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Red Black Tree

A balanced binary search tree
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Review

•Binary Search Tree (BST) is a good
data structure for searching algorithm

•It supports
–Search, find predecessor, find successor,

find minimum, find maximum, insertion,
deletion

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Motivation

•The performance of BST is related to its
height h
–All the operation in the previous page is O(h)

Worst case: h = O(n) Best case: h = O(log n)

n
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Motivation

•We want a balanced binary search tree
–Height of the tree is O(log n)

•Red-Black Tree is one of the balanced
binary search tree
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Property

1. Every node is either red or black
2. The root is black
3. If a node is red, then both its children are

black

4. For each node, all path from the node to
descendant leaves contain the same
number of black nodes

• All path from the node have the same black height
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Property

•Compact
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Property

•The height of compacted tree
is O(log n)

•Since no two red nodes are connected,
the height of the original tree is at most
2 log n = O(log n)
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Operation

•Since red-black tree is a balanced BST, it supports
Search(tree, key)
Predecessor(tree, key)
Successor(tree, key)
Minimum(tree)
Maximum(tree)

in O(log n)-time

•It also support insertion and deletion with a
little bit complicated step
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Maintain Property

•Insertion and Deletion will violate the
property of red-black tree

•How to maintain the property?
–by Changing Color or Rotation
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Maintain Property

•Changing color

•Rotation

y

x y

x

  





LEFT-ROTATE(T,x)

RIGHT-ROTATE(T,y)
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Common Problem

•A problem during Insertion and Deletion is
Doubly-Black node

•Doubly-Black node is a node which has color
of two black, it violate property 1

•For example:

(+1 means the node need another black to
maintain the invariant of the property)

+1
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Common Problem

•A common problem and its solution are
as following

a b

c
+1

a b

c a

b c
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Insertion

•When insert a node z, we set the color
of z to red

•This may violate property 2 and 3

•For property 2, we set the color of root
to black after insertion
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Insertion

•To fix property 3, we will consider if
–The z’s parent is a left child or right child
–The color of z's uncle y is red or black
–z is a left child or right child

•We consider the z’s parent is a left child
first, the other case can be done by
symmetric operation
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Insertion

There are 4 cases:
•Case 1: y is red and z is a left child
•Case 2: y is red and z is a right child
•Case 3: y is black and z is a left child
•Case 4: y is black and z is a right child
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Insertion - Case 1

•Case 1: y is red and z is a left child

z

y

z

y

z
Recursively
insert z
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Insertion - Case 2

•Case 2: y is red and z is a right child

z

y

z

y

z
Recursively
insert z
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Insertion - Case 3

•Case 3: y is black and z is a left child

z

y

z

y

z

y

Complete

+1
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Insertion - Case 4

•Case 4: y is black and z is a right child

z

y z y

x

z

y Case 3
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Insertion Analysis

•Case 1 and 2 move z up 2 levels
•Case 3 and 4 will terminate after some

number of steps
•The height of tree is finite and

is O(log n)
•The running time is O(log n)
•At most 2 rotations
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Deletion Review

•Review deletion of BST
•To delete a node z, there are 3 cases
•Case1: z has no child

z
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Deletion Review

•Case 2: z has one child

z z
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Deletion Review

•Case 3: z has two children

z z z y

+

y

y
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Deletion

•From now on, we always call the
deleted node to be z

•If z is red, it won't violate any property
•If z is a leaf, it won't violate any property
•Otherwise z is black and has a child, it

will violate property 2, 3, and 4
•For property 2, set the color of root to

black after deletion
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Deletion

To fix property 3 and 4:
•If z's child x (which is the replacing node)

is red, set x to black. Done!
•If x is black, add another black to x, so

that x will be a doubly black node, and
property 3 and 4 are fixed. But property
1 is violated
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Deletion

•To fix property 1, we will consider if
–x is a left child or right child
–The color of x's sibling w is red or black
–The colors of w's children

•We consider x is a left child first, the
other case can be done by symmetric
operation
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Deletion

There are 4 cases:
•Case 1: w is red
•Case 2: w is black, both w's children are

black
•Case 3: w is black, w's left child is red,

w's right child is black
•Case 4: w is black, w's right child is red
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Deletion - Case 1

•Case 1: w is red

x

a b

w+1 x

a b

w+2

w
b

x a+1 x w+1

Case 2, 3, 4
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Deletion - Case 2

•Case 2: w is black, both w’s children are
black

x

a b

w+1 x

a b

w

+1 x

a b

w

+1

Recursively delete x

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Deletion - Case 3

•Case 3: w is black, w’s left child is red,
w’s right child is black

x

a b

w

c d

+1 x

a b

w

c d

+1 x a

b

wc
d

+1 x w

Case 4

+1

+1
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Deletion - Case 4

•Case 4: w is black, w’s right child is red

x w+1 x w
w

x

Complete
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Deletion Analysis

•Case 2 move x up 1 level
•Case 1, 3 and 4 will terminate after

some number of steps
•The height of tree is finite and

is O(log n)
•The running time is O(log n)
•At most 3 rotations
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Conclusion

•Red-Black Tree is a balanced binary
search tree which supports the
operation search, find predecessor, find
successor, find minimum, find maximum,
insertion and deletion in O(log n)-time
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