
School of Computing Science and Engineering

Lecture Notes

on

Divide and Conquer with examples
such as Sorting, Matrix Multiplication

July 2020
(Be safe and stay at home)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.2

The divide-and-conquer
design paradigm

1. Divide the problem (instance)
into subproblems.

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.3

Merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.4

Merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + Θ(n)

subproblems
subproblem size

work dividing
and combining

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.5

Master theorem (reprise)
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ε), constant ε > 0
⇒ T(n) = Θ(nlogba) .

CASE 2: f (n) = Θ(nlogba lgkn), constant k ≥ 0
⇒ T(n) = Θ(nlogba lgk+1n) .

CASE 3: f (n) = Ω(nlogba + ε), constant ε > 0,
and regularity condition

⇒ T(n) = Θ(f (n)) .

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.6

Master theorem (reprise)
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ε), constant ε > 0
⇒ T(n) = Θ(nlogba) .

CASE 2: f (n) = Θ(nlogba lgkn), constant k ≥ 0
⇒ T(n) = Θ(nlogba lgk+1n) .

CASE 3: f (n) = Ω(nlogba + ε), constant ε > 0,
and regularity condition

⇒ T(n) = Θ(f (n)) .
Merge sort: a = 2, b = 2 ⇒ nlogba = nlog22 = n

⇒ CASE 2 (k = 0) ⇒ T(n) = Θ(n lg n) .
Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.7

Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.8

Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.9

Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.10

Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.11

Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.12

Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.13

Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.14

Recurrence for binary search

T(n) = 1 T(n/2) + Θ(1)

subproblems
subproblem size

work dividing
and combining

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.15

Recurrence for binary search

T(n) = 1 T(n/2) + Θ(1)

subproblems
subproblem size

work dividing
and combining

nlogba = nlog21 = n0 = 1 ⇒ CASE 2 (k = 0)
⇒ T(n) = Θ(lg n) .

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.16

Powering a number

Problem: Compute a n, where n ∈ N.

Naive algorithm: Θ(n).

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.17

Powering a number

Problem: Compute a n, where n ∈ N.

Naive algorithm: Θ(n).

a n =
a n/2 ⋅ a n/2 if n is even;
a (n–1)/2 ⋅ a (n–1)/2 ⋅ a if n is odd.

Divide-and-conquer algorithm:

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.18

Powering a number

Problem: Compute a n, where n ∈ N.

Naive algorithm: Θ(n).

a n =
a n/2 ⋅ a n/2 if n is even;
a (n–1)/2 ⋅ a (n–1)/2 ⋅ a if n is odd.

Divide-and-conquer algorithm:

T(n) = T(n/2) + Θ(1) ⇒ T(n) = Θ(lg n) .
Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.19

Fibonacci numbers
Recursive definition:

Fn =
0 if n = 0;

Fn–1 + Fn–2 if n ≥ 2.
1 if n = 1;

0 1 1 2 3 5 8 13 21 34 L

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.20

Fibonacci numbers
Recursive definition:

Fn =
0 if n = 0;

Fn–1 + Fn–2 if n ≥ 2.
1 if n = 1;

0 1 1 2 3 5 8 13 21 34 L

Naive recursive algorithm: Ω(φ n)
(exponential time), where φ =
is the golden ratio.

2/)51(+

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.21

Computing Fibonacci
numbers

Bottom-up:
• Compute F0, F1, F2, …, Fn in order, forming

each number by summing the two previous.
• Running time: Θ(n).

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.22

Computing Fibonacci
numbers

Bottom-up:
• Compute F0, F1, F2, …, Fn in order, forming

each number by summing the two previous.
• Running time: Θ(n).
Naive recursive squaring:

Fn = φ n/ rounded to the nearest integer.5
• Recursive squaring: Θ(lg n) time.
• This method is unreliable, since floating-point

arithmetic is prone to round-off errors.
Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.23

Recursive squaring
n

FF
FF

nn

nn
⎥⎦

⎤
⎢⎣

⎡=⎥⎦

⎤
⎢⎣

⎡

−

+

01
11

1

1Theorem: .

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.24

Recursive squaring
n

FF
FF

nn

nn
⎥⎦

⎤
⎢⎣

⎡=⎥⎦

⎤
⎢⎣

⎡

−

+

01
11

1

1Theorem: .

Algorithm: Recursive squaring.
Time = Θ(lg n) .

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.25

Recursive squaring
n

FF
FF

nn

nn
⎥⎦

⎤
⎢⎣

⎡=⎥⎦

⎤
⎢⎣

⎡

−

+

01
11

1

1Theorem: .

Algorithm: Recursive squaring.
Time = Θ(lg n) .

Proof of theorem. (Induction on n.)

Base (n = 1): .
1

01
11

01

12
⎥⎦

⎤
⎢⎣

⎡=⎥⎦

⎤
⎢⎣

⎡
FF
FF

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.26

Recursive squaring

.

.

Inductive step (n ≥ 2):

n

n
FF
FF

FF
FF

nn

nn

nn

nn

⎥⎦

⎤
⎢⎣

⎡=

⎥⎦

⎤
⎢⎣

⎡⋅
−

⎥⎦

⎤
⎢⎣

⎡=

⎥⎦

⎤
⎢⎣

⎡⋅⎥⎦

⎤
⎢⎣

⎡
=⎥⎦

⎤
⎢⎣

⎡

−−

−

−

+

01
11

01
111

01
11

01
11

21

1

1

1

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.27

Matrix multiplication

Input: A = [aij], B = [bij].
Output: C = [cij] = A⋅ B. i, j = 1, 2,… , n.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nnnn

n

n

nnnn

n

n

nnnn

n

n

bbb

bbb
bbb

aaa

aaa
aaa

ccc

ccc
ccc

L

MOMM

L

L

L

MOMM

L

L

L

MOMM

L

L

21

22221

11211

21

22221

11211

21

22221

11211

∑
=

⋅=
n

k
kjikij bac

1
Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.28

Standard algorithm

for i ← 1 to n
do for j ← 1 to n

do cij ← 0
for k ← 1 to n

do cij ← cij + aik⋅ bkj

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.29

Standard algorithm

for i ← 1 to n
do for j ← 1 to n

do cij ← 0
for k ← 1 to n

do cij ← cij + aik⋅ bkj

Running time = Θ(n3)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.30

Divide-and-conquer algorithm

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:

⎥⎦

⎤
⎢⎣

⎡⋅⎥⎦

⎤
⎢⎣

⎡=⎥⎦

⎤
⎢⎣

⎡
hg
fe

dc
ba

ut
sr

C = A ⋅ B
r = ae + bg
s = af + bh
t = ce + dg
u = cf + dh

8 mults of (n/2)×(n/2) submatrices
4 adds of (n/2)×(n/2) submatrices

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.31

Divide-and-conquer algorithm

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:

⎥⎦

⎤
⎢⎣

⎡⋅⎥⎦

⎤
⎢⎣

⎡=⎥⎦

⎤
⎢⎣

⎡
hg
fe

dc
ba

ut
sr

C = A ⋅ B
r = ae + bg
s = af + bh
t = ce + dh
u = cf + dg

8 mults of (n/2)×(n/2) submatrices
4 adds of (n/2)×(n/2) submatrices^

recursive

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.32

Analysis of D&C algorithm

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) + Θ(n2)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.33

Analysis of D&C algorithm

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) + Θ(n2)

nlogba = nlog28 = n3 ⇒ CASE 1 ⇒ T(n) = Θ(n3).

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.34

Analysis of D&C algorithm

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) + Θ(n2)

nlogba = nlog28 = n3 ⇒ CASE 1 ⇒ T(n) = Θ(n3).

No better than the ordinary algorithm.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.35

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.36

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults.

P1 = a ⋅ (f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.37

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 – P7

P1 = a ⋅ (f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.38

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 – P7

P1 = a ⋅ (f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f)

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.39

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6
= (a + d) (e + h)

+ d (g – e) – (a + b) h
+ (b – d) (g + h)

= ae + ah + de + dh
+ dg –de – ah – bh
+ bg + bh – dg – dh

= ae + bg

P1 = a ⋅ (f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.40

Strassen’s algorithm
1. Divide: Partition A and B into

(n/2)×(n/2) submatrices. Form terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)×(n/2) submatrices.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.41

Strassen’s algorithm
1. Divide: Partition A and B into

(n/2)×(n/2) submatrices. Form terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)×(n/2) submatrices.

T(n) = 7 T(n/2) + Θ(n2)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.42

Analysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.43

Analysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)

nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlg 7).

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.44

Analysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)

nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlg 7).

The number 2.81 may not seem much smaller than
3, but because the difference is in the exponent, the
impact on running time is significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n ≥ 32 or so.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.45

Analysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)

nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlg 7).

The number 2.81 may not seem much smaller than
3, but because the difference is in the exponent, the
impact on running time is significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n ≥ 32 or so.

Best to date (of theoretical interest only): Θ(n2.376L).
Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.54

Conclusion

• Divide and conquer is just one of several
powerful techniques for algorithm design.

• Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method (so practice this math).

• The divide-and-conquer strategy often leads
to efficient algorithms.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

