A COMPREHENSIVE REVIEW ON ANTIAGING NATURAL PRODUCTS

A Project Report Submitted
In Partial Fulfillment of the Requirements
for the Degree of
BACHELOR OF PHARMACY

by Abhishek Varshney (Enrollment no.18021020135)

Under the Supervision of
Prof. Kalpana Pravin Rahate
Professor
Galgotias University
Greater Noida.

Department of Pharmacy GALGOTIAS UNIVERSITY Greater Noida May, 2022

A COMPREHENSIVE REVIEW ON ANTIAGING NATURAL PRODUCTS

A Project Report Submitted
In Partial Fulfillment of the Requirements
for the Degree of
BACHELOR OF PHARMACY

by Abhishek Varshney (Enrollment no. 18021020135)

Under the Supervision of
Prof. Kalpana Pravin Rahate
Professor
Galgotias University
Greater Noida.

Department of Pharmacy GALGOTIAS UNIVERSITY Greater Noida May, 2022

Table of Contents

S. No.	Chapter/Subchapter	Page No.
1.	Introduction	1
2.	Theory of aging	3
	2.1 Characteristics of Aging	4
	2.2 Evolutionary theory of aging	4
	2.3 Free radical theory of aging	5
	2.4 Mitochondrial theory of aging	7
3.	Anti-aging compounds derived from natural source	9
4	CONCLUSION	52
5.	References	53

List of Tables

S. No.	Title	Page No.
1.	Anti-aging compounds derived from natural ingredients	10

List of Figures

S. No.	Title	Page No.
1.	Representation of the pathway that modulate the aging	2
	process	
	1	
2.	Some Factors In Aging	3
3.	Formation of Free Radicals	7
4.	Process Mitochondria Damage	8

CERTIFICATE

This is to certify that project work entitled "A COMPREHENSIVE REVIEW ON ANTIAGING NATURAL PRODUCTS" done by Mr. Abhishek Varshney submitted to Department of Pharmacy, is a bonafide research work done under the supervision and guidance of Prof. Kalpana Pravin Rahate, Professor, School of Medical and Allied Sciences, Greater Noida. The work is completed and ready for evaluation in partial fulfillment for the award of Bachelor of Pharmacy during the academic year 2021-2022. The project report has not formed the basis for the award of any Degree/Diploma/Fellowship or other similar title to any candidate of any University.

Date:

Prof. Pramod Kumar Sharma

Dean School of Medical and Allied Sciences Galgotias University Greater Noida (U.P.)

BONAFIDE CERTIFICATE

This to certify that the project work entitled "A COMPREHENSIVE REVIEW ON ANTIAGING NATURAL PRODUCTS" is the bonafide research work done by Mr. Abhishek Varshney who carried out the research work under my supervision and guidance for the award of Bachelor of Pharmacy under Galgotias University, Greater Noida during the academic year 2021-2022. To the best of my knowledge the work reported herein is not submitted for award of any other degree or diploma of any other Institute or University.

Prof. Kalpana Pravin Rahate Guide Professor School of Medical and Allied Sciences Galgotias University Greater Noida (U.P.) **DECLARATION**

I hereby declare that the work embodied in this project report entitled "A COMPREHENSIVE

REVIEW ON ANTIAGING NATURAL PRODUCTS" in Partial fulfillment of the

requirements for the award of Bachelor of Pharmacy, is a record of original and independent

research work done by me during the academic year 2021-22 under the supervision and guidance

of Prof. Kalpana Pravin Rahate Professor, School of Medical and Allied Sciences, Galgotias

University, Greater Noida. I have not submitted this project for award of any other degree or

diploma of any other Institute or University.

Date:

(Mr. Abhishek Varshney)

Place:

Name and Signature of candidate

7

Acknowledgement

I would like to express my special thanks of gratitude to my project guide **PROF. KALPANA PRAVIN RAHATE** as well as our Dean **PROF. PRAMOD KUMAR SHARMA** who gave me the golden opportunity to do this wonderful project on the topic "A **COMPREHENSIVE REVIEW ON ANTIAGING NATURAL PRODUCTS**", which also helped me in doing a lot of research and I come to know about so many new things.

I new really thankful them.

Secondly I would also like a thank my friends who helped me a lot in finishing this project within the limited it helped me increase my knowledge and skills.

At last but not least, I would like to thanks GOD for gives me patience and power for the successful completion of the project.

ABHISHEK VARSHNEY

Abstract

Aging is typically characterised as the accumulation of a variety of harmful changes in cells and tissues as people become older, which are linked to an increased risk of disease and mortality. From the molecular to the organismic level, ageing changes are visible; environmental variables influence experimental findings; secondary effects confound the understanding of basic processes; and properly defined, readily measured "biomarkers" are missing. More than 300 ideas exist to explain the ageing process. Many of them are based on the analysis of cumulative changes over time. The free radical hypothesis of ageing, proposed originally by Harman and based on the molecular nature and ubiquitous existence of free radicals, is the most popular and thoroughly tested of all the hypotheses. Free radical reactions, according to the free radical hypothesis of ageing, induce ageing changes. According to the evidence, a healthy low-calorie diet combined with one or more free radical reaction inhibitors can extend average life expectancy at birth by 5 or more years. With growing age, the latter induces ageing changes at an exponentially rising pace. In developed countries, past advances in general living circumstances have reduced death rates to near-limit values; in these countries, the intrinsic ageing process is the leading cause of sickness and death beyond the age of 28. The average total number of years that a human anticipates to live is known as life expectancy. Life span, on the other hand, is the greatest number of years a human may live. While the average human life duration has stayed around 125 years throughout the past 100,000 years, life expectancy has grown noticeably (by 27 years in the previous century), particularly in Western countries. The eradication of most infectious illnesses that affect children and adolescents, improved cleanliness, and the use of medicines and vaccinations have all contributed to increased life expectancy.

1. INTRODUCTION

For all living species, ageing is an inescapable process. The ageing process begins at birth and becomes increasingly noticeable on the skin as we get older. In 2025, it is anticipated that there will be over 1.2 billion elderly individuals (over 60 years old) in the globe due to increased life expectancy.^{1,2} Extrinsic variables such as sun exposure, smoking, nutrition, and pollution contribute to the ageing process, as do intrinsic factors such as genetics, cellular metabolism, hormone, and metabolic process. Aging is typically defined as the accumulation of a variety of detrimental alterations in cells and tissues as people become older, which are linked to an increased risk of disease and mortality. Aging is the result of a series of changes that occur as a person gets older, as well as the progressive changes that come with it. 3 Aging is the accumulation of changes that cause the sequential changes that come with becoming older, as well as the related gradual increases in the risk of illness and mortality. Disease, the environment, immunological malfunction, and an inborn process called ageing may all play a role in these alterations. As a result, with growing age, ageing changes at an apparently unchangeable and exponentially rising rate. Because of the exponential nature of the ageing process, the contribution of the ageing process to changes that occur with age is limited early in life but rapidly increases with age.⁴ The average total number of years that a human anticipates to live is known as life expectancy. A human's life span, on the other hand, is the greatest number of years that he or she may live. While the average human life duration has stayed around 125 years throughout the past 100,000 years, life expectancy has grown noticeably (by 27 years in the previous century), particularly in Western countries. The eradication of most infectious illnesses that affect children and adolescents, improved cleanliness, and the use of medicines and vaccinations have all contributed to increased life expectancy.⁵

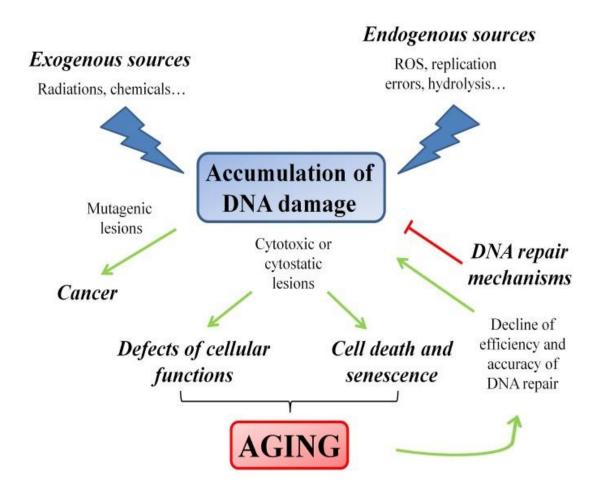


Figure 1 :- Representation of the pathway that modulate the aging process

2. THEORY OF AGING

To explain the ageing process, several ideas have been proposed. There is no universally recognised explanation: 'this observable process remains a mystery. it seems unlikely that a single hypothesis would explain all the causes of aging.⁷ The primary theory of ageing is a formalisation of how natural selection may have influenced ageing.⁸ In a work that constitutes the finest attempt yet to formalize the full evolutionary theory of ageing, Rose introduced the following theoretical concept of ageing: "A sustained fall in the age-specific components of fitness of an organism owing to internal physiological degradation is the proper definition of ageing to be employed here."^{9,10}

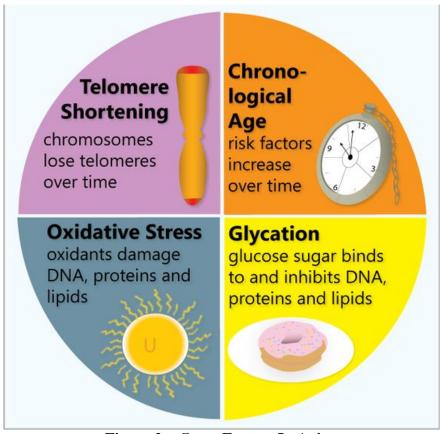


Figure 2:- Some Factors In Aging

2.1. Characteristics of Aging

2.1.1. Mortality increases with age.

It posits, in particular, that the rate of individual disease in patients (aging) increases in early old age as the rate of damage healing slows. As a result, the rate of rise in mortality, which is thought to be linked to the rate of aging, increases.

2.1.2 Age-related changes in tissue biochemical composition.

The biochemical response to tissue injury is made up of local processes occurring within the region of damage and the systemic responses generated by the local injury via humoral and neuroendocrine pathways.

2.1.3. As people become older, their physiological capability decreases.

All organ systems have physiological changes as they age. Arteriosclerosis occurs when cardiac output declines, blood pressure rises, and arteriosclerosis develops. Gas exchange is impaired, vital capacity is reduced, and expiratory flow rates are slower.

2.1.4. As people get older, their capacity to adjust to external stimuli decreases.

Senescence is characterized by a decreased ability to maintain homeostasis.

Changes in relaxing or basal measures are less obvious than responses to external stimuli such as exercise or fasting..

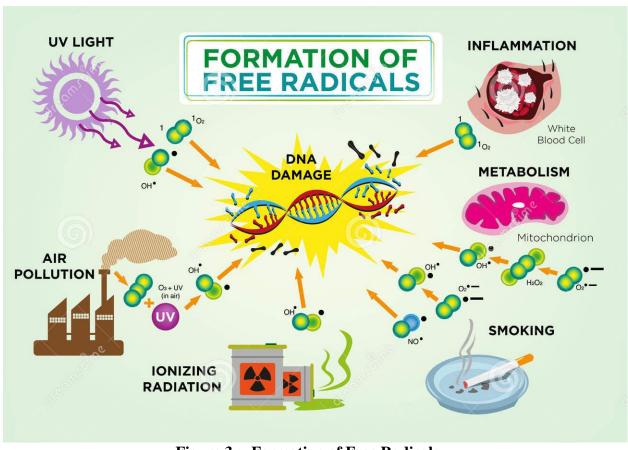
2.1.5. Increased illness susceptibility and sensitivity.⁶

Many illnesses incidence and fatality rates rise with age, paralleling the exponential rise in mortality rates.

2.2. Evolutionary theory of aging

Aging is an aspect of the evolution of the entire life cycle, from conception to death, as studied in the branch of evolutionary biology known as life history evolution. According to evolutionary theory, ageing is caused by a decrease in the force of natural selection. The observation of people with Huntington's disease, a dominant deadly mutation, led to the

development of this notion in the 1940s. ¹⁰ The influence of a variation in extrinsic death rates on intrinsic mortality rates (thus, longevity) as well as development, maturation, body size, and reproduction is predicted by evolutionary theory. When extrinsic mortality rates rise, the chances of surviving to a certain age decrease, and the power of selection declines quicker with age, resulting in an increase in intrinsic mortality. Evolutionary theories of ageing and longevity attempt to explain the striking discrepancies in known ageing rates and longevity records among biological species (compare, for example, mice and humans) through the interaction of mutation and selection mechanisms. 11,12 The desire to understand the biological evolution of ageing and longevity stems from perplexing observations of some biological organisms' life cycles. A bamboo plant, for example, may reproduce vegetatively (asexually) for up to 100 years, resulting in a thick stand of plants. The plants then all blossom at the same time, reproduce sexually, and die in the same season. The procedure is repeated about 100 years later (depending on the bamboo type). 13 This, as well as other comparable studies of "suicidal" living, is fascinating. This fascinating study, along with others of "suicidal" life cycles in species such as pacific salmon, has fueled speculation that sexual reproduction may come at a penalty to species lifespan. 14 Thus, in addition to mutation and selection, the reproductive cost, or, more broadly, the trade-offs between distinct features of organisms, may play a role in the evolution of species longevity and ageing.¹⁵ Because biological evolution is only conceivable for heritable manifestations of ageing, evolutionary theories of ageing are tightly linked to genetics of aging.16


2.3. Free radical theory of aging

The free radical theory of ageing developed in 1954 from a study of the ageing phenomena based on the hypothesis (Harman, 1992) that all living things age and die due to a single common mechanism that is controllable by genetic and environmental variables. ^{17,18} Free radical reactions occur today as a result of ionising radiation ^{19,20,21}, nonenzymatic reactions such as those involving organic compounds ^{22,23,24}, and enzymatic reactions, particularly those involving the two major energy-gaining processes used by living things: photosynthesis ²⁵ and the reduction of 02 to water. ^{26,27,28} Because of the significance attached to delaying the ageing process, they are likely to develop in the reduction of terminal electron acceptors used by

anaerobes: most likely with NO3-, perhaps with CO2, and potentially with SO42-. in which 02 is the major source of harmful free radical reactions. The great majority of these free radical reactions are probably enzymatic in nature, involving maintenance and function, whereas the rest, using nonenzymatic mechanisms and 'leakage' of free radicals from enzymatic processes, result in more or less random changes.²⁹

The free radical hypothesis of ageing offers plausible explanations for age-related phenomena like as

- Among mammalian species, the link between average life lengths and basal metabolic rates,
- ii. The occurrence of a cluster of degenerative illnesses in later life,
- iii. The longevity-enhancing impact of dietary restriction,
- iv. Females' greater longevity,
- v. The age-related rise in autoimmune symptoms^{30,31}

Figure 3:- Formation of Free Radicals

2.4. Mitochondrial theory of aging

Harman proposed the initial version of the mitochondrial theory of ageing, which proposed that the ongoing accumulation of free radical damage to the mitochondria is the major driving force behind the ageing process.³² Mitochondria are organelles that are found in nearly every eukaryotic cell. Mitochondria are now widely considered to be endosymbionts that evolved from purple bacteria 1.5 x 109 years ago.³³ Mitochondria are cellular energy factories that produce ATP by combining hydrocarbons and oxygen. There are hundreds of mitochondria in every human cell, and each mitochondrion contains multiple copies of mitochondrial DNA (mtDNA).³⁴ Mitochondria are cellular organelles that use oxygen to make energy (ATP). The UV action on the mitochondrial electron transport chain generates a lot of reactive oxygen species (ROS), which can damage mitochondrial DNA (mtDNA). The mitochondrial genome encodes 13 components of the electron transport chain, and oxidative damage can cause DNA

deletions or rearrangements, most likely due to double-strand breaks, which might impair mitochondrial energy production. It is hypothesised that the resulting reduction in mitochondrial activity in photodamaged skin leads to an increase in ROS production and further limits the cell's capacity to commence energy production.³⁵

PRODUCTION OF FREE RADICALS HAS INCREASED PROTEINS, LIPIDS, AND OTHER MOLECULES - DAMAGE TO GENETIC MATERIAL AND OTHER MOLECULES DECREASE IN ENERGY PRODUCTION DUE TO MITOCHONDRIAL DAMAGE

Figure 4: Process Mitochondria Damage

3. ANTI-AGING COMPOUNDS DERIVED FROM NATURAL SOURCES

Since ancient times, anti-aging therapies have piqued people's attention. Anti-aging activities are designed to extend life and improve quality of life. Anti-aging activities are used to treat age-related ailments such Parkinson's disease (PD), Alzheimer's disease (AD), cardiovascular disease, cancer, and chronic obstructive pulmonary disease. Natural products are well-known for their ability to slow down the aging process by affecting metabolic pathways, resulting in a longer lifetime. These natural chemicals are being used in drug design and development for effective pro-longevity medications using computational and high throughput approaches. Natural compounds include a vast array of structural scaffolds that can be used to develop prospective candidate chemical entities for the important healthcare problem of extending life span and/or postponing aging. Natural substances (in either pure form or extract form) that have been discovered to postpone cellular senescence or in vivo ageing will be critically evaluated in this article. There are about 300 chemicals that have anti-aging properties. We've compiled a list of chemicals or natural product extracts having anti-aging properties. Furthermore, the chemical structures of the found natural compounds will be given and analyzed, along with the CAS No. [Chemical Abstracts Service Number], Source, Chemical Structure, Anti-aging action, and mechanism.

S. NO.	Chemicals	Chemicals Structure	Source	Anti-aging activity and
	Name And			mechanism
	CAS NO.			
1.	Resveratrol	OH	Grapes	proteasomal degradation, AMPK,
	501-36-0			autophagy, and SIR-2.1 are all
		но		regulated, resulting in an 18.0%
				increase in average longevity.
				36.37.38
				70.0 percent increase in average
		 OH		lifetime; SIR2 and SNF1 regulation
		OH		39,40
2.	Alpha-Lipoic		Broccoli,	The average lifespan and
	acid		Beets,	antioxidant levels have increased
	62-46-4		tomatoes	by 12.0%. ⁴¹
		s—s		Antioxidant, enhancing chemotaxis
		ОН		index. has increased by 24.0
				percent. ⁴²

3.	Catechin	ОН	Apples,	The average lifespan and
	154-23-4		grapes,	antioxidant levels have increased
		НО	green tea,	by 16.0 percent. 43,44
		ОН	and cocoa	DAF-2, AKT-2, MEV-1, and
		ОН		NHR-8 are all regulated, whereas
				insulin-like growth factor-1 is
		ОН		reduced, resulting in a 13
				percentage increase in average
				longevity and antioxidant
				protection ⁴⁵
4.	Curcumin		turmeric	The average lifespan
	458-37-7		(Curcuma	and antioxidant levels
		но	longa)	have increased by
				25.8%. ⁴⁶
				The average lifetime
				and antioxidant levels
				have increased by 25.0
				percent. ⁴⁷

5.	Spermidine	H NN NH2	aged	Autophagy and mean life duration
	124-20-9	H_2N	cheese,	both increased by 30%.
			mushrooms,	There was a 15.0 percent increase
			soy	in average lifespan and
			products	autophagy. ⁴⁸
6.	Acacetin	O OH II I	safflower	Upregulation of SOD-3 and GST-4
	480-44-4		seeds	and a 27.3 percent increase in
		ОН		average lifetime. ⁴⁹
7.	Acetic acid	O II	apples,	Regulation of the insulin/IGF-1
	64-19-7	\downarrow	grapes,	pathway resulted in a 23.0%
		OH	oranges,	increase in average longevity. ⁵⁰
		311	<i>O</i> ,	

8.	Antcin M 1005344-44-			Antrodia cinnamomic	Antioxidant, which regulates Nrf2 and SIRT-1, leads to a 10.0 percent
	4	HOMINI.	ОН		increase in average lifetime. ⁵¹
9.	Agmatine 306-60-5	H_2N	NH ₂	Generatedb y arginine decarboxyla se	The average longevity has increased by 16.0%, indicating that more study is needed. ⁵²
10.	Alpha- Ketoglutarate 328-50-7	HO	ОН	Tricarboxyli c acid cycle intermediate	Inhibiting ATP synthase and TOR signalling resulted in a 50.0 percent increase in average lifetime. ⁵³

11.	Baicalein	НО	Scutellaria	The average lifespan and
	491-67-8		baicalensis	antioxidant, regulating SKN-1
		HO		increased by 24.0 percent. ⁵⁴
12.	Betaine	0	Beets,	The average lifetime has increased
	107-43-7	NI+	Spinach,	by 9.0 percent, indicating that
		-O	Grains	further study is needed. ⁵⁵
13.	Caffeic acid	0	Apples,	Increasing the average lifespan by
	331-39-5	HO,	berries,	11.0 percent and controlling OSR
		ОН	pears	1, SEK-1, SIR-2.1, UNC-43, and
				DAF-16.56 are all OSR-1, SEK-1
		но		SIR-2.1, UNC-43, and DAF-16. ⁵⁶

14.	Carnosine	0 	Endogenous	The average lifespan and
	305-84-0	HN OH NH ₂	dipeptide	antioxidant levels have increased by 26.0 percent. ^{56,57}
15.	Catalpol 2415-24-9	O OH HILLING OH HOME	Rehmannia glutinosa	DAF-16 and SKN-1/Nrf regulate DAF-16 and SKN-1/Nr, resulting in a 28.5 percent increase in average longevity and antioxidant. ⁵⁸
16.	Chlorogenica cid 327-97-9	HOMM	Coffee, tea	20.1 percent increase in average lifetime and antioxidant activity, indicating that the IIS pathway is being regulated. ⁵⁹

17.	Coenzyme	*\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	Mitochondri	Increased mean longevity by
	Q10		al respirator	18.0% when scavenging reactive
	303-98-0		chain	oxygen species. 60
			component	
18.	D-	HO OH O	Hexosamine	By controlling AMPK and SKN-1,
	Glucosamine	>	pathway	researchers were able to achieve an
	3416-24-8	но—		11.0 percent improvement in mean
		HO NH ₂		longevity while simulating a low
				carbohydrate diet. ⁶¹
19.	Dimethyl	.S.	Metabolite	The average longevity has grown
	sulfide		of marine	by 24.2 percent, as have
	75-18-3	·	algae or	antioxidant levels. 62
			fermentativ	
			e bacteria	
20.	(-)-	но	Cocoa	The average lifetime has increased
	Epicatechin			by 8%, indicating that more study
	490-46-0	HO OH OH		is needed. ⁶³

21.	Epigallo- catechin gallate 989-51-5	HO OH OH OH	Polyphenols in tea	13.0 percentage increase in average antioxidant activity and lifespan, indicating that the IIS pathway is being regulated. ⁶⁴
22.	Gallic acid 149-91-7	ОН	Beverages	The average lifetime and antioxidant levels have increased by 25.0 percent. ⁶⁵
23.	Gluconate 527-07-1	ОН НО ОН	Sugarsmeta bolite	The average lifetime and antioxidant levels have increased by 22.0 percent. ⁶⁶

24.	Glycerol	OH	Sugars	The average lifetime has increased
	56-81-5		metabolite	by 21.0 percent, indicating that
		но он		more study is needed. ⁶⁷
25.	Inositol	OH ■	polyamines,	C. elegans with nitrogen deficiency
	87-89-8	HO ₄	phospholipi	had a 17.0 percent increase in mean
		HO _{/////} OH	d	longevity and additional study is
		$\int_{m_{i}}$		needed. ⁵²
		но 🚊		
		Ē OH		
26.	Hesperidin	НО	Citrus	UTH1. regulates Sir2, resulting in a
	520-26-3	но — >	genus	37 percent increase in average
		HO HO OH		lifespan and antioxidant. ⁶⁸

27.	Icariin 489-32-7	HO OH OH OH OH OH OH	Herba epimedii	The IIS pathway is regulated, resulting in a 20.7 percent increase in average lifespan. ⁶⁹
28.	Arginine 74-79-3	H_2N H_2 H_2N OH OH	Amino acid	Increased oxidative stress by 27.0 percent, heat stress by 370 percent, and antioxidant, which regulates the insulin/IGF signaling system. ⁷⁰
29.	Lactate 50-21-5	НО	Metabolite	The average lifespan and antioxidant levels have increased by 15.0 percent. ⁶⁶
30.	Nordi- hydroguaiaret ic acid 500-38-9	НО	Creosote plant	The average lifetime has increased by 64.0 percent, indicating that more study is needed. ⁷¹

31.	Oleanolic acid 508-02-1	HO	olive oil	DAF-16 regulates DAF- 16 percent increase in average lifespan and antioxidant. ⁷²
32.	Oligonol 851983-55-6	HO OH	lychee fruit,	AMPK and autophagy regulation ⁷³
33.	Polydatin 27208-80-6	HO OH OH	Grapejuice	SKN-1, DAF-2, SIR-2.1, DAF-16, and SOD-3 have been demonstrated to control each other., resulting in a 30.0 percent increase in mean lifetime. ⁷⁴

34.	Rosmarinic	ООН	Subfamily	DAF-16, SIR-2.1, SEK-1, UNC-
	acid	$reve{1}$	Nepetoideae	43, and OSR-1 have all been
	537-15-5		of the	demonstrated to control each
		ОН	Lamiaceae	other. ⁷⁵
35.	Sesamin	,0	seeds of	The average lifetime and
	607-80-7	H _{IM}	sesame	antioxidant levels increased by
				12.0%. ⁷⁶
		J. in H		DAF-16, DAF-2, PMK-1, and
		· ·		SKN-1 are all regulated by DAF
				16, DAF-2, PMK-1 and SKN-1. ⁷
36.	Tetra-	o o	Curcuma	The average longevity has
	hydrocurcum	но	longa	increased by 28.0%, and the
	in			average lifespan has been
	36062-04-1	ОН		regulated. Fox O and Sir2. ⁷⁸

37.	UrolithinA 1143-70-0	НО	Pistachios, brewed tea, blackberries	Mitophagy, a process that regulates mitochondrial activity, has increased the average lifetime by 45.4 percent. ⁷⁹
38.	Vitexin 3681-93-4	OH O	passion flower,	There was a 17.0 percent increase in average longevity and antioxidants. ⁸⁰
39.	Guanosine 118-00-3	NIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Endogenous nucleoside	Antioxidant is a term used by Wistarrats. ⁸¹

40.	Porphyra-334 70579-26-9	HO OH NH OH	marine red algal species	In mice skin: antioxidant, Hsp70. ⁸¹
41.	Shinorine 73112-73-9	HO OH	Red alga Porphyra rosengurttii	Hsp70, antioxidant, inmiceskin. ⁸²
42.	Sargaquinoic acid 70363-87-0	О	sea holly, peat moss	Inducing apoptosis in miceskin. ⁸³
43.	Sarga- chromenol 70363-89-2	HO O OH OH	sea holly, peat moss	Apoptosis is induced by triggering apoptosis in mice. 83

44.	Beta- Nicotinamide mononucleoti de 1094-61-7	HO _{Min} , OH	broccoli, cabbage	In rats, the amount of NAD+ is rising. ⁸⁴
45.	TA-65 1339070-29- 9	HOMMAN OH HO OH	Astragalus membranac eus	Telomerase activation in inmice. 85
46.	Celastrol 34157-83-0	HO	Tripterygiu m wilfordii	Increased mean life span by 13.0% and inhibited neuronal cell death via modulating HSP70. ⁸⁶

47.	Creatine 57-00-1	H_2N NH N OH OH	ergogenic compound	Upregulation of genes involved in neuronal development, neuroprotection, and learning resulted in a 9.0% increase in average longevity. ⁸⁷
48.	Crocin 42553-65-1	HOILING OH OH OH OH OH OH OH	Kashmiri saffron	The average lifetime has increased by 44.0 percent, affecting haematological characteristics. ⁸⁸
49.	Acteoside 61276-17-3	HO OH OH OH	Plantago ovata, Barleria lupulina	In a mouse model of aging produced by a mixture of D-gal and AlCl3, reducing nitric oxide, nitric oxide synthase activity, and caspase-3 expression. ⁸⁹

50.	Gastrodin 62499-27-8	HO/////OH OH	orchid Gastrodia elata	In the case of vascular dementia, Chronic ischemia-induced rats: antioxidant, modulating ADH7, GPX2, GPX3, and NFE2L2. ⁹⁰
51.	Chiro- inositol 87-89-8	HO/////OH OH	Inositol family	16.7 percent increase in average lifespan and antioxidant activity by modulating FOX O. ⁹¹
52.	Gluconic acid 526-95-4	HO OH OH OH	Glucose catabolism	The average lifetime and antioxidant levels have increased by 22.0 percent. ⁶⁶
53.	Lutein 127-40-2	HOW!!	Bell Peppers, Eggs, Corn	There was an 11.0 percent increase in average life span and antioxidants. 92

54.	S,S-Trolox- carnosine 1004313-10- 3	HO OH NH	Trolox acylated derivatives	The average lifetime and antioxidant levels have increased by 36.0 percent. ⁵⁷
55.	Theaflavins 4670-05-7	OH HO///// HO OH OH	red tea	The average lifetime and antioxidant levels have increased by 10%. 93
56.	b-Guani- dinopropioni c acid 353-09-3	H_2N H N OH OH	Metabolites	Increased mean longevity by 13.0% in females and 90% in males by modulating AMPK Atg1- autophagy signalling. ⁹⁴

57.	Wortmannin		Black spot	A 5.0 percent increase in average
	19545-26-7	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	of pineapple	lifetime and PI3K habituation. 95
58.	3,4- Dihydroxybe nzaldehyde 139-85-5	НООН	Sasa senanensis leaves	Prolyl 4-hydroxylase's 2-oxoglutarate binding sites were inhibited, resulting in a 23.0% increase in mean longevity ⁹⁶

59.	Beta- Estradiol 57-91-0	HO OH	Hormone	The average lifespan and antioxidant levels have increased by 7.0 percent. ⁹⁷
60.	Chlorophyll 1406-65-1	Na ⁺ Na ⁺ Na ⁺	Vegetables (green)	25 percent increase in average life span and antioxidants. 98

61.	Genistein	HOO	Vigna	Antioxidant and mean lifetime
	446-72-0	OH O OH	angularis	increased by 27.9%. 100,101
62.	Salicylic acid	0	Plant	The average lifetime has increased
	69-72-7		hormone	by 14.0 percent, while antioxidant
		ОН		levels have increased by 14.0 percent. ¹⁰²
63.	Specioside		Stereosperm	The average lifespan and
	72514-90-0	HO ////////////////////////////////////	um	antioxidant levels have increased
		HOWING OH OH	H suaveolens	by 15.5 percent. ¹⁰³

64.	Taxifolin	OH I	Citrus fruits	The average lifetime has increased
	480-18-2	ОН	and	by 51.0 percent, while antioxidant
			onion	levels have increased by 51.0
		HO OH OH		percent. ¹⁰⁴
65.	Theanine	OH O	Camellia	An increase of 5.0 percent in
	3081-61-6		sinensis	average lifespan and
		N_{H} OH N_{H_2}		antioxidants. 105
66.	Trolox	OH	Vitamin E	The average lifetime and
	53188-07-1		analog	antioxidant levels increased by
		OH		31.0 percent. ¹⁰⁴

67.	Fisetin	OH	Apples,	mechanical stress and antioxidant,
	528-48-3		onions,	controlling DAF- 16, had a 6.0
		но	grapes, and	percent improvement in mean
		OH OH	a variety of	lifetime. 106
			other herbal	
		ОН	foods	
68.	Kaempferol	OH	Apples,	10 percent increase in average
	520-18-3		onions,	lifetime and antioxidant activity, as
		но	grapes, and	well as DAF-16 regulation. 106
			a variety of	
			other herbal	
		· · · · · · · · · · · · · · · · · · ·	foods	
		O OH		
		0		

69.	Isocitrate 320-77-4	НООНООН	TCA cycle intermediate	There has been a 13.0% rise in the average longevity, and additional study is needed. ⁵²
70.	Quercetin 117-39-5	HO OH OH	Red wine, tea, and Ginkgo biloba extracts, as well as onions, apples, and broccoli	15.0 percent increase in average lifespan and antioxidant activity, as well as DAF-16 regulation 107

71.	Verminoside 50932-19-9	OH	Stereosperm um suaveolens	Antioxidant, controlling DAF-16, and 20.8 percent improvement in mean lifetime. 108
72.	Icariside II	ОН	Icariin	Regulation of IIS signaling leads to
, 2.	113558-15-9	HO O	active metabolite	a 20.0 percent increase in average lifetime. ⁶⁹
		HOOH		

73.	Trehalose 99-20-7	HO, M, MOH	Disaccharid e of glucose	32.0 percent longer average lifetime and IIS signalling regulation. 109
74.	Withanolide A 32911-62-9	OH OH	Ayurvedic	The IIS pathway and brain activity were both regulated, resulting in a 29.7% increase in average lifetime. 110
75.	Tyrosol 501-94-0	НО	Extra virgin olive oil	The IIS pathway and the heat shock response were both regulated, resulting in a 10.8% increase in average longevity. 111,112,113

76.	Chicoric acid 6537-80-0	HO HO O	OH	Caffeoyl OH derivative	AMPK regulation leads to a 21.0 percent increase in average lifespan. 115
77.	Oxaloacetate 328-42-7	НО		Metabolite of the citric acid cycle	Citric acid cycle metabolite increases mean lifetime by 25.0 percent while also regulating AMPK. 116
78.	(S)-2- Hydroxygluta rate 13095-48-2	HO OH		Oncometab olite	Citric acid cycle metabolite increases mean lifetime by 25.0 percent while also regulating AMPK. ¹¹⁶
79.	Hydrogen sulfide 7783-06-4	H S H		Animal cells generate it naturally.	SIR-2.1. regulates SIR-2.1.118,119, resulting in a 74.0 percent increase in average lifespan and antioxidant. 118,119
80.	Diallyl trisulfide	S\S\S\	•	Garlic	12.6 percent longer average lifetime and SKN-1 regulation. 120

	2050-87-5			
81.	Plumbagin	O II	Plumbago	15.0 percent longer average
	481-42-5		zeylanica	lifetime and SKN-1 regulation. 121
		OH O	L.	
82.	Leucine	0	Amino	The regulation of SKN-1 and DAF
	61-90-5		acids	16 resulted in a 16.0 percent
		NH_2		increase in average lifespan. ⁵²
83.	Tomatidine		Tomato	Mitophagy is regulated by the
	77-59-8	The state of the s	fruits,	SKN-1/Nrf2 pathway, which
		H	leaves, and	results in a 7.0 percent increase in
		■ <u>H</u> <u>D</u>	stems that	average lifespan. 122
		H H	aren't ripe	
		HO HO		

84.	S- Allylcysteine 21593-77-1	S OH NH ₂	Allium sativum L.	SKN-1 regulates SKN-1, resulting in a 17.0 percent increase in average lifespan and antioxidant. 123
85.	Matairesinol 580-72-3	HO OH	Arctium lappa	Regulation of JNK-1 and DAF-16, resulted in a 25.0 percent increase in average longevity. 124
86.	Arctigenin 7770-78-7	OH OH	Arctium lappa	JNK-1 and DAF-16 are regulated, resulting in a 14.0 percent increase in average longevity and antioxidant activity. 124

87.	Arctiin 20362-31-6	HO IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Arctium lappa	JNK-1 and DAF-16 are regulated, resulting in a 14.0 percent increase in average longevity and antioxidant activity. 124
88.	Pinitol 484-68-4	HO OH IIIIIOH	Alfalfa, fine wood, and legumes	Regulation of JNK, S6K, and DAF-16. resulted in a 13.0% increase in average longevity. ⁹¹
89.	Alanine 56-41-7	O NH ₂	Amino acid	AAK-2, SKN-1, and DAF-16 regulate AAK-2, SKN-1, and DAF-16, resulting in an 11.0 percent improvement in average lifetime. ⁵³

90.	Lysine	0	Amino	controlling AAK-2, SKN-1, and
	56-87-1	H_2N	acids	DAF-16 and increasing average
		OH NH ₂		lifetime by 8%. ⁵³
91.	D-Alanine	O II	Amino	AAK-2, SIR-2.1, and DAF-16
	338-69-2		acids	regulate AAK-2, SIR-2.1, and
		Э		DAF-16, resulting in a 16.0 percer
		≣ NH₂		increase in average lifetime. 53
92.	Glutamine	0 0	Amino	EAT-2, AAK-2, and SKN-1
	56-85-9		acids	regulation resulted in a 16.0
		H_2N OH		percent increase in average
		NH_2		lifespan. ⁵³
93.	B Caryophy		Edible	SIR-2.1, SKN-1, and DAF-1
	Lene		plants	regulation resulted in a 22.0
	87-44-5	H _{III}	•	percent increase in average
				lifespan. 125
				•

94.	Tyrosine	0	Amino	SIR-2.1, SKN-1, and DAF-16
	60-18-4		acids	regulate SIR-2.1, SKN-1, and
		ОН		DAF-16, resulting in a 10%
		HO NH ₂		increase in average longevity. ⁵³
95.	b-Alanine	O II	Amino acid	AAK-2, SIR-2.1, SKN-1, and
	107-95-9			DAF-16 regulate AAK-2, SIR-2.1,
		H_2N OH		SKN-1, and DAF-16, resulting in a
				13.0% increase in average
				lifetime. ⁵³
96.	Arsenite	0 As 0	Natural	(10,000 lM) An increase of 10% in
	15502-74-6	j oj	and	the average lifetime ([100 lM)
		As O- -As	anthropogen	12.0% reduction in antioxidant
		0/13/0	ic	activity and regulation of SKN-1,
			sources	MTL-2, TIN-9, and DAF-16. 126,127
97.	Histidine	O II	Amino	Increasing the average lifespan by
	71-00-1		acids	12.0% and controlling EAT-2,
		ОН		AAK-2, SIR-2.1, SKN-1, BEC-1,
		HN NH ₂		HIF-1, GAS-1, IFE-2, GCN-2, and

				DAF-16 are some of the genes that have been identified. ⁵³
98.	Proline	0	Amino	Increasing the average lifespan by
	37159-97-0		acids	19.0 percent and controlling EAT-
		ОН		2, AAK-2, SIR-2.1, SKN-1, BEC-
		NH		1, and DAF-16 are some of the
				genes that have been identified. ⁵³
99.	Serine	0	Amino	Increasing the average lifespan by
	56-45-1		acids	22.0 percent and controlling EAT-
		но		2, AAK-2, SIR-2.1, SKN-1, HIF-1,
		 NH ₂		BEC-1, and DAF-16 are some of
		2		the genes that have been
				identified. ⁵³
100.	Tryptophan	H N. HO	Amino	Increasing the average lifespan by
	73-22-3	N HO O	acids	14.0 percent and controlling EAT-
				2, AAK-2, SIR-2.1, SKN-1, BEC-
		14C NH ₂		1, GCN-2, and DAF-16 are some
		H_2 NH_2		of the genes that have been
				identified. ⁵³

101.	Homocystein e 6027-13-0	HS OH NH ₂	Nitrogen containing metabolites	There has been a 13.0% rise in the average longevity, and additional study is needed. ⁵²
102.	Isoleucine 7004-09-3	HO——NH ₂	Amino acids	There has been a 3.0% rise in the average longevity, and additional study is needed. ⁵²

103.	Bacitracin 1405-87-4	S NH ₂ O HN///////////////////////////////////	Bacillus subtilisvar Tracy	Increased mean longevity by 59.0 percent and improved proteotoxcity through modulating CBP-1. 128
104.	Fumarate 142-42-7	-0 · O·	Tricarboxyli c acid (TCA) cycle metabolite	Increased levels of oxidised NAD and FAD cofactors resulted in a 16.0 percent increase in mean lifetime. 129

105.	Methionine 63-68-3	S OH NH ₂	Amino acids	Regulation of mitochondrial unfolded protein response and a 14.0 percent improvement in mean lifetime. 52
106.	N- Nitrosodimet hy lamine 62-75-9	O N N	Organic xenobiotic substances that are widely distributed	a 6.0% increase in average lifespan and a decrease in the transcription of numerous stress response genes. ²²⁵
107.	Ellagic acid 476-66-4	НО	Strawberry and raspberry	Antioxidants, CR mimetics, and antimicrobials all contributed to a 10% increase in average longevity. ⁶⁵

108.	Myricetin	OH I	Tea, various	34.3 percent longer average
	529-44-2	OH	vegetables,	lifespan and DAF-16 regulation;
			onions,	improved quality of life as people
		HO, O,	berries,	age. ^{47,131}
		OH	grapes, and	
			medicinal	
		ОН	plants are	
		 OH O	just a few	
			examples.	
109.	Otophyllosid	o 	Cynanchum	DAF-2, SIR-2.1, CLK-1, and
	e B	HO ,O	otophyllum	DAF-16 regulate DAF-2, SIR-2.1
	106758-54-7	но)	CLK-1, and DAF-16, resulting in
		HOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO		an 11.3 percent increase in mean
		OH OH		lifetime. 132
110.	Glycine	O II	Amino acids	The average longevity has
	56-40-6	H_2N		increased by 10%, and additional
		ОН		study is needed. ⁵²

111.	Pentagalloyl	он 	Eucalyptus	Dietary restriction, the IIS
	glucose	НО ОН	leaves	pathway, SIR-2.1, and the
	14937-32-7	OH		mitochondrial electron transport
				chain all contributed to an increas
		о о о		in mean longevity of 18.0%. 133
		HO Min.		in mean longevity of 10.0%.
		O O O O O		
		но		
		OH OH		
		OH		
		но		
		 ОН		
112.	N-Acetyl-	OH OH	Hexosamine	Autophagy, ER-associated protein
	glucosamine	OH OH	Pathway	degradation, and proteasomal
	7512-17-6	0	Metabolite	activity were all improved,
		A. A.		resulting in a 50.0 percent increas
		N̄H ŌH		in mean lifetime. 134
				in moun mounic.
		Ö		

113.	Sorbitol 50-70-4	HO OH OH	S. cerevisiae	DR and osmotic response regulation resulted in a 35.0 percent increase in mean longevity. 135
114.	Tannic acid	ОН 	Grapes and	TGF-b, p38 MAPK pathways, and
	1401-55-4	HO HO O O O O O O O O O	green tea	DAF-12 regulation resulted in a 19.0% increase in mean lifespan. 136,137
115.	Citrate 77-92-9	НООНООН	Tricarboxylic acid cycle intermediate	Increased mean lifetime by 13.0% while also activating the ER stress response. ⁵²

116.	Taurine 107-35-7	HO NH ₂	Nitrogen containing metabolites	Increase in average lifetime of 11.0 percent and induction of the ER stress response. ⁵²
117.	Triptolide 38748-32-2	O)min.	Tripterygium wilfordii	HSP16.2 and SOD-3 regulate HSP16.2 and SOD-3, resulting in a 20.1 percent increase in average lifetime. ⁵³
118.	Vitamin D3 67-97-0	HOMINI. OH	Vitamins	SKN-1, IRE-1, XBP-1, DAF-12, and proteostasis are all regulated by SKN-1, IRE-1, XBP-1, DAF-12, and proteostasis. 53

119.	Cholesterol	. #	Cyclo-	Cholesterol-binding protein
	57-88-5		pentanoper-	regulation
		H _{IIII}	hydro-	DAF-16 and NSBP-1. 139
		i,,,,,,,,,	phenanthren	
	HC	H H H H	e ring	
120.	Pregnenolone	<u> </u>	Hormonal	Linked to germline-defective
	145-13-1		steroids	controlled longevity, there was a
				20.0 percent increase in mean
		HO		lifespan. ¹⁴⁰
121.	Ethanol		Metabolites	Serving as a source of carbon and
	64-17-5	ОН		energy, as well as causing a stres
				reaction. 141

122.	D-Glutamate 6893-26-1	HO DO O	Amino acids	The average lifetime has increased by 18.0–114.0 percent, and additional study is needed. ⁵²
123.	Caprylate 74-81-7	O-	Metabolites	C. elegans with nitrogen deficiency had a 7.0 percent increase in mean lifetime, which warrants additional investigation. ¹⁴²
124.	Galact- opyranose 10257-28-0	HOMININ OH	Sugars metabolites	C. elegans with nitrogen deficiency had a 6.0 percent increase in mean longevity, and additional study is needed. 52

4. CONCLUSION

Aging can be defined operationally as a time-dependent loss of fitness that begins to manifest after the organism attains its maximum reproductive competence. Assuming that aging is not the result of a pre-programmed set of events, as now seems clear. Phytochemicals derived from plants have a lot of Anti-aging beneficial properties related to UV protection, antioxidant action, matrix protection. Over the past decade, a lot of phytochemicals from the plant extracts have been explored and their biological activities well-studied in vitro. Therefore, there is a continuous requirement for more clinical studies with emphasis on the concentration of the ingredient in natural products, their formulation, safety, and the anti-ageing effect duration.

5. REFERENCES

- 1. Kwok-Fai. "Use of Anti-aging Herbal Medicine, Lycium barbarum, Against Aging-associated Diseases. What Do We Know So Far?" AUGAUST 7, 2008: 643–652.
- 2. Sourdet S, Rouge-Bugat ME, Vellas B, Forette F (2012) Editorial: frailty and aging. J Nutr Health Aging 16: 283-284.
- 3. Harman D. 2003. The free radical theory of aging. Antioxid Redox Signal, 5:557–61.
- 4. Badithe T. Ashok, Rashid Ali "The aging paradox: free radical theory of aging" Experimental Gerontology 34 (1999) 293–303
- 5. Hayfl ick L. 2000b. The future of ageing. Nature, 408:267–9
- JAN VIJG, RITA A. BUSUTTIL, RUMANA BAHAR, AND MARTIJN E.T. DOLLÉ
 'Aging and Genome Maintenance' New York Academy of Sciences, 1055: 35–47
 [2005]
- 7. Vijg, J. 0990) Searching for the molecular basis of aging: the need for life extension models, Aging, 2, 227-229.
- 8. Maël Lemoine '' Defining Aging'' Accepted for publication in Biology and Philosophy (2020)
- 9. Rose MR (1995) Evolutionary Biology of Aging, New Ed. OUP USA, New York page no. 20.
- 10. STEPHEN C. STEARNS, MARTIN ACKERMANN and MICHAEL DOEBELI "THE EXPERIMENTAL EVOLUTION OF AGING IN FRUITFLIES" Experimental Gerontology, Vol. 33, Nos. 7/8, pp. 785–792, 1998
- 11. Haldane JBS. 1941. New paths in genetics. Allen & Unwin, London.
- 12. M. Ackermann, M. Doebeli, and M. Kaiser "Experimental evolution of aging, growth, and reproduction in fruitflies" PNAS, March 28, 2000 u vol. 97 / no. 7 / 3311
- 13. Leonid A. Gavrilova and Natalia S. Gavrilova," Evolutionary Theories of Aging and Longevity" The Scientific World JOURNAL (2002) 2, 339-356
- 14. Patnaik, B.K., Mahapatro, N., and Jena, B.S. (1994) Ageing in fishes. Gerontology 40, 113–132.

- 15. Hendry, A.P. and Berg, O.K. (1999) Secondary sexual characters, energy use, senescence, and the cost of reproduction in sockeye salmon. Can. J. Zool. 77, 1663–1675.
- 16. Hendry, A.P., Berg, O.K., and Quinn, T.P. (1999) Condition dependence and adaptation-by-time: breeding date, life history, and energy allocation within a population of salmon. Oikos 85, 499–514.
- Charlesworth, B. (1974) Selection in populations with overlapping generations. VI.
 Rates of change of gene frequency and population growth rate. Theor. Popul. Biol. 6, 108–133
- 18. Harman, D. (1992) Free radical theory of aging: history, in: I. Emerit and B. Chance (Eds.), Free Radicals and Aging, Birkhiiuser, Basel, in press
- 19. Charlesworth, B. (1994) Evolution in Age-Structured Populations. Cambridge University Press, Cambridge
- 20. Partridge, L. (2001) Evolutionary theories of ageing applied to long-lived organisms. Exp. Gerontol. 36, 641–650.
- 21. Zwaan, B.J. (1999) The evolutionary genetics of ageing and longevity. Heredity 82, 589–597.
- 22. Altman, K.I., Gerber, G.B. and Okada, S.A. (1970) Radiation Chemistry, Vols. 1 and 2, Academic Press, New York, NY.
- 23. Mead, J.F. (1976) Free radical mechanisms of lipid damage and consequences for cellular membranes, in: W.A. Pryor (Ed.), Free Radicals in Biology, Vol. i, Academic Press, New York, NY, pp. 51-68.
- 24. Scott, G. (1965) Atmospheric Oxidation and Antioxidants, Elsevier, New York, NY.
- 25. Loach, P.A. and Hales, B.J. (1976) Free radicals in photosyn- thesis, in: W.A. Pryor (Ed.), Free Radicals in Biology, Vol. 1, Academic Press, New York, NY, pp. 199-237.
- 26. Nohl, H. and Hagner, D. (1978a) Do mito:hondria produce oxygen radicals in vivo?, Eur. J. Biochem., 82, 863-867.
- 27. Chance, B., Sies, H. and Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs, Physiol. Rev., 59, 527-605.
- 28. Klebanoff, SJ. (1980) Oxygen metabolism and the toxic prop- erties of phagocytes, Ann. Intern. Med., 93, 480-489

- Gottschalk, G. and Andreesen, J.R. (1979), in: J.R. Quale (Ed.), International Review of Biochemistry, Microbial Biochemistry, Vol. 21, University Park Press, Baltimore, MD, pp. 85-115
- 30. Ershler WB, Keller ET (2000) Age-Associated Increased Interleukin-6 Gene Expression, LateLife Diseases, and Frailty. Annu Rev Med 51:245–270.
- 31. Franceschi C, Campisi J (2014) Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases. Journals of Gerontology Series a-Biological Sciences and Medical Sciences 69:S4–S9
- 32. Harman D: The biologic clock: The mitochondria? J Am Geriatr Soc 1972;20:145-147
- 33. Schwartz RM, DayhoffMO: Origins of prokaryotes, eukaryotes, mitechondria, and chloroplasts. Science 1978; 199:395-403
- 34. Mcdvedev ZA: An attempt at a rational classification of theories of ageing. BioI Rev 1990;65:375-398.
- 35. Prado, F., F. Cortes-Ledesma, P. Huertas and A. Aguilera, 2003. Mitotic recombination in Saccharomyces cerevisiae. Curr. Genet. 42: 185-198.
- 36. J.G. Wood, B. Rogina, S. Lavu, K. Howitz, S.L. Helfand, M. Tatar, D. Sinclair, Nature 430, 686–689 (2004)
- 37. J.J. Collins, K. Evason, K. Kornfeld, Exp. Gerontol. 41, 1032–1039 (2006)
- 38. C. Regitz, E. Fitzenberger, F.L. Mahn, L.M. Dussling, U. Wenzel, Eur. J. Nutr. 55, 741–747 (2016)
- 39. L.A. Madrigal-Perez, G.M. Nava, J.C. Gonzalez-Hernandez, M. Ramos-Gomez, J. Bioenerg. Biomembr. 47, 331–336 (2015)
- 40. X. Escote, M. Miranda, S. Menoyo, B. Rodriguez-Porrata, D. Carmona-Gutierrez, H. Jungwirth, F. Madeo, R.R. Cordero, A. Mas, F. Tinahones, J. Clotet, J. Vendrell, Yeast 29, 251–263 (2012)
- 41. J.H. Bauer, S. Goupil, G.B. Garber, S.L. Helfand, Proc. Natl. Acad. Sci. USA 101, 12980–12985 (2004)
- 42. M.K. Brown, J.L. Evans, Y. Luo, Pharmacol. Biochem. Behav. 85, 620–628 (2006)
- 43. H. Si, Z. Fu, P.V. Babu, W. Zhen, T. Leroith, M.P. Meaney, K.A. Voelker, Z. Jia, R.W. Grange, D. Liu, J. Nutr. 141, 1095–1100 (2011)
- 44. Y.M. Li, H.Y. Chan, Y. Huang, Z.Y. Chen, Mol. Nutr. Food Res. 51, 546–554 (2007)

- 45. N. Saul, K. Pietsch, R. Menzel, S.R. Sturzenbaum, C.E. Steinberg, Mech. Ageing Dev. 130, 477–486 (2009)
- 46. L.R. Shen, F. Xiao, P. Yuan, Y. Chen, Q.K. Gao, L.D. Parnell, M. Meydani, J.M. Ordovas, D. Li, C.Q. Lai, Age (Dordr.) 35, 1133–1142 (2013)
- 47. K. Cuanalo-Contreras, K.W. Park, A. Mukherjee, L. MillanPerez Pena, C. Soto. Biochem. Biophys. Res. Commun. (2016)
- 48. T. Eisenberg, H. Knauer, A. Schauer, S. Buttner, C. Ruckenstuhl, D. Carmona-Gutierrez, J. Ring, S. Schroeder, C. Magnes, L. Antonacci, H. Fussi, L. Deszcz, R. Hartl, E. Schraml, A. Criollo, E. Megalou, D. Weiskopf, P. Laun, G. Heeren, M. Breitenbach, B. Grubeck-Loebenstein, E. Herker, B. Fahrenkrog, K.U. Frohlich, F. Sinner, N. Tavernarakis, N. Minois, G. Kroemer, F. Madeo, Nat. Cell Biol. 11, 1305–1314 (2009)
- 49. J. Asthana, B.N. Mishra, R. Pandey, Free Radic. Res. 50, 861–874 (2016)
- 50. M.H. Chuang, S.H. Chiou, C.H. Huang, W.B. Yang, C.H. Wong, Bioorg. Med. Chem. 17, 7831–7840 (2009)
- 51. K.J. Senthil Kumar, M. Gokila Vani, J.L. Mau, C.C. Lin, F.H. Chu, C.C. Wei, V.H. Liao, S.Y. Wang. Oncotarget (2016)
- 52. C. Edwards, J. Canfield, N. Copes, A. Brito, M. Rehan, D. Lipps, J. Brunquell, S.D. Westerheide, P.C. Bradshaw, BMC Genet. 16, 8 (2015)
- 53. R.M. Chin, X. Fu, M.Y. Pai, L. Vergnes, H. Hwang, G. Deng, S. Diep, B. Lomenick, V.S. Meli, G.C. Monsalve, E. Hu, S.A. Whelan, J.X. Wang, G. Jung, G.M. Solis, F. Fazlollahi, C. Kaweeteerawat, A. Quach, M. Nili, A.S. Krall, H.A. Godwin, H.R. Chang, K.F. Faull, F. Guo, M. Jiang, S.A. Trauger, A. Saghatelian, D. Braas, H.R. Christofk, C.F. Clarke, M.A. Teitell, M. Petrascheck, K. Reue, M.E. Jung, A.R. Frand, J. Huang, Nature 510, 397–401 (2014)
- 54. S. Havermann, H.U. Humpf, W. Watjen, Fitoterapia 113, 123–127 (2016)
- 55. E.K. Lee, E.J. Jang, K.J. Jung, D.H. Kim, B.P. Yu, H.Y. Chung, Exp. Gerontol. 48, 517–524 (2013)
- 56. A.O. Yuneva, G.G. Kramarenko, T.V. Vetreshchak, S. Gallant, A.A. Boldyrev, Bull. Exp. Biol. Med. 133, 559–561 (2002)

- 57. S. Stvolinsky, M. Antipin, K. Meguro, T. Sato, H. Abe, A. Boldyrev, Rejuvenation Res. 13, 453–457 (2010)
- 58. H.W. Seo, S.M. Cheon, M.H. Lee, H.J. Kim, H. Jeon, D.S. Cha, Evid. Based Complement Altern. Med. 2015, 524878 (2015)
- 59. S.Q. Zheng, X.B. Huang, T.K. Xing, A.J. Ding, G.S. Wu, H.R. Luo. J. Gerontol. A (2016)
- 60. N. Ishii, N. Senoo-Matsuda, K. Miyake, K. Yasuda, T. Ishii, P.S. Hartman, S. Furukawa, Mech. Ageing Dev. 125, 41–46 (2004)
- 61. S. Weimer, J. Priebs, D. Kuhlow, M. Groth, S. Priebe, J. Mansfeld, T.L. Merry, S. Dubuis, B. Laube, A.F. Pfeiffer, T.J. Schulz, R. Guthke, M. Platzer, N. Zamboni, K. Zarse, M. Ristow, Nat. Commun. 5, 3563 (2014)
- 62. W.C. Chiang, T.T. Ching, H.C. Lee, C. Mousigian, A.L. Hsu, Cell 148, 322–334 (2012)
- 63. H. Si, Z. Fu, P.V. Babu, W. Zhen, T. Leroith, M.P. Meaney, K.A. Voelker, Z. Jia, R.W. Grange, D. Liu, J. Nutr. 141, 1095–1100 (2011)
- 64. S. Abbas, M. Wink, Planta Med. 75, 216–221 (2009)
- 65. N. Saul, K. Pietsch, S.R. Sturzenbaum, R. Menzel, C.E. Steinberg, J. Nat. Prod. 74, 1713–1720 (2011)
- 66. H.R. Massie, T.R. Williams, Exp. Gerontol. 14, 109–115 (1979)
- 67. T.W. Snell, R.K. Johnston, Exp. Gerontol. 57, 47–56 (2014)
- 68. K. Sun, L. Xiang, S. Ishihara, A. Matsuura, Y. Sakagami, J. Qi, Biosci. Biotechnol. Biochem. 76, 640–645 (2012)
- 69. W.J. Cai, J.H. Huang, S.Q. Zhang, B. Wu, P. Kapahi, X.M. Zhang, Z.Y. Shen, PLoS ONE 6, e28835 (2011)
- 70. H. Ma, Y. Ma, Z. Zhang, Z. Zhao, R. Lin, J. Zhu, Y. Guo, L. Xu. Int. J. Environ. Res. Public Health 13 (2016)
- 71. J.P. Richie Jr., B.J. Mills, C.A. Lang, Proc. Soc. Exp. Biol. Med. 183, 81–85 (1986)
- 72. J. Zhang, L. Lu, L. Zhou, Biochem. Biophys. Res. Commun. 468, 843–849 (2015)
- 73. S.K. Park, R.K. Seong, J.A. Kim, S.J. Son, Y. Kim, T. Yokozawa, O.S. Shin, Nutr. Res. Pract. 10, 3–10 (2016)
- 74. H. Wen, X. Gao, J. Qin, Integr. Biol. (Camp) 6, 35–43 (2014)

- 75. K. Pietsch, N. Saul, S. Chakrabarti, S.R. Sturzenbaum, R. Menzel, C.E. Steinberg, Biogerontology 12, 329–347 (2011)
- 76. Y. Zuo, C. Peng, Y. Liang, K.Y. Ma, H.Y. Chan, Y. Huang, Z.Y. Chen, Biogerontology 14, 107–119 (2013)
- 77. Y. Yaguchi, T. Komura, N. Kashima, M. Tamura, E. KageNakadai, S. Saeki, K. Terao, Y. Nishikawa, Eur. J. Nutr. 53, 1659–1668 (2014)
- L. Xiang, Y. Nakamura, Y.M. Lim, Y. Yamasaki, Y. KurokawaNose, W. Maruyama,
 T. Osawa, A. Matsuura, N. Motoyama, L. Tsuda, Aging (Albany, NY) 3, 1098–1109
 (2011)
- D. Ryu, L. Mouchiroud, P.A. Andreux, E. Katsyuba, N. Moullan, A.A. Nicolet-Dit-Felix, E.G. Williams, P. Jha, G. Lo Sasso, D. Huzard, P. Aebischer, C. Sandi, C. Rinsch, J. Auwerx. Nat. Med. 22, 879–888 (2016)
- 80. E.B. Lee, J.H. Kim, Y.S. Cha, M. Kim, S.B. Song, D.S. Cha, H. Jeon, J.S. Eun, S. Han, D.K. Kim, Biomol. Ther. (Seoul) 23, 582–589 (2015)
- 81. D.G. Souza, B. Bellaver, L.D. Bobermin, D.O. Souza, A. Quincozes-Santos. Purinergic Signal (2016)
- 82. F. de la Coba, J. Aguilera, M.V. de Galvez, M. Alvarez, E. Gallego, F.L. Figueroa, E. Herrera, J. Dermatol. Sci. 55, 161–169 (2009)
- 83. S. Hur, H. Lee, Y. Kim, B.H. Lee, J. Shin, T.Y. Kim, Eur. J. Pharmacol. 582, 1–11 (2008)
- 84. T. Kawamura, N. Mori, K. Shibata, J. Nutr. Sci. Vitaminol. (Tokyo) 62, 272–276 (2016)
- 85. B. Bernardes de Jesus, K. Schneeberger, E. Vera, A. Tejera, C.B. Harley, M.A. Blasco, Aging Cell 10, 604–621 (2011)
- 86. M. Kiaei, K. Kipiani, S. Petri, J. Chen, N.Y. Calingasan, M.F. Beal, Neurodegener. Dis. 2, 246–254 (2005)
- 87. A. Bender, J. Beckers, I. Schneider, S.M. Holter, T. Haack, T. Ruthsatz, D.M. Vogt-Weisenhorn, L. Becker, J. Genius, D. Rujescu, M. Irmler, T. Mijalski, M. Mader, L. QuintanillaMartinez, H. Fuchs, V. Gailus-Durner, M.H. de Angelis, W. Wurst, J. Schmidt, T. Klopstock, Neurobiol. Aging 29, 1404–1411 (2008)

- 88. H.A. Bakshi, S. Sam, A. Feroz, Z. Ravesh, G.A. Shah, M. Sharma, Asian Pac. J. Cancer Prev. 10, 887–890 (2009)
- 89. X.M. Peng, L. Gao, S.X. Huo, X.M. Liu, M. Yan, Phytother. Res. 29, 1137–1144 (2015)
- 90. Y. Li, Z. Zhang, Int. J. Clin. Exp. Pathol. 8, 14099–14109 (2015)
- 91. B. Hada, M.R. Yoo, K.M. Seong, Y.W. Jin, H.K. Myeong, K.J. Min, J. Gerontol. A 68, 226–234 (2013)
- 92. Z. Zhang, S. Han, H. Wang, T. Wang, Arch. Gerontol. Geriatr. 58, 153–159 (2014)
- 93. C. Peng, H.Y. Chan, Y.M. Li, Y. Huang, Z.Y. Chen, Exp. Gerontol. 44, 773–783 (2009)
- 94. S. Yang, L.H. Long, D. Li, J.K. Zhang, S. Jin, F. Wang, J.G. Chen, Aging Cell 14, 1024–1033 (2015)
- 95. A. Danilov, M. Shaposhnikov, E. Plyusnina, V. Kogan, P. Fedichev, A. Moskalev, Oncotarget 4, 1507–1526 (2013)
- 96. Y. Nakagawa-Yagi, Y. Sato, E. Matsumoto, S. Nakatsuka, T. Sakaki, Y. Muramatsu, T. Hara, T. Aigaki, BMC Complement Altern. Med. 12, 101 (2012)
- 97. X. Ye, J.M. Linton, N.J. Schork, L.B. Buck, M. Petrascheck, Aging Cell 13, 206–215 (2014)
- 98. E. Wang, M. Wink, PeerJ 4, e1879 (2016)
- 99. E.B. Lee, D. Ahn, B.J. Kim, S.Y. Lee, H.W. Seo, Y.S. Cha, H. Jeon, J.S. Eun, D.S. Cha, D.K. Kim, Biomol. Ther. (Seoul) 23, 77–83 (2015)
- 100.M. Fischer, C. Regitz, M. Kahl, M. Werthebach, M. Boll, U. Wenzel, Mol. Nutr. Food Res. 56, 957–965 (2012)
- 101.Y.L. Xue, T. Ahiko, T. Miyakawa, H. Amino, F. Hu, K. Furihata, K. Kita, T. Shirasawa, Y. Sawano, M. Tanokura, J. Agric. Food Chem. 59, 5927–5934 (2011)
- 102.S. Ayyadevara, P. Bharill, A. Dandapat, C. Hu, M. Khaidakov, S. Mitra, R.J. Shmookler Reis, J.L. Mehta, Antioxid. Redox Signal. 18, 481–490 (2013)
- 103.J. Asthana, A.K. Yadav, A. Pant, S. Pandey, M.M. Gupta, R. Pandey, Comp. Biochem. Physiol. C 169, 25–34 (2015)
- 104.M.G. Benedetti, A.L. Foster, M.C. Vantipalli, M.P. White, J.N. Sampayo, M.S. Gill, A. Olsen, G.J. Lithgow, Exp. Gerontol. 43, 882–891 (2008)

- 105.K. Zarse, S. Jabin, M. Ristow, Eur. J. Nutr. 51, 765–768 (2012)
- 106.A. Kampkotter, C. GombitangNkwonkam, R.F. Zurawski, C. Timpel, Y. Chovolou, W. Watjen, R. Kahl, Arch. Toxicol. 81, 849–858 (2007)
- 107.A. Kampkotter, C. Timpel, R.F. Zurawski, S. Ruhl, Y. Chovolou, P. Proksch, W. Watjen, Comp. Biochem. Physiol. B 149, 314–323 (2008)
- 108.A. Pant, J. Asthana, A.K. Yadav, L. Rathor, S. Srivastava, M.M. Gupta, R. Pandey, Free Radic. Res. 49, 1384–1392 (2015)
- 109. Y. Honda, M. Tanaka, S. Honda, Aging Cell 9, 558–569 (2010)
- 110.B.A. Akhoon, S. Pandey, S. Tiwari, R. Pandey, Exp. Gerontol. 78, 47–56 (2016)
- 111.A. Canuelo, F.J. Esteban, J. Peragon, Eur. J. Nutr. 55, 639–650 (2016)
- 112. A. Canuelo, J. Peragon, Proteomics 13, 3064–3075 (2013)
- 113.A. Canuelo, B. Gilbert-Lopez, P. Pacheco-Linan, E. MartinezLara, E. Siles, A. Miranda-Vizuete, Mech. Ageing Dev. 133, 563–574 (2012)
- 114.P. Shen, Y. Yue, Q. Sun, N. Kasireddy, K.H. Kim, Y. Park. Biofactors (2017)
- 115.A. Schlernitzauer, C. Oiry, R. Hamad, S. Galas, F. Cortade, B. Chabi, F. Casas, L. Pessemesse, G. Fouret, C. Feillet-Coudray, G. Cros, G. Cabello, R. Magous, C. Wrutniak-Cabello, PLoS ONE 8, e78788 (2013)
- 116.D.S. Williams, A. Cash, L. Hamadani, T. Diemer, Aging Cell 8, 765–768 (2009)
- 117.X. Fu, R.M. Chin, L. Vergnes, H. Hwang, G. Deng, Y. Xing, M.Y. Pai, S. Li, L. Ta, F. Fazlollahi, C. Chen, R.M. Prins, M.A. Teitell, D.A. Nathanson, A. Lai, K.F. Faull, M. Jiang, S.G. Clarke, T.F. Cloughesy, T.G. Graeber, D. Braas, H.R. Christofk, M.E. Jung, K. Reue, J. Huang, Cell Metab. 22, 508–515 (2015)
- 118.D.L. Miller, M.B. Roth, Proc. Natl. Acad. Sci. USA 104, 20618–20622 (2007)
- 119.B. Qabazard, L. Li, J. Gruber, M.T. Peh, L.F. Ng, S.D. Kumar, P. Rose, C.H. Tan, B.W. Dymock, F. Wei, S.C. Swain, B. Halliwell, S.R. Sturzenbaum, P.K. Moore, Antioxid. Redox Signal. 20, 2621–2630 (2014)
- 120.A.A. Powolny, S.V. Singh, S. Melov, A. Hubbard, A.L. Fisher, Exp. Gerontol. 46, 441–452 (2011)
- 121.P.R. Hunt, T.G. Son, M.A. Wilson, Q.S. Yu, W.H. Wood, Y. Zhang, K.G. Becker, N.H. Greig, M.P. Mattson, S. Camandola, C.A. Wolkow, PLoS ONE 6, e21922 (2011)

- 122.E.F. Fang, T.B. Waltz, H. Kassahun, Q. Lu, J.S. Kerr, M. Morevati, E.M. Fivenson, B.N. Wollman, K. Marosi, M.A. Wilson, W.B. Iser, D.M. Eckley, Y. Zhang, E. Lehrmann, I.G. Goldberg, M. Scheibye-Knudsen, M.P. Mattson, H. Nilsen, V.A. Bohr, K.G. Becker, Sci. Rep. 7, 46208 (2017)
- 123.T. Ogawa, Y. Kodera, D. Hirata, T.K. Blackwell, M. Mizunuma, Sci. Rep. 6, 21611 (2016)
- 124.S. Su, M. Wink, Phytochemistry 117, 340–350 (2015)
- 125.A. Pant, S.K. Saikia, V. Shukla, J. Asthana, B.A. Akhoon, R. Pandey, Exp. Gerontol. 57, 81–95 (2014)
- 126.S. Schmeisser, K. Schmeisser, S. Weimer, M. Groth, S. Priebe, E. Fazius, D. Kuhlow, D. Pick, J.W. Einax, R. Guthke, M. Platzer, K. Zarse, M. Ristow, Aging Cell 12, 508–517 (2013)
- 127.C.W. Yu, C.M. How, V.H. Liao, Chemosphere 150, 632–638 (2016)
- 128.A. Lublin, F. Isoda, H. Patel, K. Yen, L. Nguyen, D. Hajje, M. Schwartz, C. Mobbs, PLoS ONE 6, e27762 (2011)
- 129.C.B. Edwards, N. Copes, A.G. Brito, J. Canfield, P.C. Bradshaw, PLoS ONE 8, e58345 (2013)
- 130.N. Baberschke, C.E. Steinberg, N. Saul, Chemosphere 124, 122–128 (2015)
- 131.C. Buchter, D. Ackermann, S. Havermann, S. Honnen, Y. Chovolou, G. Fritz, A. Kampkotter, W. Watjen, Int. J. Mol. Sci. 14, 11895–11914 (2013)
- 132.J. Yang, Q.L. Wan, Q.Z. Mu, C.F. Wu, A.J. Ding, Z.L. Yang, M.H. Qiu, H.R. Luo, Nat. Prod. Bioprospect. 5, 177–183 (2015)
- 133. Y. Chen, B. Onken, H. Chen, S. Xiao, X. Liu, M. Driscoll, Y. Cao, Q. Huang, J. Agric. Food Chem. 62, 3422–3431 (2014)
- 134.M.S. Denzel, N.J. Storm, A. Gutschmidt, R. Baddi, Y. Hinze, E. Jarosch, T. Sommer, T. Hoppe, A. Antebi, Cell 156, 1167–1178 (2014)
- 135.D. Chandler-Brown, H. Choi, S. Park, B.R. Ocampo, S. Chen, A. Le, G.L. Sutphin, L.S. Shamieh, E.D. Smith, M. Kaeberlein, Front. Genet. 6, 316 (2015)
- 136.K. Pietsch, N. Saul, S.C. Swain, R. Menzel, C.E. Steinberg, S.R. Sturzenbaum, Front. Genet. 3, 48 (2012)

- 137.L.M. Katiki, J.F. Ferreira, J.M. Gonzalez, A.M. Zajac, D.S. Lindsay, A.C. Chagas, A.F. Amarante, Vet. Parasitol. 192, 218–227 (2013)
- 138.K.A. Mark, K.J. Dumas, D. Bhaumik, B. Schilling, S. Davis, T.R. Oron, D.J. Sorensen, M. Lucanic, R.B. Brem, S. Melov, A.
- 139.B. Gerisch, V. Rottiers, D. Li, D.L. Motola, C.L. Cummins, H. Lehrach, D.J. Mangelsdorf, A. Antebi, Proc. Natl. Acad. Sci. USA 104, 5014–5019 (2007)
- 140.F. Broue, P. Liere, C. Kenyon, E.E. Baulieu, Aging Cell 6, 87–94 (2007)
- 141.P.V. Castro, S. Khare, B.D. Young, S.G. Clarke, PLoS ONE 7, e29984 (2012)
- 142.Y. Cui, B. Zhang, R. Zhang, C. Li, Y. Zhao, Y. Ren, J. Yang, Wei Sheng Yan Jiu 42(995–998), 1003 (2013)