School of Mechanical Engineering

Course Code: BAUT4006 Course Name: Pollution control and Lubrication Engineering

Regulatory Standards

GALGOTIAS UNIVERSITY

National Ambient Air Quality Standards (NAAQS)

- set exclusively on the basis of their effects on human health, permitting CB considerations, among others, to come into play only in the choice of policies to achieve the health-based standards.

EPA periodically reviews the standards.

Ozone & PM standards reviewed in 1997.

Total Vehicle Miles Traveled and Highway Vehicle Emissions, 1970 - 95

(Millions of short tons, unless noted)

Category					Total percent reduction 1970–95 in	
	1970		1995		Highway	Highway
	Highway vehicles	Percent of total U.S. emissions	Highway vehicles	Percent of total U.S. emissions	vehicle vehicle er	vehicle emissions per VMT
Vehicle miles traveled, VMT (millions)	1,109,724		2,422,775			
Emissions of pollutants						
Carbon monoxide	88.03	68.6	54.1	60.3	38.7	71.9
Nitrogen oxides	7.39	34.2	7.3	30.6	0.9	54.6
Volatile organic compounds	12.97	42.1	5.7	27.7	56.0	79.9
Particulate matter			13.1	48.6		
Fuel-related	0.44	3.4	0.3	1.1	33.9	69.7
Fugitive dust			12.8	47.5		
Lead (thousands of short tons)	171.96	77.9	< 0.01	0.5	> 99.9	> 99.9

Source: Bureau of Transportation (1996: Appendix A) for data on travel; EPA Office of Air Quality Planning and Standards (1997a: table A-1, A-2, A-3, A-5, A-6) for data on emissions. Percentages were calculated from data in the tables.

Great Success

Between 1970 & 1996

```
Lead Emissions ↓ by 98%
```

However,

Agg. Nox ↑ by 8% (declined on per mile basis)

Particulates ↑ by 137%

Non Attainment Areas

1990 1997

92 (ozone) 59 (ozone)

42 (CO) 28 (CO)

GALGOTIAS UNIVERSITY **Vehicle Miles**

↑ more than 100% (1970 - 95%)

Between 1970 - 95

CO emissions ↓ 39% by VMT ↓72%

Nox ψ 0.9% ψ 55%

PM $\sqrt{34\%}$ $\sqrt{70\%}$

Percentage Change in Transportation Emissions for Selected Major Metropolitan Areas, 1985 - 94

Metro area	VOC	NO_x	СО	PM_{10}
North				
New York, northern New Jersey	-32.7	-7.3	-26.2	-17.9
Chicago, Gary	-39.9	-9.5	-31.2	-18.9
Pittsburgh, Beaver Valley	-46.0	-26.1	-36.9	-31.0
Indianapolis	-20.1	3.0	-1.7	-4.9
South				
Dallas, Ft. Worth	-46.4	-17.4	-34.9	-24.7
Houston, Galveston	-41.9	-15.3	-27.5	-34.1
Miami, Ft. Lauderdale	-34.9	6.3	-14.1	-7.1
Tampa, St. Petersburg	-41.7	-1.6	-23.5	-12.6
West				
Los Angeles, Anaheim, Riverside	-31.7	-8.8	-25.9	-18.3
San Francisco, Oakland, San Jose	-30.1	-15.8	-22.2	-24.6
Seattle, Tacoma	-28.3	-8.9	-23.3	-16.8
San Diego	-34.8	-15.2	-30.4	-22.1
Portland	-28.4	-5.2	-22.7	-12.6

Source: Bureau of Transportation Statistics (1995: table 8-1). Metropolitan areas are as defined by the Bureau of the Census using 1990 census data.

a. Does not include parts of two Connecticut counties included in the 1990 census definition.

Federal Emission Standards for Passenger Cars (grams per mile)

Year	Hydro- carbons (HC)	Carbon monoxide (CO)	Nitrogen oxides (gasoline)	Nitrogen oxides (diesel)	Particulates
Uncontrolled	8.20	90.0	3.4, 4.0 ^a		0.3b, 0.5c, 1.0d
196869	5.90	50.8			• • •
1970–71	3.90	33.3			
1972	3.00	28.0	• • •		
1973–74	3.00	28.0	3.1		
1975–76	1.50	15.0	3.1		
1977–79	1.50	15.0	2.0		
1980	0.41	7.0	2.0		
1981	0.41	3.4	1.0	1.0	
1982–84	0.41	3.4	1.0	1.0	0.60
1990	0.41	3.4	1.0	1.0	0.20
1991	0.41	3.4	1.0	1.0	0.20
1994	0.25	3.4	0.4	1.0	0.08
2004-2006°	0.13	1.7	0.2	0.2	0.10

Source: For years before 1980, White (1982:15); after 1980, Bureau of Transportation Statistics (1997a:189). Standards are those actually applied to cars of the indicated model year, with the exception of 2004–2006.

- a. NO, emissions from a car controlled for HC and CO at the 1970 standards.
- b. Emissions from a vehicle burning leaded gasoline; emissions from a vehicle with a catalytic converter burning unleaded gasoline are under 0.01.
 - c. Emissions from an uncontrolled diesel automobile.
 - d. Emissions from a diesel automobile controlled to meet the 1980 NO, standard.
- e. To be implemented no sooner than the 2004 model year and no later than the 2006 model year, contingent on a demonstration by EPA that further controls are needed, technically feasible, and cost-effective.

References

- 1. V. Ganesan, (2008), Internal Combustion Engines, Tata McGraw-Hill Publishing Company Ltd.
- 2. William. H. Crouse (2006), Automotive Mechanics, 10th Edition, McGraw-Hill, ISBN: 978-0-07-063435-0.
- 3. Kirpal Singh (2011), Automobile Engineering, 12th edition, Standard Publications, ISBN: 978-8-180-14177-5.
- 4. Joseph Heitner (1999), Automotive Mechanics: Principles and Practices, 2nd edition, Affiliated East West Pvt. Ltd, ISBN: 978-8-176-71015-2.
- 5. Bosch Automotive Hand Book (2007), 8th Edition, SAE Publications, ISBN: 978-0-7680-4851-3
- 6. K. Newton and W. Steeds (2001), the motor vehicle, 13th Edition, Butterworth-Heinemann Publishing Ltd, ISBN: 978-0-080-53701-6.
- 7. Onkar Singh, (2009), Applied Thermodynamics, New Age International.
- 8. Internal Combustion Engine Fundamentals, John B. Heywood McGraw-Hill Education; 2 edition (31 May 2018), ISBN-13: 978-1260116106
- 9. Springer and Patterson, Engine Emission, Plenum Press, 1990

Thank you

GALGOTIAS UNIVERSITY