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Abstract 

 
 

Travelling through flights has become an integral part of today’s lifestyle as more and more 

people are opting for faster travelling options. The flight ticket prices increase or decrease 

every now and then depending on various factors like timing of the flights, destination, 

duration of flights. various occasions such as vacations or festive season. Therefore, having 

some basic idea of the flight fares before planning the trip will surely help many people save 

money and time. In the proposed system a predictive model will be created by applying 

machine learning algorithms to the collected historical data of flights. This system will give 

people the idea about the trends that prices follow and also provide a predicted price value 

which they can refer to before booking their flight tickets to save money. This kind of system 

or service can be provided to the customers by flight booking companies which will help the 

customers to book their tickets accordingly. Technology and tools wise this project covers: 

1) Python 

2) Numpy and Pandas for data cleaning 

3) Matplotlib for data visualization 

4) Sklearn for model building 

5) Jupyter notebook, visual studio code and pycharm as IDE 

6) Python flask for http server 

7) HTML/CSS/Javascript for UI 
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CHAPTER-1 

 

Introduction 

 

Airline companies use complex algorithms to calculate flight prices given various conditions 

present at that particular time. These methods take financial, marketing, and various social 

factors into account to predict flight prices. 

Nowadays, the number of people using flights has increased significantly. It is difficult for 

airlines to maintain prices since prices change dynamically due to different conditions. That’s 

why we will try to use machine learning to solve this problem. This can help airlines by 

predicting what prices they can maintain. It can also help customers to predict future flight prices 

and plan their journey accordingly. Optimal timing for airline ticket purchasing from the 

consumer’s perspective is challenging principally because buyers have insufficient information 

for reasoning about future price movements. In this project we majorly targeted to uncover 

underlying trends of flight prices in India using historical data and also to suggest the best time  

to buy a flight ticket. 

Remarkably, the trends of the prices are highly sensitive to the route, month of departure, day of 

departure, time of departure, whether the day of departure is a holiday and airline carrier. Highly 

competitive routes like most business routes (tier 1 to tier 1 cities like Mumbai-Delhi) had a non- 

decreasing trend where prices increased as days to departure decreased, however other routes 

(tier 1 to tier 2 cities like Delhi - Guwahati) had a specific time frame where the prices are 

minimum. Moreover, the data also uncovered two basic categories of airline carriers operating in 

India – the economical group and the luxurious group, and in most cases, the minimum priced 

flight was a member of the economical group. The data also validated the fact that, there are 

certain time-periods of the day where the prices are expected to be maximum. With a high 

probability (about 20-25%) that a person has to wait to buy a ticket, the scope of the project can 



be extensively extended across the various routes to make significant savings on the purchase of 

flight prices across the Indian Domestic Airline market. 

Anyone who has booked a flight ticket knows how unexpectedly the prices vary. Airlines use 

using sophisticated quasi-academic tactics known as "revenue management" or "yield 

management". The cheapest available ticket for a given date gets more or less expensive over 

time. This usually happens as an attempt to maximize revenue based on - 

1. Time of purchase patterns (making sure last-minute purchases are expensive) 

2. Keeping the flight as full as they want it (raising prices on a flight which is filling up in order 

to reduce sales and hold back inventory for those expensive last-minute expensive purchases) 

So, if we could inform the travellers with the optimal time to buy their flight tickets based on the 

historic data and also show them various trends in the airline industry we could help them save 

money on their travels. This would be a practical implementation of a data analysis, statistics and 

machine learning techniques to solve a daily problem faced by travellers. 

The objectives of the project can broadly be laid down by the following questions - 

1. Flight Trends : Do airfares change frequently? Do they move in small increments or in 

large jumps? Do they tend to go up or down over time? 

2. Best Time To Buy : What is the best time to buy so that the consumer can save the most 

by taking the least risk? So should a passenger wait to buy his ticket, or should he buy as 

early as possible? 

3. Verifying Myths : Does price increase as we get near to departure date? Is Indigo cheaper 

than Jet Airways? Are morning flights expensive.



 

 

 

Chapter 2 

Literature Survey 

Since the deregulation of the airline industry, air fare pricing strategy has developed into a 

complex structure of sophisticated rules and mathematical models that drive the pricing 

strategies of airfare . Although still largely held in secret, studies have found that these rules are 

widely known to be affected by a variety of factors .Traditional variables such as distance, 

although still playing a significant role, are no longer the sole factor that dictate the pricing 

strategy. Elements related to economic, marketing and societal trends have played increasing 

roles in dictating the airfare prices .Most studies on airfare price prediction have focused one e 

ither the national level or a specific market. Research at the market segment level, however, is 

still very limited. We define the term market segment as the market/airport pair between the 

flight origin and the destination. Being able to predict the airfare trend at the specific market 

segment level is crucial for airlines to adjust strategy and resources for as specific route. 

However, existing studies on market segment price prediction use heuristic-based conventional 

statistical models, such as linear regression and are based on the assumption that there exists a 

linear relationship between the dependent and independent variables, which in many cases, may 

not be true. Recent advances in Artificial Intelligence (AI) and Ma-chine Learning (ML) make it 

possible to infer rules and model variations on airfare price based on a large number of features, 

often uncovering hidden relationships amongst the features automatically. 

 
To the best of our knowledge, all existing work leveraging machine learning approaches for 

airfare price prediction are based on: 

1) proprietary datasets that are not publicly available and 

2) transaction records data crawled from online travel booking sites makemytrip.com or trivago. 

 
The problem of the former lies in the difficulty of gaining access to the data, making  

reproducing the results and extending the work nearly impossible. The issue with the latter is that 

the transaction records from each online booking site are a small fraction of the total ticket sales 

from the entire market, making the acquired data likely to be skewed, and thus, not representing 

the true nature of the entire market. 

 
Problem Formulation 

 

Flight ticket prices can be something hard to guess, today we might see a price, check out the 

price of the same flight tomorrow, and it will be a different story. 

To solve this problem, we have been provided with prices of flight tickets for various airlines 

between the months of March and June of 2019 and between various cities, using which we aim 

to build a model which predicts the prices of the flights using various input features. 



Chapter 3 

Functionality/Working of Project 

• Automated Script to Collect Historical Data 

For any prediction/classification problem, we need historical data to work with. In this 

project, past flight prices for each route needs to be collected on a daily basis. Manually 

collecting data daily is not efficient and thus a python script was run on a remote server 

which collected prices daily at specific time. 

• Cleaning & Preparing Data 

After we have the data, we need to clean & prepare the data according to the model's 

requirements. In any machine learning problem, this is the step that is the most important 

and the most time consuming. We used various statistical techniques & logics and 

implemented them using built-in R packages. 

• Analysing & Building 

Models Data preparation is followed by analysing the data, uncovering hidden trends and 

then applying various predictive & classification models on the training set. These 

included Random Forest, Logistic Regression, Gradient Boosting and combination of 

these models to increase the accuracy. Further statistical models and trend analyzer 

model have been built to increase the accuracy of the ML algorithms for this task. 

• Merging Models & Accuracy Calculation 

Having built various models, we have to test the models on our testing set and calculate 

the savings or loss done on each query put by the user. A statistic of the over Savings, 

Loss and the mean saving per transaction are the measures used to calculate the Accuracy 

of the model implemented. 

 

 Method 
 



Project Implementation 

 

For this project, we have implemented the machine learning life cycle to create a basic web 

application which will predict the flight prices by applying machine learning algorithm to 

historical flight data using python libraries like Pandas, NumPy, Matplotlib, seaborn and Sklearn. 

The steps followed in the lifecycle are : 

1. Data Selection 

2. Exploratory data analysis 

3. Data Pre-processing 

4. Feature Selection 

5. Applying ML Algorithms 

6. Pickling model in a file for future use 

7. Flask end services 

8. GUI frontend frameworks 

9. Deploying the app 

Data selection is the first step where historical data of flight is gathered for the model to predict 

prices. Our dataset consists of more than 10,000 records of data related to flights and its prices. 

Some of the features of the dataset are source, destination, departure date, departure time, 

number of stops, arrival time, prices and few more. 

In the exploratory data analysis step, we cleaned the dataset by removing the duplicate values 

and null values. If these values are not removed it would affect the accuracy of the model. We 

gained further information such as distribution of data. Next step is data pre-processing where 

we observed that most of the data was present in string format. Data from each feature is 

extracted such as day and month is extracted from date of journey in integer format, hours and 

minutes is extracted from departure time. Features such as source and destination needed to be 

converted into values as they were of categorical type. For this One hot-encoding and label 

encoding techniques are used to convert categorical values to model identifiable values. 

Feature selection step is involved in selecting important features that are more correlated to the 

price. There are some features such as extra information and route which are unnecessary 

features which may affect the accuracy of the model and therefore, they need to be removed 

before getting 

 
our model ready for prediction. After selecting the features which are more correlated to price 

the next step involves applying machine algorithm and creating a model. As our dataset consist 

of labelled data, we will be using supervised machine learning algorithms also in supervised we 

will be using regression algorithms as our dataset contains continuous values in the features. 

Regression models are used to describe relationship between dependent and independent 

variables. 

The machine learning algorithms that we will be using in our project are: 

 
Linear Regression 

In simple linear regression there is only one independent and dependent feature but as our dataset 

consists of many independent features on which the price may depend upon, we will be using 



multiple linear regression which estimates relationship between two or more independent 

variables and one dependent variable. The multiple linear regression model is represented by: 

Y = β0x1+…. +βnxn + Ɛ 

Y = the predicted value of the dependent variable 

Xn = the independent variables 

βn = independent variables coefficients 

Ɛ = y-intercept when all other parameters are 0 

 
Decision Tree 

Decision trees are basically of two types classification and regression tree where classification is 

used for categorical values and regression is used for continuous values. Decision tree chooses 

independent variable from dataset as decision nodes for decision making. It divides the whole 

dataset in different sub-section and when test data is passed to the model the output is decided by 

checking the section to which the datapoint belong to. And to whichever section the data point 

belongs to the decision tree will give output as the average value of all the datapoints in the sub- 

section. 

 
Random Forest 

Random Forest is an ensemble learning technique where training model uses multiple learning 

algorithms and then combine individual results to get a final predicted result. Under ensemble 

learning random forest falls into bagging category where random number of features and records 

will be selected and passed to the group of models. Random forest basically uses group of 

decision trees as group of models. Random amount of data is passed to decision trees and each 

decision tree predicts values according to the dataset given to it. From the predictions made by 

the decision trees the average value of the predicted values if considered as the output of the 

random forest model. 

 
Performance Metrics 

Performance metrics are statistical models which will be used to compare the accuracy of the 

machine learning models trained by different algorithms. The sklearn.metrics module will be 

used 

 
to implement the functions to measure the errors from each model using the regression metrics. 

Following metrics will be used to check the error measure of each model. 

MAE (Mean Absolute Error) 

Mean Absolute Error is basically the sum of average of the absolute difference between the 

predicted and actual values. 

MAE = 1/n[∑(y-ý)] 

y = actual output values, 

ý = predicted output values 

n = Total number of data points 

Lesser the value of MAE the better the performance of your model. 

MSE (Mean Square Error) 



Mean Square Error squares the difference of actual and predicted output values before summing 

them all instead of using the absolute value. 

MSE = 1/n[∑(y-ý)2 ] 

y=actual output values 

ý=predicted output values 

n = Total number of data points MSE punishes big errors as we are squaring the errors. Lower 

the value of MSE the better the performance of the model. 

RMSE (Root Mean Square Error) 

RMSE is measured by taking the square root of the average of the squared difference between 

the prediction and the actual value. 

RMSE = √1/n[∑(y-ý)2 ] 

y=actual output values 

ý=predicted output values 

n = Total number of data points 

RMSE is greater than MAE and lesser the value of RMSE between different model the better the 

performance of that model. 

R^2 (Coefficient of determination) 

It helps you to understand how well the independent variable adjusted with the variance in your 

model. 

 

 
R^2 = 𝟏 − ∑(ý-y̅ ) 2 

 

∑(y-y̅ ) 2 

The value of R-square lies between 0 to 1. The closer its value to one, the better your model is 

when comparing with other model values. 

There are also different cross-validation techniques such as gridsearchCV and 

randomizedsearchCV which will be used for improving the accuracy of the model. Parameters of 

the models such as number of trees in random forest or max depth of decision tree can be 

changed using this technique which will help us in further enhancement of the accuracy. 

 

 
The last three steps of the life cycle model are involved in the deployment of the trained machine 

learning model. Therefore, after getting the model with the best accuracy we store that model in 

a file using pickle module. The back-end of the application will be created using Flask 

Framework where API end-points such and GET and POST will be created to perform 

operations related to fetching and displaying data on the front-end of the application. 

The front-end of the application will be created using the bootstrap framework where user will 

have the functionality of entering their flight data. This data will be sent to the back-end service 

where the model will predict the output according to the provided data. The predicted value is 

sent to the front-end and displayed. 



Source code And Explanation 
 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

sns.set() 

Importing dataset 
1. Since data is in form of excel file we have to use pandas read_excel to load the data 

2. After loading it is important to check the complete information of data as it can indication 
many of the hidden infomation such as null values in a column or a row 

3. Check whether any null values are there or not. if it is present then following can be done, 

a. Imputing data using Imputation method in sklearn 

b. Filling NaN values with mean, median and mode using fillna() method 

4. Describe data --> which can give statistical analysis 

train_data = pd.read_excel(r"C:\Users\Tanisha\Flight-Price- 

Prediction\Data_Train.xlsx") 

pd.set_option('display.max_columns', None) 

train_data.head() 

Airline Date_of_Journey Source Destination Route \ 

0 IndiGo 24/03/2019  Banglore  New Delhi BLR → DEL 

1 Air India 1/05/2019  Kolkata Banglore  CCU → IXR → BBI → BLR 

2 Jet Airways 9/06/2019 Delhi Cochin  DEL → LKO → BOM → COK 

3 IndiGo 12/05/2019  Kolkata Banglore CCU → NAG → BLR 

4 IndiGo 01/03/2019  Banglore  New Delhi BLR → NAG → DEL 

 

Dep_Time Arrival_Time Duration Total_Stops Additional_Info Price 

0 22:20  01:10 22 Mar  2h 50m non-stop No info 3897 

1 05:50 13:15   7h 25m 2 stops No info 7662 

2 09:25  04:25 10 Jun 19h 2 stops No info  13882 

3 18:05 23:30   5h 25m 1 stop No info  6218 

4 16:50 21:35   4h 45m 1 stop No info 13302 

train_data.info() 

<class 'pandas.core.frame.DataFrame'> 

RangeIndex: 10683 entries, 0 to 10682 

Data columns (total 11 columns): 

#   Column Non-Null Count Dtype 
 

0 Airline 10683 non-null object 

1 Date_of_Journey 10683 non-null object 



2 Source 10683 non-null  object 

3 Destination 10683 non-null object 

4 Route 10682 non-null object 

5 Dep_Time 10683 non-null  object 

6 Arrival_Time 10683 non-null object 

7 Duration 10683 non-null  object 

8 Total_Stops 10682 non-null object 

9 Additional_Info 10683 non-null object 

10 Price 10683 non-null int64 

dtypes: int64(1), object(10) 

memory usage: 918.2+ KB 

train_data["Duration"].value_counts() 
2h 50m 550 

1h 30m 386 

2h 55m 337 

2h 45m 337 

2h 35m 329 

...  

32h 55m 1 

28h 30m 1 

30h 25m 1 

27h 55m 1 
32h 20m 1 

Name: Duration, Length: 368, dtype: int64 

train_data.dropna(inplace = True) 

train_data.isnull().sum() 

Airline 0 

Date_of_Journey 0 

Source 0 

Destination 0 

Route 0 

Dep_Time 0 

Arrival_Time 0 

Duration 0 

Total_Stops 0 

Additional_Info 0 

Price 0 

dtype: int64 
 

EDA 
From description we can see that Date_of_Journey is a object data type, Therefore, we have to 
convert this datatype into timestamp so as to use this column properly for prediction 

For this we require pandas to_datetime to convert object data type to datetime dtype. 

.dt.day method will extract only day of that date .dt.month method will extract only month 

of that date 



train_data["Journey_day"] = pd.to_datetime(train_data.Date_of_Journey, 

format="%d/%m/%Y").dt.day 

train_data["Journey_month"] = pd.to_datetime(train_data["Date_of_Journey"], format = 

"%d/%m/%Y").dt.month 

train_data.head() 

Airline Date_of_Journey Source Destination Route \ 

0 IndiGo 24/03/2019  Banglore  New Delhi BLR → DEL 

1 Air India 1/05/2019  Kolkata Banglore  CCU → IXR → BBI → BLR 

2 Jet Airways 9/06/2019 Delhi Cochin  DEL → LKO → BOM → COK 

3 IndiGo 12/05/2019  Kolkata Banglore CCU → NAG → BLR 

4 IndiGo 01/03/2019  Banglore  New Delhi BLR → NAG → DEL 

 

Dep_Time Arrival_Time Duration Total_Stops Additional_Info Price \  

0 22:20  01:10 22 Mar  2h 50m non-stop No info 3897 

1 05:50 13:15   7h 25m 2 stops No info 7662 

2 09:25  04:25 10 Jun 19h 2 stops No info  13882 

3 18:05 23:30   5h 25m 1 stop No info  6218 

4 16:50 21:35   4h 45m 1 stop No info  13302 

Journey_day Journey_month 

0 24 3 

1 1 5 

2 9 6 

3 12 5 
4 1 3 

# Since we have converted Date_of_Journey column  into  integers,  Now  we 
can drop as it is of no use. 

 

train_data.drop(["Date_of_Journey"],  axis  = 1,  inplace  = True) 

#  Departure  time  is  when  a  plane  leaves  the gate. 
# Similar to Date_of_Journey we can extract values from Dep_Time 

 
# Extracting Hours 

train_data["Dep_hour"] = pd.to_datetime(train_data["Dep_Time"]).dt.hour 

 

# Extracting Minutes 
train_data["Dep_min"] = pd.to_datetime(train_data["Dep_Time"]).dt.minute 

 

# Now we can drop Dep_Time as it is of no use 

train_data.drop(["Dep_Time"], axis = 1, inplace = True) 

train_data.head() 

Airline Source Destination Route Arrival_Time \ 

0 IndiGo  Banglore  New Delhi BLR → DEL 01:10 22 Mar 

1 Air India  Kolkata Banglore  CCU → IXR → BBI → BLR 13:15 

2 Jet Airways Delhi Cochin DEL → LKO → BOM → COK 04:25 10 Jun 

3 IndiGo  Kolkata Banglore CCU → NAG → BLR 23:30 



4 IndiGo  Banglore  New Delhi BLR → NAG → DEL 21:35 

Duration Total_Stops Additional_Info Price Journey_day Journey_month \ 

0 2h 50m non-stop No info   3897 24 3 

1 7h 25m 2 stops No info   7662 1 5 

2 19h 2 stops No info  13882 9 6 

Dep_hour Dep_min 

0 22 20 

1 5 50 

2 9 25 

3 18 5 

4 16 50 

# Arrival time is when the plane pulls up to the gate. 

# Similar to Date_of_Journey we can extract values from Arrival_Time 
 

# Extracting Hours 
train_data["Arrival_hour"] = pd.to_datetime(train_data.Arrival_Time).dt.hour 

 

# Extracting Minutes 
train_data["Arrival_min"] = pd.to_datetime(train_data.Arrival_Time).dt.minute 

 

# Now we can drop Arrival_Time as it is of no use 

train_data.drop(["Arrival_Time"], axis = 1, inplace = True) 

train_data.head() 

Airline Source Destination Route Duration  \ 

0 IndiGo  Banglore  New Delhi BLR → DEL 2h 50m 

1 Air India  Kolkata Banglore CCU → IXR → BBI → BLR 7h 25m 

2 Jet Airways Delhi Cochin  DEL → LKO → BOM → COK 19h 

3 IndiGo  Kolkata Banglore CCU → NAG → BLR 5h 25m 

4 IndiGo  Banglore  New Delhi BLR → NAG → DEL 4h 45m 

 

Total_Stops Additional_Info Price Journey_day Journey_month Dep_hour \ 

0 non-stop No info   3897 24 3 22 
1 2 stops No info 7662 1 5 5 

2 2 stops No info 13882 9 6 9 

3 1 stop No info 6218 12 5 18 
4 1 stop No info 13302 1 3 16 

 
Dep_min Arrival_hour Arrival_min 

0 20 1 10 

1 50 13 15 
2 25 4 25 

3 5h 25m 1 stop No info 6218 12 5 
4 4h 45m 1 stop No info 13302 1 3 

 



3 5 23 30 
4 50 21 35 

# Time taken by plane to reach destination is called Duration    
# It is the differnce betwwen Departure Time and Arrival time 

 
 

# Assigning and converting Duration column into list 
duration = list(train_data["Duration"]) 

 

for i in range(len(duration)): 

if len(duration[i].split()) != 2: # Check if duration contains only hour or 
mins 

if "h" in duration[i]: 

duration[i] = duration[i].strip() + " 0m" # Adds 0 minute 

else: 

duration[i] = "0h " + duration[i] # Adds 0 hour 

 
duration_hours = [] 

duration_mins = [] 

for i in range(len(duration)): 

duration_hours.append(int(duration[i].split(sep = "h")[0])) # Extract hours from 
duration 

duration_mins.append(int(duration[i].split(sep = "m")[0].split()[-1])) # Extracts only 
minutes from duration 
# Adding duration_hours and duration_mins list to train_data dataframe 

 
train_data["Duration_hours"] = duration_hours 

train_data["Duration_mins"] = duration_mins 

train_data.drop(["Duration"], axis = 1, inplace = True) 

train_data.head() 

Airline Source Destination Route Total_Stops  \ 

0 IndiGo  Banglore  New Delhi BLR → DEL non-stop 

1 Air India  Kolkata Banglore  CCU → IXR → BBI → BLR 2 stops 

2 Jet Airways Delhi Cochin  DEL → LKO → BOM → COK 2 stops 

3 IndiGo  Kolkata Banglore CCU → NAG → BLR 1 stop 

4 IndiGo  Banglore  New Delhi BLR → NAG → DEL 1 stop 

Additional_Info Price Journey_day Journey_month Dep_hour Dep_min \ 

 

 

 

 

Arrival_hour Arrival_min Duration_hours  Duration_mins 

0 1 10 2 50 

0 No info 3897 24 3 22 20 

1 No info 7662 1 5 5 50 

2 No info 13882 9 6 9 25 

3 No info 6218 12 5 18 5 
4 No info 13302 1 3 16 50 

 



1 13 15 7 25 

2 4 25 19 0 

3 23 30 5 25 
4 21 35 4 45 

 

Handling Categorical Data 
One can find many ways to handle categorical data. Some of them categorical data are, 

1. Nominal data --> data are not in any order --> OneHotEncoder is used in this case 

2. Ordinal data --> data are in order --> LabelEncoder is used in this case 

train_data["Airline"].value_counts() 

Jet Airways 3849 

IndiGo 2053 

Air India 1751 

Multiple carriers 1196 

SpiceJet 818 

Vistara 479 

Air Asia 319 
GoAir 194 

Multiple carriers Premium economy 13 

Jet Airways Business 6 

Vistara Premium economy 3 

Trujet 1 
Name: Airline, dtype: int64 

# From graph we can see that Jet Airways Business have the highest 
Price. 
# Apart from the first Airline almost all are having similar median 

 
# Airline vs Price 

sns.catplot(y = "Price", x = "Airline", data = train_data.sort_values("Price", ascending = 

False), kind="boxen", height = 6, aspect = 3) 

plt.show() 

# As Airline is Nominal Categorical data we will perform 
OneHotEncoding 



Airline = train_data[["Airline"]] 

Airline = pd.get_dummies(Airline, drop_first= True) 

Airline.head() 

Airline_Air India Airline_GoAir Airline_IndiGo Airline_Jet Airways \ 
0 0 0 1 0 

1 1 0 0 0 

2 0 0 0 1 

3 0 0 1 0 
4 0 0 1 0 

 

Airline_Jet Airways Business Airline_Multiple carriers \ 

0 0 0 

1 0 0 

2 0 0 

3 0 0 

4 0 0 

 

Airline_Multiple carriers Premium economy Airline_SpiceJet \ 
0 0 0 

1 0 0 

2 0 0 

3 0 0 
4 0 0 

 

Airline_Trujet Airline_Vistara Airline_Vistara Premium economy 

0 0 0 0 

1 0 0 0 

2 0 0 0 

3 0 0 0 
4 0 0 0 

train_data["Source"].value_counts() 

Delhi 4536 

Kolkata 2871 

Banglore 2197 

Mumbai 697 

Chennai 381 
Name: Source, dtype: int64 

# Source vs Price 

 
sns.catplot(y = "Price", x = "Source", data = train_data.sort_values("Price", ascending = 

False), kind="boxen", height = 4, aspect = 3) 

plt.show() 



 
 

# As Source is Nominal Categorical data we will perform OneHotEncoding 

 
Source = train_data[["Source"]] 

Source = pd.get_dummies(Source, drop_first= True) 

Source.head() 

Source_Chennai Source_Delhi Source_Kolkata Source_Mumbai 
0 0 0 0 0 

1 0 0 1 0 

2 0 1 0 0 

3 0 0 1 0 
4 0 0 0 0 

train_data["Destination"].value_counts() 

Cochin 4536 

Banglore 2871 

Delhi 1265 

New Delhi 932 

Hyderabad 697 

Kolkata 381 
Name: Destination, dtype: int64 

#  As  Destination  is  Nominal  Categorical  data  we  will  perform 
OneHotEncoding 

 

Destination = train_data[["Destination"]] 

Destination = pd.get_dummies(Destination, drop_first = True) 

Destination.head() 

Destination_Cochin Destination_Delhi Destination_Hyderabad \ 
0 0 0 0 

1 0 0 0 

2 1 0 0 

3 0 0 0 
4 0 0 0 



Destination_Kolkata Destination_New Delhi 

0 0 1 

1 0 0 

2 0 0 

3 0 0 
4 0 1 

train_data["Route"] 

0 BLR → DEL 

1 CCU → IXR → BBI → BLR 

2 DEL → LKO → BOM → COK 

3 CCU → NAG → BLR 

4 BLR → NAG → DEL 

... 

10678 CCU → BLR 

10679 CCU → BLR 

10680 BLR → DEL 

10681 BLR → DEL 

10682 DEL → GOI → BOM → COK 
Name: Route, Length: 10682, dtype: object 

# Additional_Info contains almost 80% no_info 

# Route and Total_Stops are related to each other 

 
train_data.drop(["Route", "Additional_Info"], axis = 1, inplace = True) 

train_data["Total_Stops"].value_counts() 

1 stop 5625 

non-stop 3491 

2 stops 1520 

3 stops 45 

4 stops 1 
Name: Total_Stops, dtype: int64 

# As  this is case of Ordinal Categorical type we perform LabelEncoder  
# Here Values are assigned with corresponding keys 

 

train_data.replace({"non-stop": 0, "1 stop": 1, "2 stops": 2, "3 stops": 3, "4 

stops": 4}, inplace = True) 

train_data.head() 

Airline Source Destination Total_Stops Price Journey_day \ 

0 IndiGo  Banglore  New Delhi 0   3897 24 
1 Air India Kolkata Banglore 2 7662 1  

2 Jet Airways Delhi Cochin 2 13882 9  

3 IndiGo Kolkata Banglore 1 6218 12  

4 IndiGo Banglore New Delhi 1 13302  1 

 

Journey_month Dep_hour Dep_min Arrival_hour Arrival_min \ 
0 3 22 20 1 10 
1 5 5 50 13 15 



2 6 9 25 4 25 

3 5 18 5 23 30 
4 3 16 50 21 35 

 

Duration_hours Duration_mins 

0 2 50 

1 7 25 

2 19 0 

3 5 25 
4 4 45 

# Concatenate dataframe --> train_data + Airline + Source + 

Destination 

 
data_train = pd.concat([train_data, Airline, Source, Destination], axis = 1) 

data_train.head() 

Airline Source Destination Total_Stops Price Journey_day \ 
0 IndiGo  Banglore  New Delhi 0 3897 24 

1 Air India  Kolkata Banglore 2 7662 1 

2 Jet Airways Delhi Cochin 2 13882 9 

Journey_month Dep_hour Dep_min Arrival_hour Arrival_min \ 
0 3 22 20 1 10 

1 5 5 50 13 15 

2 6 9 25 4 25 

3 5 18 5 23 30 
4 3 16 50 21 35 

 

Duration_hours Duration_mins Airline_Air India Airline_GoAir \ 
0 2 50 0 0 

1 7 25 1 0 

2 19 0 0 0 

3 5 25 0 0 
4 4 45 0 0 

 

Airline_IndiGo Airline_Jet Airways Airline_Jet Airways Business  \ 

0 1 0 0 

1 0 0 0 

2 0 1 0 

3 1 0 0 

4 1 0 0 

 

Airline_Multiple carriers Airline_Multiple carriers Premium economy \ 

0 0 0 

1 0 0 

3 IndiGo Kolkata Banglore 1 6218 12  

4 IndiGo Banglore New Delhi 1 13302  1 

 



2 0 0 

3 0 0 
4 0 0 

 

Airline_SpiceJet Airline_Trujet Airline_Vistara \ 
0 0 0 0 

1 0 0 0 

2 0 0 0 

3 0 0 0 
4 0 0 0 

 

Airline_Vistara Premium economy Source_Chennai Source_Delhi \ 
0 0 0 0 

1 0 0 0 

2 0 0 1 

3 0 0 0 
4 0 0 0 

 

Source_Kolkata Source_Mumbai Destination_Cochin Destination_Delhi \ 

 

 

 

 

 

Destination_New Delhi 
0 0 0 1 

1 0 0 0 

2 0 0 0 

3 0 0 0 
4 0 0 1 

data_train.drop(["Airline", "Source", "Destination"], axis = 1, inplace = True) 

data_train.head() 

Total_Stops Price Journey_day Journey_month Dep_hour Dep_min \ 
0 0 3897 24 3 22 20 

1 2 7662 1 5 5 50 

2 2 13882 9 6 9 25 

3 1 6218 12 5 18 5 
4 1 13302 1 3 16 50 

 

Arrival_hour Arrival_min Duration_hours Duration_mins \ 
0 1 10 2 50 

1 13 15 7 25 

2 4 25 19 0 

3 23 30 5 25 
4 21 35 4 45 

0 0 0 0 0 

1 1 0 0 0 

2 0 0 1 0 

3 1 0 0 0 
4 0 0 0 0 

 
Destination_Hyderabad Destination_Kolkata 

 



 

Airline_Air India Airline_GoAir Airline_IndiGo Airline_Jet Airways \ 
0 0 0 1 0 

1 1 0 0 0 

2 0 0 0 1 

3 0 0 1 0 
4 0 0 1 0 

 

Airline_Jet Airways Business Airline_Multiple carriers \ 

0 0 0 

1 0 0 

2 0 0 

3 0 0 

4 0 0 

 

Airline_Multiple carriers Premium economy Airline_SpiceJet \ 
0 0 0 

1 0 0 

2 0 0 

3 0 0 
4 0 0 

 

Airline_Trujet Airline_Vistara Airline_Vistara Premium economy  \ 

0 0 0 0 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

 

Source_Chennai Source_Delhi Source_Kolkata Source_Mumbai \ 

 

 

 

 

 

Destination_Hyderabad \ 

 

 

 

 

 

Destination_Kolkata Destination_New Delhi 

0 0 1 

1 0 0 

0 0 0 0 0 

1 0 0 1 0 

2 0 1 0 0 

3 0 0 1 0 
4 0 0 0 0 

 
Destination_Cochin Destination_Delhi 

0 0 0 0 

1 0 0 0 

2 1 0 0 

3 0 0 0 
4 0 0 0 

 



2 0 0 

3 0 0 

4 0 1 

data_train.shape 

(10682, 30) 
 

Test set 
test_data = pd.read_excel(r"C:\Users\Tanisha\Flight-Price- 
Prediction\Test_set.xlsx") 

test_data.head() 

Airline Date_of_Journey Source Destination Route \ 

0 Jet Airways 6/06/2019 Delhi Cochin DEL → BOM → COK 

1 IndiGo 12/05/2019  Kolkata Banglore CCU → MAA → BLR 

2 Jet Airways 21/05/2019 Delhi Cochin DEL → BOM → COK 

3 Multiple carriers 21/05/2019 Delhi Cochin DEL → BOM → COK 

4 Air Asia 24/06/2019  Banglore Delhi BLR → DEL 

 

Dep_Time  Arrival_Time Duration Total_Stops  Additional_Info 

0 17:30  04:25 07 Jun 10h 55m 1 stop No info 

1 06:20 10:20 4h 1 stop No info 

2 19:15  19:00 22 May 23h 45m 1 stop In-flight meal not included 

3 08:00 21:00 13h 1 stop  No info 
4 23:55  02:45 25 Jun  2h 50m non-stop No info 

# Preprocessing 

 
print("Test data Info") 

print("-"*75) 

print(test_data.info()) 

 

print() 

print() 

 

print("Null values :") 

print("-"*75) 

test_data.dropna(inplace = True) 

print(test_data.isnull().sum()) 

 

# EDA 

 
# Date_of_Journey 
test_data["Journey_day"] = pd.to_datetime(test_data.Date_of_Journey, 

format="%d/%m/%Y").dt.day 

test_data["Journey_month"] = pd.to_datetime(test_data["Date_of_Journey"], format = 

"%d/%m/%Y").dt.month 

test_data.drop(["Date_of_Journey"], axis = 1, inplace = True) 



# Dep_Time 

test_data["Dep_hour"] = pd.to_datetime(test_data["Dep_Time"]).dt.hour 

test_data["Dep_min"] = pd.to_datetime(test_data["Dep_Time"]).dt.minute 

test_data.drop(["Dep_Time"], axis = 1, inplace = True) 

 

# Arrival_Time 

test_data["Arrival_hour"] = pd.to_datetime(test_data.Arrival_Time).dt.hour 

test_data["Arrival_min"] = pd.to_datetime(test_data.Arrival_Time).dt.minute 

test_data.drop(["Arrival_Time"], axis = 1, inplace = True) 

 

# Duration 
duration = list(test_data["Duration"]) 

 

for i in range(len(duration)): 

if len(duration[i].split()) != 2: # Check if duration contains only hour or 
mins 

if "h" in duration[i]: 

duration[i] = duration[i].strip() + " 0m" # Adds 0 minute 

else: 

duration[i] = "0h " + duration[i] # Adds 0 hour 

 
duration_hours = [] 

duration_mins = [] 

for i in range(len(duration)): 

duration_hours.append(int(duration[i].split(sep = "h")[0])) # Extract hours from 
duration 

duration_mins.append(int(duration[i].split(sep = "m")[0].split()[-1])) # Extracts only 
minutes from duration 

 
# Adding Duration column to test set 

test_data["Duration_hours"] = duration_hours 

test_data["Duration_mins"] = duration_mins 

test_data.drop(["Duration"], axis = 1, inplace = True) 

 

# Categorical data 

 
print("Airline") 

print("-"*75) 

print(test_data["Airline"].value_counts()) 

Airline = pd.get_dummies(test_data["Airline"], drop_first= True) 

print() 

print("Source") 



print("-"*75) 

print(test_data["Source"].value_counts()) 

Source = pd.get_dummies(test_data["Source"], drop_first= True) 

print() 

print("Destination") 

print("-"*75) 

print(test_data["Destination"].value_counts()) 

Destination = pd.get_dummies(test_data["Destination"], drop_first = True) 

 

# Additional_Info contains almost 80% no_info 

# Route and Total_Stops are related to each other 
test_data.drop(["Route", "Additional_Info"], axis = 1, inplace = True) 

 

# Replacing Total_Stops 

test_data.replace({"non-stop": 0, "1 stop": 1, "2  stops": 2, "3  stops": 3, "4  stops":   

4}, inplace = True) 

 

# Concatenate dataframe --> test_data + Airline + Source + Destination 
data_test = pd.concat([test_data, Airline, Source, Destination], axis = 1) 

data_test.drop(["Airline", "Source", "Destination"], axis = 1, inplace = True) 

print() 

print() 

 

print("Shape of test data : ", data_test.shape) 

Test data Info 

<class 'pandas.core.frame.DataFrame'> 

RangeIndex: 2671 entries, 0 to 2670 

Data columns (total 10 columns): 

#   Column Non-Null Count Dtype 
 

0 Airline 2671 non-null object 

1 Date_of_Journey 2671 non-null object 

2 Source 2671 non-null   object 

3 Destination 2671 non-null  object 

4 Route 2671 non-null object 

5 Dep_Time 2671 non-null  object 

6 Arrival_Time 2671 non-null  object 

7 Duration 2671 non-null   object 

8 Total_Stops 2671 non-null  object 

9 Additional_Info 2671 non-null object 



dtypes: object(10) 

memory usage: 208.8+ KB 

None 

 
 

Null values : 
 

Airline 0 

Date_of_Journey 0 

Source 0 

Destination 0 

Route 0 

Dep_Time 0 

Arrival_Time 0 

Duration 0 

Total_Stops 0 

Additional_Info 0 

dtype: int64 

Airline 
 

Jet Airways 897 
IndiGo 511 

Air India 440 

Multiple carriers 347 

SpiceJet 208 

Vistara 129 

Air Asia 86 
GoAir 46 

Multiple carriers Premium economy 3 

Jet Airways Business 2 

Vistara Premium economy 2 

Name: Airline, dtype: int64 

Source 

Delhi 1145 

Kolkata 710 

Banglore 555 

Mumbai 186 

Chennai 75 

Name: Source, dtype: int64 

Destination 

Cochin 1145 

Banglore 710 



Delhi 317 

New Delhi 238 

Hyderabad 186 

Kolkata 75 

Name: Destination, dtype: int64 

 
 

Shape of test data : (2671, 28) 

data_test.head() 

Total_Stops Journey_day Journey_month Dep_hour Dep_min Arrival_hour \ 
0 1 6 6 17 30 4 

1 1 12 5 6 20 10 

2 1 21 5 19 15 19 

3 1 21 5 8 0 21 
4 0 24 6 23 55 2 

 

Arrival_min Duration_hours Duration_mins Air India GoAir IndiGo \ 
0 25 10 55 0 0 0 

1 20 4 0 0 0 1 

2 0 23 45 0 0 0 

3 0 13 0 0 0 0 
4 45 2 50 0 0 0 

 

Jet Airways Jet Airways Business Multiple carriers \ 
0 1 0 0 

1 0 0 0 

2 1 0 0 

3 0 0 1 
4 0 0 0 

 

Multiple carriers Premium economy SpiceJet Vistara \ 
0 0 0 0 

1 0 0 0 

2 0 0 0 

3 0 0 0 
4 0 0 0 

 

Vistara Premium economy Chennai Delhi Kolkata Mumbai Cochin Delhi \ 
0 0 0 1 0 0 1 0 

1 0 0 0 1 0 0 0 

2 0 0 1 0 0 1 0 

3 0 0 1 0 0 1 0 
4 0 0 0 0 0 0 1 

 

Hyderabad Kolkata New Delhi 

0 0 0 0 



1 0 0 0 

2 0 0 0 

3 0 0 0 
4 0 0 0 

 

Feature Selection 
Finding out the best feature which will contribute and have good relation with target variable. 
Following are some of the feature selection methods, 

1. heatmap 

2. feature_importance_ 

3. SelectKBest 

data_train.shape 

(10682, 30) 

data_train.columns 

Index(['Total_Stops', 'Price', 'Journey_day', 'Journey_month', 'Dep_hour', 

'Dep_min', 'Arrival_hour', 'Arrival_min', 'Duration_hours', 

'Duration_mins', 'Airline_Air India', 'Airline_GoAir', 'Airline_IndiGo', 

'Airline_Jet Airways', 'Airline_Jet Airways Business', 

'Airline_Multiple carriers', 

'Airline_Multiple carriers Premium economy', 'Airline_SpiceJet', 

'Airline_Trujet', 'Airline_Vistara', 'Airline_Vistara Premium economy', 

'Source_Chennai', 'Source_Delhi', 'Source_Kolkata', 'Source_Mumbai', 

'Destination_Cochin', 'Destination_Delhi', 'Destination_Hyderabad', 

'Destination_Kolkata', 'Destination_New Delhi'], 

dtype='object') 

X = data_train.loc[:, ['Total_Stops', 'Journey_day', 'Journey_month', 'Dep_hour', 

'Dep_min', 'Arrival_hour', 'Arrival_min', 'Duration_hours', 

'Duration_mins', 'Airline_Air India', 'Airline_GoAir', 'Airline_IndiGo', 

'Airline_Jet Airways', 'Airline_Jet Airways  Business', 

'Airline_Multiple carriers', 

'Airline_Multiple carriers Premium economy', 'Airline_SpiceJet', 

'Airline_Trujet', 'Airline_Vistara', 'Airline_Vistara Premium 
economy', 

'Source_Chennai', 'Source_Delhi', 'Source_Kolkata', 'Source_Mumbai', 

'Destination_Cochin', 'Destination_Delhi', 'Destination_Hyderabad', 

'Destination_Kolkata', 'Destination_New Delhi']] 

X.head() 

Total_Stops Journey_day Journey_month Dep_hour Dep_min Arrival_hour \ 
0 0 24 3 22 20 1 

1 2 1 5 5 50 13 

2 2 9 6 9 25 4 

3 1 12 5 18 5 23 
4 1 1 3 16 50 21 



 

Arrival_min Duration_hours Duration_mins Airline_Air India \ 
0 10 2 50 0 

1 15 7 25 1 

2 25 19 0 0 

3 30 5 25 0 
4 35 4 45 0 

 

Airline_GoAir Airline_IndiGo Airline_Jet Airways  \ 

0 0 1 0 

1 0 0 0 

2 0 0 1 

3 0 1 0 

4 0 1 0 

 

Airline_Jet Airways Business Airline_Multiple carriers \ 

0 0 0 

1 0 0 

2 0 0 

3 0 0 

4 0 0 

 

Airline_Multiple carriers Premium economy Airline_SpiceJet \ 
0 0 0 

1 0 0 

2 0 0 

3 0 0 
4 0 0 

 

Airline_Trujet Airline_Vistara Airline_Vistara Premium economy  \ 

0 0 0 0 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

 

Source_Chennai Source_Delhi Source_Kolkata Source_Mumbai \ 

 

 

 

 

 

Destination_Hyderabad \ 

0 0 0 0 0 

1 0 0 1 0 

2 0 1 0 0 

3 0 0 1 0 
4 0 0 0 0 

 
Destination_Cochin Destination_Delhi 

0 0 0 0 

1 0 0 0 

 



2 1 0 0 

3 0 0 0 
4 0 0 0 

 

Destination_Kolkata Destination_New Delhi 

0 0 1 

1 0 0 

2 0 0 

3 0 0 

4 0 1 

y = data_train.iloc[:, 1] 

y.head() 
0 3897  

1 7662   

2 13882   

3 6218   

4 13302   

Name: Price, dtype: int64 
# Finds correlation 

 

between Independent 
 

and dependent attributes 

 

plt.figure(figsize = (18,18)) 

sns.heatmap(train_data.corr(), annot = True, cmap = "RdYlGn") 

plt.show() 



 

# Important feature using ExtraTreesRegressor 

 
from sklearn.ensemble import ExtraTreesRegressor 

selection = ExtraTreesRegressor() 

selection.fit(X, y) 

ExtraTreesRegressor(bootstrap=False, ccp_alpha=0.0, criterion='mse', 

max_depth=None, max_features='auto', max_leaf_nodes=None, 

max_samples=None, min_impurity_decrease=0.0, 

min_impurity_split=None, min_samples_leaf=1, 

min_samples_split=2, min_weight_fraction_leaf=0.0, 

n_estimators=100, n_jobs=None, oob_score=False, 

random_state=None, verbose=0, warm_start=False) 

print(selection.feature_importances_) 

[2.43860365e-01 1.44233889e-01 5.36301210e-02 2.48117910e-02 

2.08263936e-02 2.70380250e-02 1.83998711e-02 1.01044418e-01 



1.82837828e-02 1.00624045e-02 1.87252965e-03 1.73358642e-02 

1.41183380e-01 6.72289831e-02 2.13344400e-02 8.39699348e-04 

3.16375243e-03 1.20853284e-04 5.31005491e-03 7.66248259e-05 

3.99865808e-04 9.74644831e-03 3.25385840e-03 7.85404721e-03 

9.81175799e-03 1.61860895e-02 6.70652149e-03 6.08805626e-04 
2.47753623e-02] 

#plot graph of feature importances for better visualization 

 
plt.figure(figsize = (12,8)) 

feat_importances = pd.Series(selection.feature_importances_, index=X.columns) 

feat_importances.nlargest(20).plot(kind='barh') 
plt.show() 

 



Fitting model using Random Forest 
1. Split dataset into train and test set in order to prediction w.r.t X_test 

2. If needed do scaling of data 

– Scaling is not done in Random forest 

3. Import model 

4. Fit the data 

5. Predict w.r.t X_test 

6. In regression check RSME Score 

7. Plot graph 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42) 

from sklearn.ensemble import RandomForestRegressor 

reg_rf = RandomForestRegressor() 

reg_rf.fit(X_train, y_train) 

RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse', 

max_depth=None, max_features='auto', max_leaf_nodes=None, 

max_samples=None, min_impurity_decrease=0.0, 

min_impurity_split=None, min_samples_leaf=1, 

min_samples_split=2, min_weight_fraction_leaf=0.0, 

n_estimators=100, n_jobs=None, oob_score=False, 

random_state=None, verbose=0, warm_start=False) 

y_pred = reg_rf.predict(X_test) 

reg_rf.score(X_train, y_train) 

0.9534898392715425 

reg_rf.score(X_test, y_test) 

0.7965776542484004 

sns.distplot(y_test-y_pred) 

plt.show() 



 

 
 

plt.scatter(y_test, y_pred, alpha = 0.5) 

plt.xlabel("y_test") 

plt.ylabel("y_pred") 
plt.show() 

 

from sklearn import metrics 

print('MAE:', metrics.mean_absolute_error(y_test, y_pred)) 

print('MSE:', metrics.mean_squared_error(y_test, y_pred)) 

print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) 

MAE: 1176.7430206351905 

MSE: 4386204.076689104 

RMSE: 2094.3266403999887 



# RMSE/(max(DV)-min(DV)) 

 
2090.5509/(max(y)-min(y)) 

0.026887077025966846 

metrics.r2_score(y_test, y_pred) 

0.7965776542484004 
 
 

Hyperparameter Tuning 
• Choose following method for hyperparameter tuning 

a. RandomizedSearchCV --> Fast 

b. GridSearchCV 

• Assign hyperparameters in form of dictionery 

• Fit the model 

• Check best paramters and best score 

from sklearn.model_selection import RandomizedSearchCV 

#Randomized Search CV 
 

# Number of trees in random forest 

n_estimators = [int(x) for x in np.linspace(start = 100, stop = 1200, num = 12)] 

# Number of features to consider at every split 

max_features = ['auto', 'sqrt'] 

# Maximum number of levels in tree 
max_depth = [int(x) for x in np.linspace(5, 30, num = 6)] 

# Minimum number of samples required to split a node 

min_samples_split = [2, 5, 10, 15, 100] 

# Minimum number of samples required at each leaf node 

min_samples_leaf = [1, 2, 5, 10] 

#  Create  the  random grid 

 
random_grid = {'n_estimators': n_estimators, 

'max_features': max_features, 

'max_depth': max_depth, 

'min_samples_split': min_samples_split, 

'min_samples_leaf': min_samples_leaf} 

# Random search of parameters, using 5 fold cross validation,       
# search across 100 different combinations 
rf_random = RandomizedSearchCV(estimator = reg_rf, param_distributions = 

random_grid,scoring='neg_mean_squared_error', n_iter = 10, cv = 5, verbose=2, 

random_state=42, n_jobs = 1) 

rf_random.fit(X_train,y_train) 



Fitting 5 folds for each of 10 candidates, totalling 50 fits 

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt, 

max_depth=10 

[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. 

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt, 

max_depth=10, total= 3.5s 

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt, 

max_depth=10 

[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed: 3.4s remaining: 0.0s 

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt, 

max_depth=10, total= 3.7s 

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt, 

max_depth=10 

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt, 

max_depth=10, total= 4.3s 

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt, 

max_depth=10 

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt, 

max_depth=10, total= 4.5s 

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt, 

max_depth=10 

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt, 

max_depth=10, total= 4.2s 

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=15 

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=15, total= 6.3s 

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=15 

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=15, total= 6.5s 

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=15 

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=15, total= 6.4s 

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=15 

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=15, total= 6.3s 

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=15 

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=15, total= 6.2s 

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto, 

max_depth=15 

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto, 



max_depth=15, total= 3.9s 

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto, 

max_depth=15 

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto, 

max_depth=15, total= 3.8s 

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto, 

max_depth=15 

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto, 

max_depth=15, total= 3.7s 

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto, 

max_depth=15 

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto, 

max_depth=15, total= 3.8s 

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto, 

max_depth=15 

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto, 

max_depth=15, total= 4.1s 

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto, 

max_depth=15 

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto, 

max_depth=15, total= 7.8s 

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto, 

max_depth=15 

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto, 

max_depth=15, total= 7.7s 

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto, 

max_depth=15 

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto, 

max_depth=15, total= 7.7s 

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto, 

max_depth=15 

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto, 

max_depth=15, total= 7.8s 

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto, 

max_depth=15 

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto, 

max_depth=15, total= 7.6s 

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto, 

max_depth=20 

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto, 

max_depth=20, total= 12.8s 

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto, 

max_depth=20 

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto, 

max_depth=20, total= 12.8s 

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto, 



max_depth=20 

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto, 

max_depth=20, total= 11.9s 

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto, 

max_depth=20 

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto, 

max_depth=20, total= 11.9s 

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto, 

max_depth=20 

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto, 

max_depth=20, total= 12.1s 

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, 

max_depth=25 

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, 

max_depth=25, total= 11.2s 

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, 

max_depth=25 

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, 

max_depth=25, total= 11.0s 

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, 

max_depth=25 

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, 

max_depth=25, total= 11.1s 

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, 

max_depth=25 

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, 

max_depth=25, total= 11.4s 

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, 

max_depth=25 

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, 

max_depth=25, total= 11.6s 

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt, 

max_depth=5 

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt, 

max_depth=5, total= 4.2s 

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt, 

max_depth=5 

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt, 

max_depth=5, total= 3.9s 

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt, 

max_depth=5 

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt, 

max_depth=5, total= 3.7s 

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt, 

max_depth=5 

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt, 



max_depth=5, total= 4.1s 

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt, 

max_depth=5 

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt, 

max_depth=5, total= 3.9s 

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt, 

max_depth=15 

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt, 

max_depth=15, total= 1.9s 

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt, 

max_depth=15 

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt, 

max_depth=15, total= 1.6s 

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt, 

max_depth=15 

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt, 

max_depth=15, total= 1.6s 

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt, 

max_depth=15 

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt, 

max_depth=15, total= 1.5s 

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt, 

max_depth=15 

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt, 

max_depth=15, total= 1.5s 

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=5 

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=5, total= 2.0s 

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=5 

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=5, total= 1.9s 

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=5 

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=5, total= 2.0s 

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=5 

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=5, total= 1.9s 

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=5 

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, 

max_depth=5, total= 2.0s 

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto, 



max_depth=20 

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto, 

max_depth=20, total= 11.4s 

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto, 

max_depth=20 

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto, 

max_depth=20, total= 11.2s 

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto, 

max_depth=20 

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto, 

max_depth=20, total= 10.9s 

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto, 

max_depth=20 

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto, 

max_depth=20, total= 11.0s 

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto, 

max_depth=20 

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto, 

max_depth=20, total= 11.1s 

[Parallel(n_jobs=1)]: Done 50 out of 50 | elapsed: 5.4min finished 

RandomizedSearchCV(cv=5, error_score=nan, 

estimator=RandomForestRegressor(bootstrap=True, 

ccp_alpha=0.0, 

criterion='mse', 

max_depth=None, 

max_features='auto', 

max_leaf_nodes=None, 

max_samples=None, 

min_impurity_decrease=0.0, 

min_impurity_split=None, 

min_samples_leaf=1, 

min_samples_split=2, 

min_weight_fraction_leaf=0.0, 

n_estimators=100, 

n_jobs=None, oob_score=Fals... 

iid='deprecated', n_iter=10, n_jobs=1, 

param_distributions={'max_depth': [5, 10, 15, 20, 25, 30], 

'max_features': ['auto', 'sqrt'], 

'min_samples_leaf': [1, 2, 5, 10], 

'min_samples_split': [2, 5, 10, 15, 

100], 

'n_estimators': [100, 200, 300, 400, 

500, 600, 700, 800, 

900, 1000, 1100, 

1200]}, 

pre_dispatch='2*n_jobs', random_state=42, refit=True, 



return_train_score=False, scoring='neg_mean_squared_error', 

verbose=2) 

rf_random.best_params_ 

{'n_estimators': 700, 

'min_samples_split': 15, 

'min_samples_leaf': 1, 

'max_features': 'auto', 

'max_depth': 20} 

prediction = rf_random.predict(X_test) 

plt.figure(figsize = (8,8)) 

sns.distplot(y_test-prediction) 

plt.show() 

plt.figure(figsize = (8,8)) 

plt.scatter(y_test, prediction, alpha = 0.5) 

plt.xlabel("y_test") 

plt.ylabel("y_pred") 
plt.show() 



 

 

print('MAE:', metrics.mean_absolute_error(y_test, prediction)) 

print('MSE:', metrics.mean_squared_error(y_test, prediction)) 

print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, prediction))) 

MAE: 1164.395004990247 

MSE: 4051214.5394281833 

RMSE: 2012.76291187715 
 

Save the model to reuse it again 
import pickle 

# open a file, where you ant to store the data 
file = open('flight_rf.pkl', 'wb') 

 

#  dump  information  to  that  file 
pickle.dump(rf_random, file) 

model = open('flight_rf.pkl','rb') 
forest = pickle.load(model) 

y_prediction = forest.predict(X_test) 

metrics.r2_score(y_test, y_prediction) 

0.8121137205782866 



Chapter 4 

Conclusion and Future Scope 
 

 

 
 

4.1 Conclusion 

 
From our detailed analysis of each of the 18 routes, we can determine the following 

• Flight prices almost always remain constant or increase between the major cities . 

• Tourist routes and routes that offer services involving Tier-2 cities of the country have 

uneven trends related to the increase and decrease of airline ticket prices. 

• The model in the worst case almost breaks even with the profits and losses, and most case 

saves an average of about Rs. 200 per transaction when predicting to wait. 

• Routes with data collected over the longer duration of time tend to facilitate with much 

more accurate predictions in the model and thus lead to higher average savings. 

We were successfully able to analyse each route and generalize the entire project based in terms 

of the sector to which the route belonged, and classified them into three major subsections - 

Business Routes, Tourist Routes and Tier-2 Routes. We have also successfully busted some of 

the typical myths and misconceptions related to the airline industry and backed them up with 

data and analysis. 13 

Finally, we have created a User Interface for the entire process of buying an airline ticket and 

given a proof of our predictions based on the previous trends with our prediction. Thus leaving it 

as a battle between “The risk appetite of the user” vs “Our understanding of the airline industry”. 

 

4.2 Future Scope 
• More routes can be added and the same analysis can be expanded to major airports and 

travel routes in India. 

• The analysis can be done by increasing the data points and increasing the historical data 

used. That will train the model better giving better accuracies and more savings. 

• More rules can be added in the Rule based learning based on our understanding of the 

industry, also incorporating the offer periods given by the airlines. 

• Developing a more user friendly interface for various routes giving more flexibility to the 

users 
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