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The divide-and-conquer 
design paradigm

1. Divide the problem (instance) 
into subproblems.

2. Conquer the subproblems by 
solving them recursively.

3. Combine subproblem solutions.
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Merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.
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Merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + Θ(n)

# subproblems
subproblem size

work dividing 
and combining
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Master theorem (reprise)
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ε), constant ε > 0
⇒ T(n) = Θ(nlogba) .

CASE 2: f (n) = Θ(nlogba lgkn), constant k ≥ 0
⇒ T(n) = Θ(nlogba lgk+1n) .

CASE 3: f (n) = Ω(nlogba + ε ), constant ε > 0, 
and regularity condition

⇒ T(n) = Θ( f (n)) .
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Master theorem (reprise)
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ε), constant ε > 0
⇒ T(n) = Θ(nlogba) .

CASE 2: f (n) = Θ(nlogba lgkn), constant k ≥ 0
⇒ T(n) = Θ(nlogba lgk+1n) .

CASE 3: f (n) = Ω(nlogba + ε ), constant ε > 0, 
and regularity condition

⇒ T(n) = Θ( f (n)) .
Merge sort: a = 2, b = 2 ⇒ nlogba = nlog22 = n

⇒ CASE 2 (k = 0)  ⇒ T(n) = Θ(n lg n) . 
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Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.
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Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15
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Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.
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Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15
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Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15
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Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15
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Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15
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Recurrence for binary search

T(n) = 1 T(n/2) + Θ(1)

# subproblems
subproblem size

work dividing 
and combining
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Recurrence for binary search

T(n) = 1 T(n/2) + Θ(1)

# subproblems
subproblem size

work dividing 
and combining

nlogba = nlog21 = n0 = 1 ⇒ CASE 2 (k = 0)
⇒ T(n) = Θ(lg n) . 
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Powering a number

Problem: Compute a n, where n ∈ N.

Naive algorithm: Θ(n).
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Powering a number

Problem: Compute a n, where n ∈ N.

Naive algorithm: Θ(n).

a n =
a n/2 ⋅ a n/2 if n is even;
a (n–1)/2 ⋅ a (n–1)/2 ⋅ a if n is odd.

Divide-and-conquer algorithm:
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Powering a number

Problem: Compute a n, where n ∈ N.

Naive algorithm: Θ(n).

a n =
a n/2 ⋅ a n/2 if n is even;
a (n–1)/2 ⋅ a (n–1)/2 ⋅ a if n is odd.

Divide-and-conquer algorithm:

T(n) = T(n/2) + Θ(1)  ⇒ T(n) = Θ(lg n) . 
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Fibonacci numbers
Recursive definition:

Fn =
0 if n = 0;

Fn–1 + Fn–2 if n ≥ 2.
1 if n = 1;

0 1 1 2 3 5 8 13 21 34 L
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Fibonacci numbers
Recursive definition:

Fn =
0 if n = 0;

Fn–1 + Fn–2 if n ≥ 2.
1 if n = 1;

0 1 1 2 3 5 8 13 21 34 L

Naive recursive algorithm: Ω(φ n)
(exponential time), where φ =
is the golden ratio.

2/)51( +
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Computing Fibonacci 
numbers

Bottom-up: 
• Compute F0, F1, F2, …, Fn in order, forming 

each number by summing the two previous.
• Running time: Θ(n). 
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Computing Fibonacci 
numbers

Bottom-up: 
• Compute F0, F1, F2, …, Fn in order, forming 

each number by summing the two previous.
• Running time: Θ(n). 
Naive recursive squaring:

Fn = φ n/ rounded to the nearest integer.5
• Recursive squaring: Θ(lg n) time. 
• This method is unreliable, since floating-point 

arithmetic is prone to round-off errors.
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Recursive squaring
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Recursive squaring
n
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Algorithm: Recursive squaring.
Time = Θ(lg n) .
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Recursive squaring
n
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Algorithm: Recursive squaring.
Time = Θ(lg n) .

Proof of theorem.  (Induction on n.)

Base (n = 1): .
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Recursive squaring

.

.

Inductive step (n ≥ 2):
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Matrix multiplication

Input: A = [aij], B = [bij].
Output: C = [cij] = A⋅ B. i, j = 1, 2,… , n.
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Standard algorithm

for i ← 1 to n
do for j ← 1 to n

do cij ← 0
for k ← 1 to n

do cij ← cij + aik⋅ bkj
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Standard algorithm

for i ← 1 to n
do for j ← 1 to n

do cij ← 0
for k ← 1 to n

do cij ← cij + aik⋅ bkj

Running time = Θ(n3)
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Divide-and-conquer algorithm

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:

⎥⎦
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⎤
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⎡
hg
fe

dc
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ut
sr

C = A ⋅ B
r = ae + bg
s = af + bh
t = ce + dg
u = cf + dh

8 mults of (n/2)×(n/2) submatrices
4 adds of (n/2)×(n/2) submatrices
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Divide-and-conquer algorithm

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:
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C = A ⋅ B
r = ae + bg
s = af + bh
t = ce + dh
u = cf + dg

8 mults of (n/2)×(n/2) submatrices
4 adds of (n/2)×(n/2) submatrices^

recursive
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Analysis of D&C algorithm

# submatrices
submatrix size

work adding 
submatrices

T(n) = 8 T(n/2) + Θ(n2)
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Analysis of D&C algorithm

# submatrices
submatrix size

work adding 
submatrices

T(n) = 8 T(n/2) + Θ(n2)

nlogba = nlog28 = n3 ⇒ CASE 1 ⇒ T(n) = Θ(n3). 
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Analysis of D&C algorithm

# submatrices
submatrix size

work adding 
submatrices

T(n) = 8 T(n/2) + Θ(n2)

nlogba = nlog28 = n3 ⇒ CASE 1 ⇒ T(n) = Θ(n3). 

No better than the ordinary algorithm.
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Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults. 
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Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults. 

P1 = a ⋅ ( f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f )
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Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults. 

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 – P7

P1 = a ⋅ ( f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f )
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Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults. 

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 – P7

P1 = a ⋅ ( f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f )

7 mults, 18 adds/subs.
Note: No reliance on 
commutativity of mult!

7 mults, 18 adds/subs.
Note: No reliance on 
commutativity of mult!
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Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults. 

r = P5 + P4 – P2 + P6
= (a + d) (e + h) 

+ d (g – e) – (a + b) h
+ (b – d) (g + h)

= ae + ah + de + dh 
+ dg –de – ah – bh
+ bg + bh – dg – dh

= ae + bg

P1 = a ⋅ ( f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f )
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Strassen’s algorithm
1. Divide: Partition A and B into 

(n/2)×(n/2) submatrices.  Form terms 
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)×(n/2) submatrices.
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Strassen’s algorithm
1. Divide: Partition A and B into 

(n/2)×(n/2) submatrices.  Form terms 
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)×(n/2) submatrices.

T(n) = 7 T(n/2) + Θ(n2)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar



School of Computing Science and Engineering

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.42

Analysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)
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Analysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)

nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlg 7).
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Analysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)

nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlg 7).

The number 2.81 may not seem much smaller than 
3, but because the difference is in the exponent, the 
impact on running time is significant.  In fact, 
Strassen’s algorithm beats the ordinary algorithm 
on today’s machines for n ≥ 32 or so.
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Analysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)

nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlg 7).

The number 2.81 may not seem much smaller than 
3, but because the difference is in the exponent, the 
impact on running time is significant.  In fact, 
Strassen’s algorithm beats the ordinary algorithm 
on today’s machines for n ≥ 32 or so.

Best to date (of theoretical interest only): Θ(n2.376L).
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Conclusion

• Divide and conquer is just one of several 
powerful techniques for algorithm design. 

• Divide-and-conquer algorithms can be 
analyzed using recurrences and the master 
method (so practice this math).

• The divide-and-conquer strategy often leads 
to efficient algorithms.
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