
School of Computing Science and Engineering

Lecture Notes
on

Minimum Spanning Tree (MST)

06 Aug 2020
(Be safe and stay at home)

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

In this lecture, we will study another classic problem: finding a minimum
spanning tree of an undirected weighted graph. Interestingly, even
though the problem appears rather different from SSSP (single source
shortest path), it can be solved by an algorithm that is reminiscent of
Dijkstra’s algorithm.

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Undirected Weighted Graphs

Let G = (V ,E) be an undirected graph. Let w be a function that maps
each edge of G to a positive integer value. Specifically, for each edge e,
w(e) is a positive integer value, which we call the weight of e.

A undirected weighted graph is defined as the pair (G ,w).

We will denote an edge between vertices u and v in G as {u, v}—instead
of (u, v)—to emphasize that the ordering of u, v does not matter.

We consider that G is connected, namely, there is a path between any

two vertices in V .

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Example

a

b

c

f

g

d

e

h

1 2

33

5

6

7

8

9
10

11
12

13

The integer on each edge indicates its weight. For example, the weight of
{g , h} is 9, and that of {d , g} is 11.

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Spanning Trees

Remember that a tree is defined as a connected undirected graph with no
cycles.

Given a connected undirected weighted graph (G ,w) with G = (V ,E), a
spanning tree T is a tree satisfying the following conditions:

The vertex set of T is V .

Every edge of T is an edge in G .

The cost of T is defined as the sum of the weights of all the edges in T

(note that T must have |V | − 1 edges).

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Example

a

b

c

f

g

d

e

h

1 2

33

5

6

7

8

9
10

11
12

13

a

b

c

f

g

d

e

h

1 2

3

5

6

9

11

a

b

c

f

g

d

e

h

1 2

3

5

6

9

11

a

b

c

f

g

d

e

2

33

7

8

12

13

The second row shows three spanning trees (of the graph in the first
row). The cost of the first two trees is 37, and that of the right tree is 48.

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

The Minimum Spanning Tree Problem

Given a connected undirected weighted graph (G ,w) with G = (V ,E),
the goal of the minimum spanning tree (MST) problem is to find a
spanning tree of the smallest cost.

Such a tree is called an MST of (G ,w).

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Example

a

b

c

f

g

d

e

h

1 2

33

5

6

7

8

9
10

11
12

13

a

b

c

f

g

d

e

h

1 2

3

5

6

9

11

a

b

c

f

g

d

e

h

1 2

3

5

6

9

11

Both trees in the second row are MSTs. This means that MSTs may not

be unique.

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Prim’s Algorithm

Next, we will discuss an algorithm—called Prim’s algorithm—for solving
the MST problem.

We assume that G is stored in the adjacency list format. Recall that an
edge {u, v} is represented twice: once by placing u in the adjacency list
of of v , and another time by placing v in the adjacency list of u. The
weight of {u, v} is stored in both places.

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Prim’s Algorithm

The algorithm grows a tree Tmst by including one vertex at a time. At
any moment, it divides the vertex set V into two parts:

The set S of vertices that are already in Tmst .

The set of other vertices: V \ S .

At the end of the algorithm, S = V .

If an edge connects a vertex in V and a vertex in V \ S , we call it an
extension edge.

At all times, the algorithm enforces the following lightest extension
principle:

For every vertex v ∈ V \ S , it remembers which extension edge of v
has the smallest weight—referred to as the lightest extension edge
of v , and denoted as best-ext(v).

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Prim’s Algorithm

4. Repeat the following until S = V :

5. Get an extension edge {u, v} with the smallest weight
/* Without loss of generality, suppose u ∈ S and v /∈ S */

6. Add v into S , and add edge {u, v} into Tmst

/* Next, we restore the lightest extension principle. */
7. for every edge {v , z} of v :

If z /∈ S then
If best-ext(z) is heavier than edge {v , z} then

Set best-ext(z) = edge {v , z}

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Example

Edge {a, b} is the lightest of all. So, at the beginning S = {a, b}. The
MST we are growing now has one edge {a, b}.

a

b

c

f

g

d

e

h

1 2

33

5

6

7

8

9
10

11
12

13

vertex v best-ext(v) and weight
a n/a
b n/a
c {c, a}, 3
d nil, ∞
e {e, b}, 10
f {a, f }, 7
g {g , b}, 13
h {a, h}, 8

Note: Edges {c , a} and {c , b} have the same weight. Either of them can
be best-ext(c).

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Example

Edge {c , a} is the lightest extension edge. So, we add c to S , which is
now S = {a, b, c}. Add edge {c , a} into the MST.

a

b

c

f

g

d

e

h

1 2

33

5

6

7

8

9
10

11
12

13

vertex v best-ext(v) and weight
a n/a
b n/a
c n/a
d nil, ∞
e {e, b}, 10
f {c, f }, 5
g {g , b}, 13
h {c, h}, 6

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Example

Edge {c , f } is the lightest extension edge. So, we add f to S , which is
now S = {a, b, c , f }. Add edge {c , f } into the MST.

a

b

c

f

g

d

e

h

1 2

33

5

6

7

8

9
10

11
12

13

vertex v best-ext(v) and weight
a n/a
b n/a
c n/a
d nil, ∞
e {e, f }, 2
f n/a
g {g , b}, 13
h {c, h}, 6

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Example

Edge {e, f } is the lightest extension edge. So, we add e to S , which is
now S = {a, b, c , f , e}. Add edge {e, f } into the MST.

a

b

c

f

g

d

e

h

1 2

33

5

6

7

8

9
10

11
12

13

vertex v best-ext(v) and weight
a n/a
b n/a
c n/a
d {e, d}, 12
e n/a
f n/a
g {g , b}, 13
h {c, h}, 6

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Example

Edge {c , h} is the lightest extension edge. So, we add h to S , which is
now S = {a, b, c , f , e, h}. Add edge {c , h} into the MST.

a

b

c

f

g

d

e

h

1 2

33

5

6

7

8

9
10

11
12

13

vertex v best-ext(v) and weight
a n/a
b n/a
c n/a
d {e, d}, 12
e n/a
f n/a
g {g , h}, 9
h n/a

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Example

Edge {g , h} is the lightest extension edge. So, we add h to S , which is
now S = {a, b, c , f , e, h}. Add edge {g , h} into the MST.

a

b

c

f

g

d

e

h

1 2

33

5

6

7

8

9
10

11
12

13

vertex v best-ext(v) and weight
a n/a
b n/a
c n/a
d {d , g}, 11
e n/a
f n/a
g n/a
h n/a

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Example

Finally, edge {d , g} is the lightest extension edge. So, we add d to S ,
which is now S = {a, b, c , f , e, h, g , d}. Add edge {d , g} into the MST.

a

b

c

f

g

d

e

h

1 2

33

5

6

7

8

9
10

11
12

13

vertex v best-ext(v) and weight
a n/a
b n/a
c n/a
d n/a
e n/a
f n/a
g n/a
h n/a

We have obtained our final MST.

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Next we will prove that the algorithm is correct, namely, the tree
output is indeed an MST. We will do so by induction on the se-
quence of the edges added to the tree. Specifically, the claim to
be proven is:

Claim: For any i ∈ [1, |V | − 1], there must be an MST containing
all the first i edges chosen by our algorithm.

Then the algorithm’s correctness follows from the above claim at
i = |V | − 1.

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Correctness Proof

Let us first recall a fundamental property of undirected graphs:

Lemma: Let T be a tree of n vertices. Adding an arbitrary edge between
two vertices in T introduces a cycle.

Proof: Suppose that the edge is added between u and v . Before the
edge was added, there is already a path allowing us to go from u to v in
T . Therefore, the edge {u, v} allows us to move from v back to u, thus
witnessing a cycle.

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Correctness Proof

Now we proceed to prove the claim on Slide 20.

Base Case: i = 1. Let {u, v} be an edge with the smallest weight in the
graph. We will prove that the edge must exist in some MST.

Take any MST T that does not contain edge {u, v}. Add the edge to T ,
which creates a cycle. Remove an arbitrary edge e in T such that
e 6= {u, v}, which gives a new tree T ′. Since {u, v} has the smallest
weight, the cost of T ′ is smaller than or equal to that of T . This means
that T ′ is also an MST.

Hence, the claim holds for i = 1.

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Correctness Proof

Inductive Case: Assuming that the claim holds for i ≤ k − 1 (k ≥ 2),
next we prove that it also holds for i = k . Let {u, v} be the k-th edge
added by our algorithm, and S be the set of vertices already in the
algorithm’s tree before the addition of {u, v}. Without loss of generality,
suppose that u ∈ S , and v /∈ S .

By the inductive assumption, we know that there is some MST T that
includes all the first k − 1 edges. If T also includes edge {u, v}, then the
claim already holds.

Next, we consider the case where T does not have {u, v}.

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Correctness Proof

We add {u, v} to T , which creates a cycle. Let us walk on this cycle
starting from v , cross {u, v} into S , keep walking within S until traveling
out of S for the first time. Let the edge that brought us out of S be
{u′, v ′}.

u v

S V \ S

u′ v′

Note that both {u, v} and {u′, v ′} are extension edges right before the
moment our algorithm picks the k-th edge. Since {u, v} has the smallest
weight among all the extension edges, we know that the weight of {u, v}
is smaller than or equal to that of {u′, v ′}.

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Correctness Proof

Now, remove edge {u′, v ′} from T , which gives another tree T ′. The
cost of T ′ cannot be more than that of T . This means that T ′ must also
be an MST.

We thus have proved that the claim holds for i = k as well.

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Running Time

It will be left as an exercise for you to apply the data structures you have
learned to implement Prim’s algorithm in O((|V |+ |E |) · log |V |) time.

Remark: Using again an advanced data structure (called the Fi-
bonacci Heap) that will not be covered in this course, we can im-
prove the running time to O(|V | log |V |+ |E |).

COMP3506/7505, Uni of Queensland Minimum Spanning Trees

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

School of Computing Science and Engineering

Thank you for your attention.

Course: Design & Analysis of an Algorithm Course Code: BCSE3031 Mr. Ankit Kumar

