
School of Computing Science and Engineering

Lecture Notes

on

Merge Sort

July 2020
(Be safe and stay at home)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Merge Sort

• It is based on divide and conquer approach.
• It contain nice property that in the worst case it’s time

complexity is O(nlogn).
• If there is n elements array a[1],, a[n], then merge sort split

the array into two sets of size a[1]....a[
⌊
n
2

⌋
] & a[

⌊
n
2

⌋
+ 1]...a[n].

• Each set is individually sorted & the resulting sorted sequences
are merged to produce a single sorted sequence of n elements.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Running example:

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Drawbacks:

• Recursive Calls Result In Additional Overhead Making It
Unsuitable For Small Number of input.

• Sorting Is Done In Place Requiring The Client To Keep A Copy
Of The Original Elements. Requires Additional Memory To Sort
The Elements.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Algorithm:

Merge-sort(a[],low,high)
{

if(low==high)
return(a);

else
{

mid=(low+high
2);

Merge-sort(a,low,mid);
Merge-sort(a,mid+1,high);
Merge(a,low,mid,high);
return(a);

}
}

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

merge(a,low,mid,high)
{

h=low; i=low; j=mid+1;
while((h<=mid) && (j<=high)) do
//until 1st half is not over & 2nd half also not

over, comparing first element of 1st half to the 1st
element of the second half.

{
if(a[h]<=a[j])then
{
b[i]=a[h];
h=h+1;
}

else
{
b[i]=a[j];
j=j+1;
}

i=i+1;
}

if(h>mid) then
for(k=j to high) do
{

b[i]=a[k];
// copy 2nd half remaining elements to B, b[i].

i=i+1;
}

else
for(k=h to mid) do
{

b[i]=a[k];
// copy 1st half remaining elements to B, b[i].

i=i+1;
}
for(k=low to high) do
a[k]=b[k];

}

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Analysis

Recurrence relation for divide & conquer:

T(n)=
{

O(1); ifn = 1
2T (n2) + n; otherwise

}
• after applying master’s method
• T (n) = θ(nlog2n)

• if any array is given then two sorted sub-array is merged. so
same procedure in all cases.

• best-case=worst-case
• T (n) = θ(nlog2n)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Q & A?
Queries are welcome on slack channel
for discussion

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

	Analysis of an Algorithm

