SITY School of Computing Science and Engineering

Lecture Notes

on

Red Black Tree

@ GALGOTIAS
UNIVERSITY

(Established under Galgoties University Uttar Pradesh Act No. 14 of 2001}

July 2020
(Be safe and stay at home)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Red Black Tree

A balanced binary search tree

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Review

* Binary Search Tree (BST) is a good
data structure for searching algorithm
* It supports

— Search, find predecessor, find successor,
find minimum, find maximum, insertion,
deletion

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Motivation

* The performance of BST is related to its
height h

— All the operation in the previous page is O(h)

Worst case: h = O(n) Best case: h = O(log n)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Motivation

+ We want a balanced binary search tree
— Height of the tree is O(log n)

« Red-Black Tree is one of the balanced
binary search tree

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



(5 %EQIL\?[OR-!LA\? School of Computing Science and Engineering

Property

1. Every node is either red or black
The root is black
3. If anode is red, then both its children are

black A A

4. For each node, all path from the node to
descendant leaves contain the same
number of black nodes

« All path from the node have the same black height

n

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

Property

+ Compact

i B

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Property

» The height of compacted tree
is O(log n)

» Since no two red nodes are connected,
the height of the original tree is at most
2 log n = O(log n)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Operation

» Since red-black tree is a balanced BST, it supports
Search(tree, key)
Predecessor(tree, key)
Successor(tree, key)
Minimum(tree)
Maximum(tree)
in O(log n)-time
* It also support insertion and deletion with a
little bit complicated step

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



G EQLGO-{JAS School of Computing Science and Engineering

Maintain Property

« Insertion and Deletion will violate the
property of red-black tree

* How to maintain the property?
— by Changing Color or Rotation

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Maintain Property

» Changing color

So

* Rotation
LEFT-ROTATE(T x)
—
o Y
RIGHT-ROTATE(T.y)
B ¥ o B

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Common Problem

* A problem during Insertion and Deletion is
Doubly-Black node

» Doubly-Black node is a node which has color
of two black, it violate property 1

* For example:

-& ﬁﬂ(‘\”
/N /

(+1 means the node need another black to
maintain the invariant of the property)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Common Problem

« A common problem and its solution are
as following

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Insertion

« When insert a node z, we set the color
of z to red

» This may violate property 2 and 3

» For property 2, we set the color of root
to black after insertion

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



(5 %;QIL&;[ORILA\? School of Computing Science and Engineering

Insertion

* To fix property 3, we will consider if
—The Z’s parent is a left child or right child
— The color of z's uncle y is red or black
— z is a left child or right child

» We consider the z’s parent is a left child
first, the other case can be done by
symmetric operation

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Insertion

There are 4 cases:

» Case 1:yisred and z is a left child

» Case 2:yisred and z is a right child

» Case 3:yis black and z is a left child
» Case 4.y is black and z is a right child

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Insertion - Case 1

* Case 1:yisred and z is a left child
f(kg = AA}’\

Recursively
A = insert z

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Insertion - Case 2

» Case 2:yisred and z is a right child

Recursively
/& = insert z

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Insertion - Case 3

» Case 3:yis black and z is a left child

Co et
o _ b
’}! [— Complete

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Insertion - Case 4

» Case 4: y is black and z is a right child

,{* @A

A — Case 3

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



(5 %;QLGOILA\? School of Computing Science and Engineering

Insertion Analysis

« Case 1 and 2 move z up 2 levels

* Case 3 and 4 will terminate after some
number of steps

» The height of tree is finite and
is O(log n)

* The running time is O(log n)

* At most 2 rotations

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Deletion Review

* Review deletion of BST
* To delete a node z, there are 3 cases
* Casel: z has no child

o\ e A

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Deletion Review

e Case 2: z has one child

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Deletion Review

e Case 3: z has two children

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Deletion

* From now on, we always call the
deleted node to be z

 If zis red, it won't violate any property

« If z is a leaf, it won't violate any property

» Otherwise z is black and has a child, it
will violate property 2, 3, and 4

* For property 2, set the color of root to
black after deletion

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



(5 QQPQ[ORIJqAé School of Computing Science and Engineering

Deletion

To fix property 3 and 4:

* If Z's child x (which is the replacing node)
is red, set x to black. Done!

« If x is black, add another black to x, so
that x will be a doubly black node, and
property 3 and 4 are fixed. But property
1 is violated

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Deletion

* To fix property 1, we will consider if
— X is a left child or right child
— The color of x's sibling w is red or black
— The colors of w's children

* We consider x is a left child first, the
other case can be done by symmetric
operation

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Deletion

There are 4 cases:

» Case 1l:wis red

» Case 2:w is black, both w's children are
black

» Case 3:w is black, w's left child is red,
w's right child is black

» Case 4:w is black, w's right child is red

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Deletion - Case 1

e Case 1: wis red

S
g

Case 2, 3,4

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Deletion - Case 2

« Case 2: w is black, both w’s children are
black

SN s
]!

Recursively delete x

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Deletion - Case 3

e Case 3: wis black, w’s left child is red,
w’s right child is black

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



SITY School of Computing Science and Engineering

Deletion - Case 4

» Case 4: w is black, w’s right child is red

RS

Complete

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



(5 %;QLGOILA\? School of Computing Science and Engineering

Deletion Analysis

* Case 2 move x up 1 level

« Case 1, 3 and 4 will terminate after
some number of steps

» The height of tree is finite and
is O(log n)

* The running time is O(log n)

* At most 3 rotations

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



(5 %;QLGO-SFJAS School of Computing Science and Engineering

Conclusion

* Red-Black Tree is a balanced binary
search tree which supports the
operation search, find predecessor, find
successor, find minimum, find maximum,
insertion and deletion in O(log n)-time

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



