Course Code : BTME4006

Course Name: Quality and Reliability Engineering

7 BASIC TOOLS OF QUALITY CONTROL BTME 4006

SUBMITTED BY:-

YATI SHARMA BHANU PRATAP BHANDARI DEEPANSHU BHATIA (<u>1714101121</u>) (<u>1714101034</u>) (<u>1714101040</u>) SUBMITTED TO:-

MR. ANURAG SHANU

Course Code : BTME4006

Course Name: Quality and Reliability Engineering

Unit 2: L-1 **Statistical Quality Control**

Learning Objectives

A **control chart** is a graphical tool for monitoring the activity of an ongoing process. Control charts are sometimes referred to as **Shewhart control charts**, because Walter A. Shewhart first proposed their general theory. The values of the quality characteristic are plotted along the vertical axis, and the horizontal axis represents the samples, or subgroups (in order of time), from which the quality characteristic is found.

GALGOTIAS UNIVERSITY

Quality

- According to <u>Quality Guru Juran</u>, Quality is fitness for use.
- Quality is a perceptual, conditional, and somewhat subjective attribute and may be understood differently by different people.
- Jim Relay defines Quality in his book 'Production & Operation' that Quality is about meeting the needs and expectations of customers

Course Name: Quality and Reliability Engineering

7 tools of Quality

- Check Sheet
- Histogram
- Pareto Chart
- Cause & Effect diagram
- Control Chart
- Scatter Diagram
- Flow Chart

Course Code : BTME4006

- The check sheet is a form (document) used to collect data in real time at the location where the data is generated. The data it captures can be quantitative or qualitative. When the information is quantitative, the check sheet is sometimes called a tally sheet.
- Simple data recording device.
- Systematically record and compile data from sources.

Example:	Defect	1 st hour	2 nd hour	3 rd hour	4 th hour	5 th hour	Total
	Skip Stitch	JH1 III	H#T 111	IHT			28
	Open Seam		UHT III			Ш	24
	Point Up-down						17
	Dirty Spot		IH				14
	Pleat						7

HISTOGRAM

- A histogram is a bar graph that shows frequency data.
- It is used to graphically summarize and display the distribution and variation of a process data set. It provides the easiest way to evaluate the distribution of data.
 Example:-

Name of the Faculty: Mr. Anurag Shanu

Program Name: B.Tech (ME)

PARETO CHARTS

- The Pareto chart can be used to display categories of problems graphically so they can be properly prioritized.
- A Pareto chart or diagram indicates which problem to tackle first by showing the proportion of the total problem that each of the smaller problems comprise.
- This is based on the Pareto Principle: 20% of the sources cause 80% of the problem.

Course Name: Quality and Reliability Engineering

Example:-

Defects	Frequency	Cumm.	Cumm.%	Cumm%
sand hole defect	340	340	63.31471	63
cold lap defect	78	418	77.83985	78
sand burning defect	40	458	85.28864	85
joint flash defect	23	481	89.57169	90
porosity	21	502	93.48231	93
misrun defect	15	517	96.27561	96
sand inclusion	12	529	98.51024	99
	Defects sand hole defect cold lap defect sand burning defect joint flash defect porosity misrun defect sand inclusion	DefectsFrequencysand hole defect340cold lap defect78sand burning defect40joint flash defect23porosity211misrun defect15sand inclusion12	DefectsFrequencyCumm.sand hole defect340cold lap defect78sand burning defect418joint flash defect418porosity418sand inclusion517	DefectsFrequencyCumm.Cumm.%sand hole defect34034063.31471cold lap defect77.8398541877.83985sand burning defect41885.2886485.28864joint flash defect2348189.57169porosity2150293.48231misrun defect51796.27561sand inclusion1252998.51024

CAUSE AND EFFECT DIAGRAMS

- One analysis tool is the Cause and Effect or Fishbone diagram. These are also called Ishikawa diagrams because Kaoru Ishikawa developed them in 1943.
- They are called fishbone diagrams since they resemble one with the long spine and various connecting branches.

Benefits of constructing a Cause-and-Effect Diagram are that it

- Helps determine the root causes of a problem or quality characteristic using a structured approach.
- Encourages group participation and utilizes group knowledge of the process.
- Uses an orderly, easy-to-read format to diagram cause and effect relationships
- Indicates possible causes of variation in a process.
- Increases knowledge of the process by helping everyone to learn more about the factors at work and how they relate.

CONTROL CHARTS

 Control charts, also known as process-behavior charts, in statistical process control are tools used to determine if a manufacturing or business

SCATTER DIAGRAMS

- A scatter diagram shows the correlation between two variables in a process.
- The scatter diagram graphs pairs of numerical data, with one variable on each axis, to look for a relationship between them. If the variables are correlated, the points will fall along a line or curve. The better the correlation, the tighter the points will hug the line.

Course Code : BTME4006

Course Name: Quality and Reliability Engineering

SCATTER DIAGRAMS

Course Name: Quality and Reliability Engineering

FLOWCHART

 A flowchart is a formalized graphic representation of a logic sequence, work or manufacturing process, organization chart, or similar formalized structure.

Summary:

This lecture has introduced the basic concepts of control charts for statistical process control. The benefits that can be derived from using control charts have been discussed. This lecture covers the statistical background for the use of control charts, the selection of the control limits, and the manner in which inferences can be drawn from the charts. The two types of errors that can be encountered in making inferences from control charts are discussed.

References:

- Fundamentals of Quality Control and Improvement: Amitava Mitra
- Montgomery, D. C. (2004). *Introduction to Statistical Quality Control.* 5th ed. Hoboken, NJ:
- ASQ(1993). ANSI/ISO/ASQ. *Statistics—Vocabulary and Symbols-Statistical Quality Control*, A3534-2. Milwaukee, Wi: American Society for Quality.
- Wadsworth, H. M., K. S., Stephens, and A. B. Godfrey, (2001). *Modern Methods for Quality Control and Improvement*, 2nd ed. New York: Wiley.

