{n}{2}) + c$$

2 $T(n) = 3T(\frac{n}{4}) + nlogn$
3 $T(n) = 2T(\frac{n}{2}) + \frac{n}{logn}$
4 $T(n) = 2T(\frac{n}{4}) + n^{0.51}$
5 $T(n) = 6T(\frac{n}{3}) + n^2 logn$
6 $T(n) = 7T(\frac{n}{3}) + n^2$
7 $T(n) = 3T(\frac{n}{3}) + \sqrt{n}$

Q & A? Queries are welcome on slack channel for discussion