
School of Computing Science and Engineering

Lecture Notes

on

Red Black Tree

July 2020
(Be safe and stay at home)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Red Black Tree

A balanced binary search tree

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Review

•Binary Search Tree (BST) is a good
data structure for searching algorithm

•It supports
–Search, find predecessor, find successor,

find minimum, find maximum, insertion,
deletion

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Motivation

•The performance of BST is related to its
height h
–All the operation in the previous page is O(h)

Worst case: h = O(n) Best case: h = O(log n)

n

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Motivation

•We want a balanced binary search tree
–Height of the tree is O(log n)

•Red-Black Tree is one of the balanced
binary search tree

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Property

1. Every node is either red or black
2. The root is black
3. If a node is red, then both its children are

black

4. For each node, all path from the node to
descendant leaves contain the same
number of black nodes

• All path from the node have the same black height

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Property

•Compact

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Property

•The height of compacted tree
is O(log n)

•Since no two red nodes are connected,
the height of the original tree is at most
2 log n = O(log n)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Operation

•Since red-black tree is a balanced BST, it supports
Search(tree, key)
Predecessor(tree, key)
Successor(tree, key)
Minimum(tree)
Maximum(tree)

in O(log n)-time

•It also support insertion and deletion with a
little bit complicated step

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Maintain Property

•Insertion and Deletion will violate the
property of red-black tree

•How to maintain the property?
–by Changing Color or Rotation

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Maintain Property

•Changing color

•Rotation

y

x y

x

LEFT-ROTATE(T,x)

RIGHT-ROTATE(T,y)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Common Problem

•A problem during Insertion and Deletion is
Doubly-Black node

•Doubly-Black node is a node which has color
of two black, it violate property 1

•For example:

(+1 means the node need another black to
maintain the invariant of the property)

+1

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Common Problem

•A common problem and its solution are
as following

a b

c
+1

a b

c a

b c

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Insertion

•When insert a node z, we set the color
of z to red

•This may violate property 2 and 3

•For property 2, we set the color of root
to black after insertion

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Insertion

•To fix property 3, we will consider if
–The z’s parent is a left child or right child
–The color of z's uncle y is red or black
–z is a left child or right child

•We consider the z’s parent is a left child
first, the other case can be done by
symmetric operation

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Insertion

There are 4 cases:
•Case 1: y is red and z is a left child
•Case 2: y is red and z is a right child
•Case 3: y is black and z is a left child
•Case 4: y is black and z is a right child

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Insertion - Case 1

•Case 1: y is red and z is a left child

z

y

z

y

z
Recursively
insert z

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Insertion - Case 2

•Case 2: y is red and z is a right child

z

y

z

y

z
Recursively
insert z

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Insertion - Case 3

•Case 3: y is black and z is a left child

z

y

z

y

z

y

Complete

+1

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Insertion - Case 4

•Case 4: y is black and z is a right child

z

y z y

x

z

y Case 3

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Insertion Analysis

•Case 1 and 2 move z up 2 levels
•Case 3 and 4 will terminate after some

number of steps
•The height of tree is finite and

is O(log n)
•The running time is O(log n)
•At most 2 rotations

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Deletion Review

•Review deletion of BST
•To delete a node z, there are 3 cases
•Case1: z has no child

z

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Deletion Review

•Case 2: z has one child

z z

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Deletion Review

•Case 3: z has two children

z z z y

+

y

y

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Deletion

•From now on, we always call the
deleted node to be z

•If z is red, it won't violate any property
•If z is a leaf, it won't violate any property
•Otherwise z is black and has a child, it

will violate property 2, 3, and 4
•For property 2, set the color of root to

black after deletion

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Deletion

To fix property 3 and 4:
•If z's child x (which is the replacing node)

is red, set x to black. Done!
•If x is black, add another black to x, so

that x will be a doubly black node, and
property 3 and 4 are fixed. But property
1 is violated

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Deletion

•To fix property 1, we will consider if
–x is a left child or right child
–The color of x's sibling w is red or black
–The colors of w's children

•We consider x is a left child first, the
other case can be done by symmetric
operation

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Deletion

There are 4 cases:
•Case 1: w is red
•Case 2: w is black, both w's children are

black
•Case 3: w is black, w's left child is red,

w's right child is black
•Case 4: w is black, w's right child is red

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Deletion - Case 1

•Case 1: w is red

x

a b

w+1 x

a b

w+2

w
b

x a+1 x w+1

Case 2, 3, 4

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Deletion - Case 2

•Case 2: w is black, both w’s children are
black

x

a b

w+1 x

a b

w

+1 x

a b

w

+1

Recursively delete x

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Deletion - Case 3

•Case 3: w is black, w’s left child is red,
w’s right child is black

x

a b

w

c d

+1 x

a b

w

c d

+1 x a

b

wc
d

+1 x w

Case 4

+1

+1

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Deletion - Case 4

•Case 4: w is black, w’s right child is red

x w+1 x w
w

x

Complete

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Deletion Analysis

•Case 2 move x up 1 level
•Case 1, 3 and 4 will terminate after

some number of steps
•The height of tree is finite and

is O(log n)
•The running time is O(log n)
•At most 3 rotations

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Conclusion

•Red-Black Tree is a balanced binary
search tree which supports the
operation search, find predecessor, find
successor, find minimum, find maximum,
insertion and deletion in O(log n)-time

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

