
A Project Report

on

FLIGHT FARE PREDICTION

Submitted in partial fulfillment of the

requirement for the award of the degree of

Bachelors of Technology in

Computer Science and Engineering

Under The Supervision of

Name of Supervisor: DR. Kavita

Assistant Professor

Submitted By

Tanisha Patel
18SCSE1010152

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA

December, 2021

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the thesis/project/dissertation,

entitled “FLIGHT FARE PREDICTION” in partial fulfillment of the requirements for the

award of the Computer Science and Engineering submitted in the School of Computing Science

and Engineering of Galgotias University, Greater Noida, is an original work carried out during

the period of month, Year to Month and Year, under the supervision of DR. Kavita , Assistant

Professor Department of Computer Science and Engineering/Computer Application and

Information and Science, of School of Computing Science and Engineering, Galgotias

University, Greater Noida

The matter presented in the project has not been submitted by me/us for the award of any

other degree of this or any other places.

Tanisha Patel 18SCSE101152

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

Dr. Kavita

Assistant Professor

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of Tanisha Patel 18SCSE1010152

has been held on and his/her work is recommended for the award of

Bachelor of Technology (Computer Science Engineering).

Signature of Examiner(s)

Signature of Supervisor(s)

Signature of Project Coordinator

Signature of Dean

Date: 22 December, 2021

Place: Greater Noida

Abstract

Travelling through flights has become an integral part of today’s lifestyle as more and more

people are opting for faster travelling options. The flight ticket prices increase or decrease

every now and then depending on various factors like timing of the flights, destination,

duration of flights. various occasions such as vacations or festive season. Therefore, having

some basic idea of the flight fares before planning the trip will surely help many people save

money and time. In the proposed system a predictive model will be created by applying

machine learning algorithms to the collected historical data of flights. This system will give

people the idea about the trends that prices follow and also provide a predicted price value

which they can refer to before booking their flight tickets to save money. This kind of system

or service can be provided to the customers by flight booking companies which will help the

customers to book their tickets accordingly. Technology and tools wise this project covers:

1) Python

2) Numpy and Pandas for data cleaning

3) Matplotlib for data visualization

4) Sklearn for model building

5) Jupyter notebook, visual studio code and pycharm as IDE

6) Python flask for http server

7) HTML/CSS/Javascript for UI

Table of Contents

Title Page No.

Candidates Declaration I

Acknowledgement II

Abstract III

Contents IV

Chapter 1 Introduction 6

Chapter 2 Literature Survey/Project Design 8

Chapter 3 Functionality/Working of Project 9

Chapter 4 Conclusion and Future Scope 45
 4.1 Conclusion 45
 4.2 Future Scope 45
 Reference 46

CHAPTER-1

Introduction

Airline companies use complex algorithms to calculate flight prices given various conditions

present at that particular time. These methods take financial, marketing, and various social

factors into account to predict flight prices.

Nowadays, the number of people using flights has increased significantly. It is difficult for

airlines to maintain prices since prices change dynamically due to different conditions. That’s

why we will try to use machine learning to solve this problem. This can help airlines by

predicting what prices they can maintain. It can also help customers to predict future flight prices

and plan their journey accordingly. Optimal timing for airline ticket purchasing from the

consumer’s perspective is challenging principally because buyers have insufficient information

for reasoning about future price movements. In this project we majorly targeted to uncover

underlying trends of flight prices in India using historical data and also to suggest the best time

to buy a flight ticket.

Remarkably, the trends of the prices are highly sensitive to the route, month of departure, day of

departure, time of departure, whether the day of departure is a holiday and airline carrier. Highly

competitive routes like most business routes (tier 1 to tier 1 cities like Mumbai-Delhi) had a non-

decreasing trend where prices increased as days to departure decreased, however other routes

(tier 1 to tier 2 cities like Delhi - Guwahati) had a specific time frame where the prices are

minimum. Moreover, the data also uncovered two basic categories of airline carriers operating in

India – the economical group and the luxurious group, and in most cases, the minimum priced

flight was a member of the economical group. The data also validated the fact that, there are

certain time-periods of the day where the prices are expected to be maximum. With a high

probability (about 20-25%) that a person has to wait to buy a ticket, the scope of the project can

be extensively extended across the various routes to make significant savings on the purchase of

flight prices across the Indian Domestic Airline market.

Anyone who has booked a flight ticket knows how unexpectedly the prices vary. Airlines use

using sophisticated quasi-academic tactics known as "revenue management" or "yield

management". The cheapest available ticket for a given date gets more or less expensive over

time. This usually happens as an attempt to maximize revenue based on -

1. Time of purchase patterns (making sure last-minute purchases are expensive)

2. Keeping the flight as full as they want it (raising prices on a flight which is filling up in order

to reduce sales and hold back inventory for those expensive last-minute expensive purchases)

So, if we could inform the travellers with the optimal time to buy their flight tickets based on the

historic data and also show them various trends in the airline industry we could help them save

money on their travels. This would be a practical implementation of a data analysis, statistics and

machine learning techniques to solve a daily problem faced by travellers.

The objectives of the project can broadly be laid down by the following questions -

1. Flight Trends : Do airfares change frequently? Do they move in small increments or in

large jumps? Do they tend to go up or down over time?

2. Best Time To Buy : What is the best time to buy so that the consumer can save the most

by taking the least risk? So should a passenger wait to buy his ticket, or should he buy as

early as possible?

3. Verifying Myths : Does price increase as we get near to departure date? Is Indigo cheaper

than Jet Airways? Are morning flights expensive.

Chapter 2

Literature Survey

Since the deregulation of the airline industry, air fare pricing strategy has developed into a

complex structure of sophisticated rules and mathematical models that drive the pricing

strategies of airfare . Although still largely held in secret, studies have found that these rules are

widely known to be affected by a variety of factors .Traditional variables such as distance,

although still playing a significant role, are no longer the sole factor that dictate the pricing

strategy. Elements related to economic, marketing and societal trends have played increasing

roles in dictating the airfare prices .Most studies on airfare price prediction have focused one e

ither the national level or a specific market. Research at the market segment level, however, is

still very limited. We define the term market segment as the market/airport pair between the

flight origin and the destination. Being able to predict the airfare trend at the specific market

segment level is crucial for airlines to adjust strategy and resources for as specific route.

However, existing studies on market segment price prediction use heuristic-based conventional

statistical models, such as linear regression and are based on the assumption that there exists a

linear relationship between the dependent and independent variables, which in many cases, may

not be true. Recent advances in Artificial Intelligence (AI) and Ma-chine Learning (ML) make it

possible to infer rules and model variations on airfare price based on a large number of features,

often uncovering hidden relationships amongst the features automatically.

To the best of our knowledge, all existing work leveraging machine learning approaches for

airfare price prediction are based on:

1) proprietary datasets that are not publicly available and

2) transaction records data crawled from online travel booking sites makemytrip.com or trivago.

The problem of the former lies in the difficulty of gaining access to the data, making

reproducing the results and extending the work nearly impossible. The issue with the latter is that

the transaction records from each online booking site are a small fraction of the total ticket sales

from the entire market, making the acquired data likely to be skewed, and thus, not representing

the true nature of the entire market.

Problem Formulation

Flight ticket prices can be something hard to guess, today we might see a price, check out the

price of the same flight tomorrow, and it will be a different story.

To solve this problem, we have been provided with prices of flight tickets for various airlines

between the months of March and June of 2019 and between various cities, using which we aim

to build a model which predicts the prices of the flights using various input features.

Chapter 3

Functionality/Working of Project

• Automated Script to Collect Historical Data

For any prediction/classification problem, we need historical data to work with. In this

project, past flight prices for each route needs to be collected on a daily basis. Manually

collecting data daily is not efficient and thus a python script was run on a remote server

which collected prices daily at specific time.

• Cleaning & Preparing Data

After we have the data, we need to clean & prepare the data according to the model's

requirements. In any machine learning problem, this is the step that is the most important

and the most time consuming. We used various statistical techniques & logics and

implemented them using built-in R packages.

• Analysing & Building

Models Data preparation is followed by analysing the data, uncovering hidden trends and

then applying various predictive & classification models on the training set. These

included Random Forest, Logistic Regression, Gradient Boosting and combination of

these models to increase the accuracy. Further statistical models and trend analyzer

model have been built to increase the accuracy of the ML algorithms for this task.

• Merging Models & Accuracy Calculation

Having built various models, we have to test the models on our testing set and calculate

the savings or loss done on each query put by the user. A statistic of the over Savings,

Loss and the mean saving per transaction are the measures used to calculate the Accuracy

of the model implemented.

 Method

Project Implementation

For this project, we have implemented the machine learning life cycle to create a basic web

application which will predict the flight prices by applying machine learning algorithm to

historical flight data using python libraries like Pandas, NumPy, Matplotlib, seaborn and Sklearn.

The steps followed in the lifecycle are :

1. Data Selection

2. Exploratory data analysis

3. Data Pre-processing

4. Feature Selection

5. Applying ML Algorithms

6. Pickling model in a file for future use

7. Flask end services

8. GUI frontend frameworks

9. Deploying the app

Data selection is the first step where historical data of flight is gathered for the model to predict

prices. Our dataset consists of more than 10,000 records of data related to flights and its prices.

Some of the features of the dataset are source, destination, departure date, departure time,

number of stops, arrival time, prices and few more.

In the exploratory data analysis step, we cleaned the dataset by removing the duplicate values

and null values. If these values are not removed it would affect the accuracy of the model. We

gained further information such as distribution of data. Next step is data pre-processing where

we observed that most of the data was present in string format. Data from each feature is

extracted such as day and month is extracted from date of journey in integer format, hours and

minutes is extracted from departure time. Features such as source and destination needed to be

converted into values as they were of categorical type. For this One hot-encoding and label

encoding techniques are used to convert categorical values to model identifiable values.

Feature selection step is involved in selecting important features that are more correlated to the

price. There are some features such as extra information and route which are unnecessary

features which may affect the accuracy of the model and therefore, they need to be removed

before getting

our model ready for prediction. After selecting the features which are more correlated to price

the next step involves applying machine algorithm and creating a model. As our dataset consist

of labelled data, we will be using supervised machine learning algorithms also in supervised we

will be using regression algorithms as our dataset contains continuous values in the features.

Regression models are used to describe relationship between dependent and independent

variables.

The machine learning algorithms that we will be using in our project are:

Linear Regression

In simple linear regression there is only one independent and dependent feature but as our dataset

consists of many independent features on which the price may depend upon, we will be using

multiple linear regression which estimates relationship between two or more independent

variables and one dependent variable. The multiple linear regression model is represented by:

Y = β0x1+…. +βnxn + Ɛ

Y = the predicted value of the dependent variable

Xn = the independent variables

βn = independent variables coefficients

Ɛ = y-intercept when all other parameters are 0

Decision Tree

Decision trees are basically of two types classification and regression tree where classification is

used for categorical values and regression is used for continuous values. Decision tree chooses

independent variable from dataset as decision nodes for decision making. It divides the whole

dataset in different sub-section and when test data is passed to the model the output is decided by

checking the section to which the datapoint belong to. And to whichever section the data point

belongs to the decision tree will give output as the average value of all the datapoints in the sub-

section.

Random Forest

Random Forest is an ensemble learning technique where training model uses multiple learning

algorithms and then combine individual results to get a final predicted result. Under ensemble

learning random forest falls into bagging category where random number of features and records

will be selected and passed to the group of models. Random forest basically uses group of

decision trees as group of models. Random amount of data is passed to decision trees and each

decision tree predicts values according to the dataset given to it. From the predictions made by

the decision trees the average value of the predicted values if considered as the output of the

random forest model.

Performance Metrics

Performance metrics are statistical models which will be used to compare the accuracy of the

machine learning models trained by different algorithms. The sklearn.metrics module will be

used

to implement the functions to measure the errors from each model using the regression metrics.

Following metrics will be used to check the error measure of each model.

MAE (Mean Absolute Error)

Mean Absolute Error is basically the sum of average of the absolute difference between the

predicted and actual values.

MAE = 1/n[∑(y-ý)]

y = actual output values,

ý = predicted output values

n = Total number of data points

Lesser the value of MAE the better the performance of your model.

MSE (Mean Square Error)

Mean Square Error squares the difference of actual and predicted output values before summing

them all instead of using the absolute value.

MSE = 1/n[∑(y-ý)2]

y=actual output values

ý=predicted output values

n = Total number of data points MSE punishes big errors as we are squaring the errors. Lower

the value of MSE the better the performance of the model.

RMSE (Root Mean Square Error)

RMSE is measured by taking the square root of the average of the squared difference between

the prediction and the actual value.

RMSE = √1/n[∑(y-ý)2]

y=actual output values

ý=predicted output values

n = Total number of data points

RMSE is greater than MAE and lesser the value of RMSE between different model the better the

performance of that model.

R^2 (Coefficient of determination)

It helps you to understand how well the independent variable adjusted with the variance in your

model.

R^2 = 𝟏 − ∑(ý-y̅) 2

∑(y-y̅) 2

The value of R-square lies between 0 to 1. The closer its value to one, the better your model is

when comparing with other model values.

There are also different cross-validation techniques such as gridsearchCV and

randomizedsearchCV which will be used for improving the accuracy of the model. Parameters of

the models such as number of trees in random forest or max depth of decision tree can be

changed using this technique which will help us in further enhancement of the accuracy.

The last three steps of the life cycle model are involved in the deployment of the trained machine

learning model. Therefore, after getting the model with the best accuracy we store that model in

a file using pickle module. The back-end of the application will be created using Flask

Framework where API end-points such and GET and POST will be created to perform

operations related to fetching and displaying data on the front-end of the application.

The front-end of the application will be created using the bootstrap framework where user will

have the functionality of entering their flight data. This data will be sent to the back-end service

where the model will predict the output according to the provided data. The predicted value is

sent to the front-end and displayed.

Source code And Explanation

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

sns.set()

Importing dataset
1. Since data is in form of excel file we have to use pandas read_excel to load the data

2. After loading it is important to check the complete information of data as it can indication
many of the hidden infomation such as null values in a column or a row

3. Check whether any null values are there or not. if it is present then following can be done,

a. Imputing data using Imputation method in sklearn

b. Filling NaN values with mean, median and mode using fillna() method

4. Describe data --> which can give statistical analysis

train_data = pd.read_excel(r"C:\Users\Tanisha\Flight-Price-

Prediction\Data_Train.xlsx")

pd.set_option('display.max_columns', None)

train_data.head()

Airline Date_of_Journey Source Destination Route \

0 IndiGo 24/03/2019 Banglore New Delhi BLR → DEL

1 Air India 1/05/2019 Kolkata Banglore CCU → IXR → BBI → BLR

2 Jet Airways 9/06/2019 Delhi Cochin DEL → LKO → BOM → COK

3 IndiGo 12/05/2019 Kolkata Banglore CCU → NAG → BLR

4 IndiGo 01/03/2019 Banglore New Delhi BLR → NAG → DEL

Dep_Time Arrival_Time Duration Total_Stops Additional_Info Price

0 22:20 01:10 22 Mar 2h 50m non-stop No info 3897

1 05:50 13:15 7h 25m 2 stops No info 7662

2 09:25 04:25 10 Jun 19h 2 stops No info 13882

3 18:05 23:30 5h 25m 1 stop No info 6218

4 16:50 21:35 4h 45m 1 stop No info 13302

train_data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 10683 entries, 0 to 10682

Data columns (total 11 columns):

Column Non-Null Count Dtype

0 Airline 10683 non-null object

1 Date_of_Journey 10683 non-null object

2 Source 10683 non-null object

3 Destination 10683 non-null object

4 Route 10682 non-null object

5 Dep_Time 10683 non-null object

6 Arrival_Time 10683 non-null object

7 Duration 10683 non-null object

8 Total_Stops 10682 non-null object

9 Additional_Info 10683 non-null object

10 Price 10683 non-null int64

dtypes: int64(1), object(10)

memory usage: 918.2+ KB

train_data["Duration"].value_counts()
2h 50m 550

1h 30m 386

2h 55m 337

2h 45m 337

2h 35m 329

...

32h 55m 1

28h 30m 1

30h 25m 1

27h 55m 1
32h 20m 1

Name: Duration, Length: 368, dtype: int64

train_data.dropna(inplace = True)

train_data.isnull().sum()

Airline 0

Date_of_Journey 0

Source 0

Destination 0

Route 0

Dep_Time 0

Arrival_Time 0

Duration 0

Total_Stops 0

Additional_Info 0

Price 0

dtype: int64

EDA
From description we can see that Date_of_Journey is a object data type, Therefore, we have to
convert this datatype into timestamp so as to use this column properly for prediction

For this we require pandas to_datetime to convert object data type to datetime dtype.

.dt.day method will extract only day of that date .dt.month method will extract only month

of that date

train_data["Journey_day"] = pd.to_datetime(train_data.Date_of_Journey,

format="%d/%m/%Y").dt.day

train_data["Journey_month"] = pd.to_datetime(train_data["Date_of_Journey"], format =

"%d/%m/%Y").dt.month

train_data.head()

Airline Date_of_Journey Source Destination Route \

0 IndiGo 24/03/2019 Banglore New Delhi BLR → DEL

1 Air India 1/05/2019 Kolkata Banglore CCU → IXR → BBI → BLR

2 Jet Airways 9/06/2019 Delhi Cochin DEL → LKO → BOM → COK

3 IndiGo 12/05/2019 Kolkata Banglore CCU → NAG → BLR

4 IndiGo 01/03/2019 Banglore New Delhi BLR → NAG → DEL

Dep_Time Arrival_Time Duration Total_Stops Additional_Info Price \

0 22:20 01:10 22 Mar 2h 50m non-stop No info 3897

1 05:50 13:15 7h 25m 2 stops No info 7662

2 09:25 04:25 10 Jun 19h 2 stops No info 13882

3 18:05 23:30 5h 25m 1 stop No info 6218

4 16:50 21:35 4h 45m 1 stop No info 13302

Journey_day Journey_month

0 24 3

1 1 5

2 9 6

3 12 5
4 1 3

Since we have converted Date_of_Journey column into integers, Now we
can drop as it is of no use.

train_data.drop(["Date_of_Journey"], axis = 1, inplace = True)

Departure time is when a plane leaves the gate.
Similar to Date_of_Journey we can extract values from Dep_Time

Extracting Hours

train_data["Dep_hour"] = pd.to_datetime(train_data["Dep_Time"]).dt.hour

Extracting Minutes
train_data["Dep_min"] = pd.to_datetime(train_data["Dep_Time"]).dt.minute

Now we can drop Dep_Time as it is of no use

train_data.drop(["Dep_Time"], axis = 1, inplace = True)

train_data.head()

Airline Source Destination Route Arrival_Time \

0 IndiGo Banglore New Delhi BLR → DEL 01:10 22 Mar

1 Air India Kolkata Banglore CCU → IXR → BBI → BLR 13:15

2 Jet Airways Delhi Cochin DEL → LKO → BOM → COK 04:25 10 Jun

3 IndiGo Kolkata Banglore CCU → NAG → BLR 23:30

4 IndiGo Banglore New Delhi BLR → NAG → DEL 21:35

Duration Total_Stops Additional_Info Price Journey_day Journey_month \

0 2h 50m non-stop No info 3897 24 3

1 7h 25m 2 stops No info 7662 1 5

2 19h 2 stops No info 13882 9 6

Dep_hour Dep_min

0 22 20

1 5 50

2 9 25

3 18 5

4 16 50

Arrival time is when the plane pulls up to the gate.

Similar to Date_of_Journey we can extract values from Arrival_Time

Extracting Hours
train_data["Arrival_hour"] = pd.to_datetime(train_data.Arrival_Time).dt.hour

Extracting Minutes
train_data["Arrival_min"] = pd.to_datetime(train_data.Arrival_Time).dt.minute

Now we can drop Arrival_Time as it is of no use

train_data.drop(["Arrival_Time"], axis = 1, inplace = True)

train_data.head()

Airline Source Destination Route Duration \

0 IndiGo Banglore New Delhi BLR → DEL 2h 50m

1 Air India Kolkata Banglore CCU → IXR → BBI → BLR 7h 25m

2 Jet Airways Delhi Cochin DEL → LKO → BOM → COK 19h

3 IndiGo Kolkata Banglore CCU → NAG → BLR 5h 25m

4 IndiGo Banglore New Delhi BLR → NAG → DEL 4h 45m

Total_Stops Additional_Info Price Journey_day Journey_month Dep_hour \

0 non-stop No info 3897 24 3 22
1 2 stops No info 7662 1 5 5

2 2 stops No info 13882 9 6 9

3 1 stop No info 6218 12 5 18
4 1 stop No info 13302 1 3 16

Dep_min Arrival_hour Arrival_min

0 20 1 10

1 50 13 15
2 25 4 25

3 5h 25m 1 stop No info 6218 12 5
4 4h 45m 1 stop No info 13302 1 3

3 5 23 30
4 50 21 35

Time taken by plane to reach destination is called Duration
It is the differnce betwwen Departure Time and Arrival time

Assigning and converting Duration column into list
duration = list(train_data["Duration"])

for i in range(len(duration)):

if len(duration[i].split()) != 2: # Check if duration contains only hour or
mins

if "h" in duration[i]:

duration[i] = duration[i].strip() + " 0m" # Adds 0 minute

else:

duration[i] = "0h " + duration[i] # Adds 0 hour

duration_hours = []

duration_mins = []

for i in range(len(duration)):

duration_hours.append(int(duration[i].split(sep = "h")[0])) # Extract hours from
duration

duration_mins.append(int(duration[i].split(sep = "m")[0].split()[-1])) # Extracts only
minutes from duration
Adding duration_hours and duration_mins list to train_data dataframe

train_data["Duration_hours"] = duration_hours

train_data["Duration_mins"] = duration_mins

train_data.drop(["Duration"], axis = 1, inplace = True)

train_data.head()

Airline Source Destination Route Total_Stops \

0 IndiGo Banglore New Delhi BLR → DEL non-stop

1 Air India Kolkata Banglore CCU → IXR → BBI → BLR 2 stops

2 Jet Airways Delhi Cochin DEL → LKO → BOM → COK 2 stops

3 IndiGo Kolkata Banglore CCU → NAG → BLR 1 stop

4 IndiGo Banglore New Delhi BLR → NAG → DEL 1 stop

Additional_Info Price Journey_day Journey_month Dep_hour Dep_min \

Arrival_hour Arrival_min Duration_hours Duration_mins

0 1 10 2 50

0 No info 3897 24 3 22 20

1 No info 7662 1 5 5 50

2 No info 13882 9 6 9 25

3 No info 6218 12 5 18 5
4 No info 13302 1 3 16 50

1 13 15 7 25

2 4 25 19 0

3 23 30 5 25
4 21 35 4 45

Handling Categorical Data
One can find many ways to handle categorical data. Some of them categorical data are,

1. Nominal data --> data are not in any order --> OneHotEncoder is used in this case

2. Ordinal data --> data are in order --> LabelEncoder is used in this case

train_data["Airline"].value_counts()

Jet Airways 3849

IndiGo 2053

Air India 1751

Multiple carriers 1196

SpiceJet 818

Vistara 479

Air Asia 319
GoAir 194

Multiple carriers Premium economy 13

Jet Airways Business 6

Vistara Premium economy 3

Trujet 1
Name: Airline, dtype: int64

From graph we can see that Jet Airways Business have the highest
Price.
Apart from the first Airline almost all are having similar median

Airline vs Price

sns.catplot(y = "Price", x = "Airline", data = train_data.sort_values("Price", ascending =

False), kind="boxen", height = 6, aspect = 3)

plt.show()

As Airline is Nominal Categorical data we will perform
OneHotEncoding

Airline = train_data[["Airline"]]

Airline = pd.get_dummies(Airline, drop_first= True)

Airline.head()

Airline_Air India Airline_GoAir Airline_IndiGo Airline_Jet Airways \
0 0 0 1 0

1 1 0 0 0

2 0 0 0 1

3 0 0 1 0
4 0 0 1 0

Airline_Jet Airways Business Airline_Multiple carriers \

0 0 0

1 0 0

2 0 0

3 0 0

4 0 0

Airline_Multiple carriers Premium economy Airline_SpiceJet \
0 0 0

1 0 0

2 0 0

3 0 0
4 0 0

Airline_Trujet Airline_Vistara Airline_Vistara Premium economy

0 0 0 0

1 0 0 0

2 0 0 0

3 0 0 0
4 0 0 0

train_data["Source"].value_counts()

Delhi 4536

Kolkata 2871

Banglore 2197

Mumbai 697

Chennai 381
Name: Source, dtype: int64

Source vs Price

sns.catplot(y = "Price", x = "Source", data = train_data.sort_values("Price", ascending =

False), kind="boxen", height = 4, aspect = 3)

plt.show()

As Source is Nominal Categorical data we will perform OneHotEncoding

Source = train_data[["Source"]]

Source = pd.get_dummies(Source, drop_first= True)

Source.head()

Source_Chennai Source_Delhi Source_Kolkata Source_Mumbai
0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 0 1 0
4 0 0 0 0

train_data["Destination"].value_counts()

Cochin 4536

Banglore 2871

Delhi 1265

New Delhi 932

Hyderabad 697

Kolkata 381
Name: Destination, dtype: int64

As Destination is Nominal Categorical data we will perform
OneHotEncoding

Destination = train_data[["Destination"]]

Destination = pd.get_dummies(Destination, drop_first = True)

Destination.head()

Destination_Cochin Destination_Delhi Destination_Hyderabad \
0 0 0 0

1 0 0 0

2 1 0 0

3 0 0 0
4 0 0 0

Destination_Kolkata Destination_New Delhi

0 0 1

1 0 0

2 0 0

3 0 0
4 0 1

train_data["Route"]

0 BLR → DEL

1 CCU → IXR → BBI → BLR

2 DEL → LKO → BOM → COK

3 CCU → NAG → BLR

4 BLR → NAG → DEL

...

10678 CCU → BLR

10679 CCU → BLR

10680 BLR → DEL

10681 BLR → DEL

10682 DEL → GOI → BOM → COK
Name: Route, Length: 10682, dtype: object

Additional_Info contains almost 80% no_info

Route and Total_Stops are related to each other

train_data.drop(["Route", "Additional_Info"], axis = 1, inplace = True)

train_data["Total_Stops"].value_counts()

1 stop 5625

non-stop 3491

2 stops 1520

3 stops 45

4 stops 1
Name: Total_Stops, dtype: int64

As this is case of Ordinal Categorical type we perform LabelEncoder
Here Values are assigned with corresponding keys

train_data.replace({"non-stop": 0, "1 stop": 1, "2 stops": 2, "3 stops": 3, "4

stops": 4}, inplace = True)

train_data.head()

Airline Source Destination Total_Stops Price Journey_day \

0 IndiGo Banglore New Delhi 0 3897 24
1 Air India Kolkata Banglore 2 7662 1

2 Jet Airways Delhi Cochin 2 13882 9

3 IndiGo Kolkata Banglore 1 6218 12

4 IndiGo Banglore New Delhi 1 13302 1

Journey_month Dep_hour Dep_min Arrival_hour Arrival_min \
0 3 22 20 1 10
1 5 5 50 13 15

2 6 9 25 4 25

3 5 18 5 23 30
4 3 16 50 21 35

Duration_hours Duration_mins

0 2 50

1 7 25

2 19 0

3 5 25
4 4 45

Concatenate dataframe --> train_data + Airline + Source +

Destination

data_train = pd.concat([train_data, Airline, Source, Destination], axis = 1)

data_train.head()

Airline Source Destination Total_Stops Price Journey_day \
0 IndiGo Banglore New Delhi 0 3897 24

1 Air India Kolkata Banglore 2 7662 1

2 Jet Airways Delhi Cochin 2 13882 9

Journey_month Dep_hour Dep_min Arrival_hour Arrival_min \
0 3 22 20 1 10

1 5 5 50 13 15

2 6 9 25 4 25

3 5 18 5 23 30
4 3 16 50 21 35

Duration_hours Duration_mins Airline_Air India Airline_GoAir \
0 2 50 0 0

1 7 25 1 0

2 19 0 0 0

3 5 25 0 0
4 4 45 0 0

Airline_IndiGo Airline_Jet Airways Airline_Jet Airways Business \

0 1 0 0

1 0 0 0

2 0 1 0

3 1 0 0

4 1 0 0

Airline_Multiple carriers Airline_Multiple carriers Premium economy \

0 0 0

1 0 0

3 IndiGo Kolkata Banglore 1 6218 12

4 IndiGo Banglore New Delhi 1 13302 1

2 0 0

3 0 0
4 0 0

Airline_SpiceJet Airline_Trujet Airline_Vistara \
0 0 0 0

1 0 0 0

2 0 0 0

3 0 0 0
4 0 0 0

Airline_Vistara Premium economy Source_Chennai Source_Delhi \
0 0 0 0

1 0 0 0

2 0 0 1

3 0 0 0
4 0 0 0

Source_Kolkata Source_Mumbai Destination_Cochin Destination_Delhi \

Destination_New Delhi
0 0 0 1

1 0 0 0

2 0 0 0

3 0 0 0
4 0 0 1

data_train.drop(["Airline", "Source", "Destination"], axis = 1, inplace = True)

data_train.head()

Total_Stops Price Journey_day Journey_month Dep_hour Dep_min \
0 0 3897 24 3 22 20

1 2 7662 1 5 5 50

2 2 13882 9 6 9 25

3 1 6218 12 5 18 5
4 1 13302 1 3 16 50

Arrival_hour Arrival_min Duration_hours Duration_mins \
0 1 10 2 50

1 13 15 7 25

2 4 25 19 0

3 23 30 5 25
4 21 35 4 45

0 0 0 0 0

1 1 0 0 0

2 0 0 1 0

3 1 0 0 0
4 0 0 0 0

Destination_Hyderabad Destination_Kolkata

Airline_Air India Airline_GoAir Airline_IndiGo Airline_Jet Airways \
0 0 0 1 0

1 1 0 0 0

2 0 0 0 1

3 0 0 1 0
4 0 0 1 0

Airline_Jet Airways Business Airline_Multiple carriers \

0 0 0

1 0 0

2 0 0

3 0 0

4 0 0

Airline_Multiple carriers Premium economy Airline_SpiceJet \
0 0 0

1 0 0

2 0 0

3 0 0
4 0 0

Airline_Trujet Airline_Vistara Airline_Vistara Premium economy \

0 0 0 0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

Source_Chennai Source_Delhi Source_Kolkata Source_Mumbai \

Destination_Hyderabad \

Destination_Kolkata Destination_New Delhi

0 0 1

1 0 0

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 0 1 0
4 0 0 0 0

Destination_Cochin Destination_Delhi

0 0 0 0

1 0 0 0

2 1 0 0

3 0 0 0
4 0 0 0

2 0 0

3 0 0

4 0 1

data_train.shape

(10682, 30)

Test set
test_data = pd.read_excel(r"C:\Users\Tanisha\Flight-Price-
Prediction\Test_set.xlsx")

test_data.head()

Airline Date_of_Journey Source Destination Route \

0 Jet Airways 6/06/2019 Delhi Cochin DEL → BOM → COK

1 IndiGo 12/05/2019 Kolkata Banglore CCU → MAA → BLR

2 Jet Airways 21/05/2019 Delhi Cochin DEL → BOM → COK

3 Multiple carriers 21/05/2019 Delhi Cochin DEL → BOM → COK

4 Air Asia 24/06/2019 Banglore Delhi BLR → DEL

Dep_Time Arrival_Time Duration Total_Stops Additional_Info

0 17:30 04:25 07 Jun 10h 55m 1 stop No info

1 06:20 10:20 4h 1 stop No info

2 19:15 19:00 22 May 23h 45m 1 stop In-flight meal not included

3 08:00 21:00 13h 1 stop No info
4 23:55 02:45 25 Jun 2h 50m non-stop No info

Preprocessing

print("Test data Info")

print("-"*75)

print(test_data.info())

print()

print()

print("Null values :")

print("-"*75)

test_data.dropna(inplace = True)

print(test_data.isnull().sum())

EDA

Date_of_Journey
test_data["Journey_day"] = pd.to_datetime(test_data.Date_of_Journey,

format="%d/%m/%Y").dt.day

test_data["Journey_month"] = pd.to_datetime(test_data["Date_of_Journey"], format =

"%d/%m/%Y").dt.month

test_data.drop(["Date_of_Journey"], axis = 1, inplace = True)

Dep_Time

test_data["Dep_hour"] = pd.to_datetime(test_data["Dep_Time"]).dt.hour

test_data["Dep_min"] = pd.to_datetime(test_data["Dep_Time"]).dt.minute

test_data.drop(["Dep_Time"], axis = 1, inplace = True)

Arrival_Time

test_data["Arrival_hour"] = pd.to_datetime(test_data.Arrival_Time).dt.hour

test_data["Arrival_min"] = pd.to_datetime(test_data.Arrival_Time).dt.minute

test_data.drop(["Arrival_Time"], axis = 1, inplace = True)

Duration
duration = list(test_data["Duration"])

for i in range(len(duration)):

if len(duration[i].split()) != 2: # Check if duration contains only hour or
mins

if "h" in duration[i]:

duration[i] = duration[i].strip() + " 0m" # Adds 0 minute

else:

duration[i] = "0h " + duration[i] # Adds 0 hour

duration_hours = []

duration_mins = []

for i in range(len(duration)):

duration_hours.append(int(duration[i].split(sep = "h")[0])) # Extract hours from
duration

duration_mins.append(int(duration[i].split(sep = "m")[0].split()[-1])) # Extracts only
minutes from duration

Adding Duration column to test set

test_data["Duration_hours"] = duration_hours

test_data["Duration_mins"] = duration_mins

test_data.drop(["Duration"], axis = 1, inplace = True)

Categorical data

print("Airline")

print("-"*75)

print(test_data["Airline"].value_counts())

Airline = pd.get_dummies(test_data["Airline"], drop_first= True)

print()

print("Source")

print("-"*75)

print(test_data["Source"].value_counts())

Source = pd.get_dummies(test_data["Source"], drop_first= True)

print()

print("Destination")

print("-"*75)

print(test_data["Destination"].value_counts())

Destination = pd.get_dummies(test_data["Destination"], drop_first = True)

Additional_Info contains almost 80% no_info

Route and Total_Stops are related to each other
test_data.drop(["Route", "Additional_Info"], axis = 1, inplace = True)

Replacing Total_Stops

test_data.replace({"non-stop": 0, "1 stop": 1, "2 stops": 2, "3 stops": 3, "4 stops":

4}, inplace = True)

Concatenate dataframe --> test_data + Airline + Source + Destination
data_test = pd.concat([test_data, Airline, Source, Destination], axis = 1)

data_test.drop(["Airline", "Source", "Destination"], axis = 1, inplace = True)

print()

print()

print("Shape of test data : ", data_test.shape)

Test data Info

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 2671 entries, 0 to 2670

Data columns (total 10 columns):

Column Non-Null Count Dtype

0 Airline 2671 non-null object

1 Date_of_Journey 2671 non-null object

2 Source 2671 non-null object

3 Destination 2671 non-null object

4 Route 2671 non-null object

5 Dep_Time 2671 non-null object

6 Arrival_Time 2671 non-null object

7 Duration 2671 non-null object

8 Total_Stops 2671 non-null object

9 Additional_Info 2671 non-null object

dtypes: object(10)

memory usage: 208.8+ KB

None

Null values :

Airline 0

Date_of_Journey 0

Source 0

Destination 0

Route 0

Dep_Time 0

Arrival_Time 0

Duration 0

Total_Stops 0

Additional_Info 0

dtype: int64

Airline

Jet Airways 897
IndiGo 511

Air India 440

Multiple carriers 347

SpiceJet 208

Vistara 129

Air Asia 86
GoAir 46

Multiple carriers Premium economy 3

Jet Airways Business 2

Vistara Premium economy 2

Name: Airline, dtype: int64

Source

Delhi 1145

Kolkata 710

Banglore 555

Mumbai 186

Chennai 75

Name: Source, dtype: int64

Destination

Cochin 1145

Banglore 710

Delhi 317

New Delhi 238

Hyderabad 186

Kolkata 75

Name: Destination, dtype: int64

Shape of test data : (2671, 28)

data_test.head()

Total_Stops Journey_day Journey_month Dep_hour Dep_min Arrival_hour \
0 1 6 6 17 30 4

1 1 12 5 6 20 10

2 1 21 5 19 15 19

3 1 21 5 8 0 21
4 0 24 6 23 55 2

Arrival_min Duration_hours Duration_mins Air India GoAir IndiGo \
0 25 10 55 0 0 0

1 20 4 0 0 0 1

2 0 23 45 0 0 0

3 0 13 0 0 0 0
4 45 2 50 0 0 0

Jet Airways Jet Airways Business Multiple carriers \
0 1 0 0

1 0 0 0

2 1 0 0

3 0 0 1
4 0 0 0

Multiple carriers Premium economy SpiceJet Vistara \
0 0 0 0

1 0 0 0

2 0 0 0

3 0 0 0
4 0 0 0

Vistara Premium economy Chennai Delhi Kolkata Mumbai Cochin Delhi \
0 0 0 1 0 0 1 0

1 0 0 0 1 0 0 0

2 0 0 1 0 0 1 0

3 0 0 1 0 0 1 0
4 0 0 0 0 0 0 1

Hyderabad Kolkata New Delhi

0 0 0 0

1 0 0 0

2 0 0 0

3 0 0 0
4 0 0 0

Feature Selection
Finding out the best feature which will contribute and have good relation with target variable.
Following are some of the feature selection methods,

1. heatmap

2. feature_importance_

3. SelectKBest

data_train.shape

(10682, 30)

data_train.columns

Index(['Total_Stops', 'Price', 'Journey_day', 'Journey_month', 'Dep_hour',

'Dep_min', 'Arrival_hour', 'Arrival_min', 'Duration_hours',

'Duration_mins', 'Airline_Air India', 'Airline_GoAir', 'Airline_IndiGo',

'Airline_Jet Airways', 'Airline_Jet Airways Business',

'Airline_Multiple carriers',

'Airline_Multiple carriers Premium economy', 'Airline_SpiceJet',

'Airline_Trujet', 'Airline_Vistara', 'Airline_Vistara Premium economy',

'Source_Chennai', 'Source_Delhi', 'Source_Kolkata', 'Source_Mumbai',

'Destination_Cochin', 'Destination_Delhi', 'Destination_Hyderabad',

'Destination_Kolkata', 'Destination_New Delhi'],

dtype='object')

X = data_train.loc[:, ['Total_Stops', 'Journey_day', 'Journey_month', 'Dep_hour',

'Dep_min', 'Arrival_hour', 'Arrival_min', 'Duration_hours',

'Duration_mins', 'Airline_Air India', 'Airline_GoAir', 'Airline_IndiGo',

'Airline_Jet Airways', 'Airline_Jet Airways Business',

'Airline_Multiple carriers',

'Airline_Multiple carriers Premium economy', 'Airline_SpiceJet',

'Airline_Trujet', 'Airline_Vistara', 'Airline_Vistara Premium
economy',

'Source_Chennai', 'Source_Delhi', 'Source_Kolkata', 'Source_Mumbai',

'Destination_Cochin', 'Destination_Delhi', 'Destination_Hyderabad',

'Destination_Kolkata', 'Destination_New Delhi']]

X.head()

Total_Stops Journey_day Journey_month Dep_hour Dep_min Arrival_hour \
0 0 24 3 22 20 1

1 2 1 5 5 50 13

2 2 9 6 9 25 4

3 1 12 5 18 5 23
4 1 1 3 16 50 21

Arrival_min Duration_hours Duration_mins Airline_Air India \
0 10 2 50 0

1 15 7 25 1

2 25 19 0 0

3 30 5 25 0
4 35 4 45 0

Airline_GoAir Airline_IndiGo Airline_Jet Airways \

0 0 1 0

1 0 0 0

2 0 0 1

3 0 1 0

4 0 1 0

Airline_Jet Airways Business Airline_Multiple carriers \

0 0 0

1 0 0

2 0 0

3 0 0

4 0 0

Airline_Multiple carriers Premium economy Airline_SpiceJet \
0 0 0

1 0 0

2 0 0

3 0 0
4 0 0

Airline_Trujet Airline_Vistara Airline_Vistara Premium economy \

0 0 0 0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

Source_Chennai Source_Delhi Source_Kolkata Source_Mumbai \

Destination_Hyderabad \

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 0 1 0
4 0 0 0 0

Destination_Cochin Destination_Delhi

0 0 0 0

1 0 0 0

2 1 0 0

3 0 0 0
4 0 0 0

Destination_Kolkata Destination_New Delhi

0 0 1

1 0 0

2 0 0

3 0 0

4 0 1

y = data_train.iloc[:, 1]

y.head()
0 3897

1 7662

2 13882

3 6218

4 13302

Name: Price, dtype: int64
Finds correlation

between Independent

and dependent attributes

plt.figure(figsize = (18,18))

sns.heatmap(train_data.corr(), annot = True, cmap = "RdYlGn")

plt.show()

Important feature using ExtraTreesRegressor

from sklearn.ensemble import ExtraTreesRegressor

selection = ExtraTreesRegressor()

selection.fit(X, y)

ExtraTreesRegressor(bootstrap=False, ccp_alpha=0.0, criterion='mse',

max_depth=None, max_features='auto', max_leaf_nodes=None,

max_samples=None, min_impurity_decrease=0.0,

min_impurity_split=None, min_samples_leaf=1,

min_samples_split=2, min_weight_fraction_leaf=0.0,

n_estimators=100, n_jobs=None, oob_score=False,

random_state=None, verbose=0, warm_start=False)

print(selection.feature_importances_)

[2.43860365e-01 1.44233889e-01 5.36301210e-02 2.48117910e-02

2.08263936e-02 2.70380250e-02 1.83998711e-02 1.01044418e-01

1.82837828e-02 1.00624045e-02 1.87252965e-03 1.73358642e-02

1.41183380e-01 6.72289831e-02 2.13344400e-02 8.39699348e-04

3.16375243e-03 1.20853284e-04 5.31005491e-03 7.66248259e-05

3.99865808e-04 9.74644831e-03 3.25385840e-03 7.85404721e-03

9.81175799e-03 1.61860895e-02 6.70652149e-03 6.08805626e-04
2.47753623e-02]

#plot graph of feature importances for better visualization

plt.figure(figsize = (12,8))

feat_importances = pd.Series(selection.feature_importances_, index=X.columns)

feat_importances.nlargest(20).plot(kind='barh')
plt.show()

Fitting model using Random Forest
1. Split dataset into train and test set in order to prediction w.r.t X_test

2. If needed do scaling of data

– Scaling is not done in Random forest

3. Import model

4. Fit the data

5. Predict w.r.t X_test

6. In regression check RSME Score

7. Plot graph

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)

from sklearn.ensemble import RandomForestRegressor

reg_rf = RandomForestRegressor()

reg_rf.fit(X_train, y_train)

RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',

max_depth=None, max_features='auto', max_leaf_nodes=None,

max_samples=None, min_impurity_decrease=0.0,

min_impurity_split=None, min_samples_leaf=1,

min_samples_split=2, min_weight_fraction_leaf=0.0,

n_estimators=100, n_jobs=None, oob_score=False,

random_state=None, verbose=0, warm_start=False)

y_pred = reg_rf.predict(X_test)

reg_rf.score(X_train, y_train)

0.9534898392715425

reg_rf.score(X_test, y_test)

0.7965776542484004

sns.distplot(y_test-y_pred)

plt.show()

plt.scatter(y_test, y_pred, alpha = 0.5)

plt.xlabel("y_test")

plt.ylabel("y_pred")
plt.show()

from sklearn import metrics

print('MAE:', metrics.mean_absolute_error(y_test, y_pred))

print('MSE:', metrics.mean_squared_error(y_test, y_pred))

print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))

MAE: 1176.7430206351905

MSE: 4386204.076689104

RMSE: 2094.3266403999887

RMSE/(max(DV)-min(DV))

2090.5509/(max(y)-min(y))

0.026887077025966846

metrics.r2_score(y_test, y_pred)

0.7965776542484004

Hyperparameter Tuning
• Choose following method for hyperparameter tuning

a. RandomizedSearchCV --> Fast

b. GridSearchCV

• Assign hyperparameters in form of dictionery

• Fit the model

• Check best paramters and best score

from sklearn.model_selection import RandomizedSearchCV

#Randomized Search CV

Number of trees in random forest

n_estimators = [int(x) for x in np.linspace(start = 100, stop = 1200, num = 12)]

Number of features to consider at every split

max_features = ['auto', 'sqrt']

Maximum number of levels in tree
max_depth = [int(x) for x in np.linspace(5, 30, num = 6)]

Minimum number of samples required to split a node

min_samples_split = [2, 5, 10, 15, 100]

Minimum number of samples required at each leaf node

min_samples_leaf = [1, 2, 5, 10]

Create the random grid

random_grid = {'n_estimators': n_estimators,

'max_features': max_features,

'max_depth': max_depth,

'min_samples_split': min_samples_split,

'min_samples_leaf': min_samples_leaf}

Random search of parameters, using 5 fold cross validation,
search across 100 different combinations
rf_random = RandomizedSearchCV(estimator = reg_rf, param_distributions =

random_grid,scoring='neg_mean_squared_error', n_iter = 10, cv = 5, verbose=2,

random_state=42, n_jobs = 1)

rf_random.fit(X_train,y_train)

Fitting 5 folds for each of 10 candidates, totalling 50 fits

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt,

max_depth=10

[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt,

max_depth=10, total= 3.5s

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt,

max_depth=10

[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 3.4s remaining: 0.0s

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt,

max_depth=10, total= 3.7s

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt,

max_depth=10

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt,

max_depth=10, total= 4.3s

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt,

max_depth=10

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt,

max_depth=10, total= 4.5s

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt,

max_depth=10

[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt,

max_depth=10, total= 4.2s

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=15

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=15, total= 6.3s

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=15

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=15, total= 6.5s

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=15

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=15, total= 6.4s

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=15

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=15, total= 6.3s

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=15

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=15, total= 6.2s

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto,

max_depth=15

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto,

max_depth=15, total= 3.9s

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto,

max_depth=15

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto,

max_depth=15, total= 3.8s

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto,

max_depth=15

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto,

max_depth=15, total= 3.7s

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto,

max_depth=15

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto,

max_depth=15, total= 3.8s

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto,

max_depth=15

[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto,

max_depth=15, total= 4.1s

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto,

max_depth=15

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto,

max_depth=15, total= 7.8s

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto,

max_depth=15

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto,

max_depth=15, total= 7.7s

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto,

max_depth=15

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto,

max_depth=15, total= 7.7s

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto,

max_depth=15

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto,

max_depth=15, total= 7.8s

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto,

max_depth=15

[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto,

max_depth=15, total= 7.6s

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto,

max_depth=20

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto,

max_depth=20, total= 12.8s

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto,

max_depth=20

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto,

max_depth=20, total= 12.8s

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto,

max_depth=20

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto,

max_depth=20, total= 11.9s

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto,

max_depth=20

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto,

max_depth=20, total= 11.9s

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto,

max_depth=20

[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto,

max_depth=20, total= 12.1s

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt,

max_depth=25

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt,

max_depth=25, total= 11.2s

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt,

max_depth=25

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt,

max_depth=25, total= 11.0s

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt,

max_depth=25

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt,

max_depth=25, total= 11.1s

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt,

max_depth=25

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt,

max_depth=25, total= 11.4s

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt,

max_depth=25

[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt,

max_depth=25, total= 11.6s

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt,

max_depth=5

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt,

max_depth=5, total= 4.2s

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt,

max_depth=5

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt,

max_depth=5, total= 3.9s

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt,

max_depth=5

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt,

max_depth=5, total= 3.7s

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt,

max_depth=5

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt,

max_depth=5, total= 4.1s

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt,

max_depth=5

[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt,

max_depth=5, total= 3.9s

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt,

max_depth=15

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt,

max_depth=15, total= 1.9s

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt,

max_depth=15

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt,

max_depth=15, total= 1.6s

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt,

max_depth=15

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt,

max_depth=15, total= 1.6s

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt,

max_depth=15

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt,

max_depth=15, total= 1.5s

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt,

max_depth=15

[CV] n_estimators=300, min_samples_split=15, min_samples_leaf=1, max_features=sqrt,

max_depth=15, total= 1.5s

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=5

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=5, total= 2.0s

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=5

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=5, total= 1.9s

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=5

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=5, total= 2.0s

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=5

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=5, total= 1.9s

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=5

[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,

max_depth=5, total= 2.0s

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto,

max_depth=20

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto,

max_depth=20, total= 11.4s

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto,

max_depth=20

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto,

max_depth=20, total= 11.2s

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto,

max_depth=20

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto,

max_depth=20, total= 10.9s

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto,

max_depth=20

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto,

max_depth=20, total= 11.0s

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto,

max_depth=20

[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto,

max_depth=20, total= 11.1s

[Parallel(n_jobs=1)]: Done 50 out of 50 | elapsed: 5.4min finished

RandomizedSearchCV(cv=5, error_score=nan,

estimator=RandomForestRegressor(bootstrap=True,

ccp_alpha=0.0,

criterion='mse',

max_depth=None,

max_features='auto',

max_leaf_nodes=None,

max_samples=None,

min_impurity_decrease=0.0,

min_impurity_split=None,

min_samples_leaf=1,

min_samples_split=2,

min_weight_fraction_leaf=0.0,

n_estimators=100,

n_jobs=None, oob_score=Fals...

iid='deprecated', n_iter=10, n_jobs=1,

param_distributions={'max_depth': [5, 10, 15, 20, 25, 30],

'max_features': ['auto', 'sqrt'],

'min_samples_leaf': [1, 2, 5, 10],

'min_samples_split': [2, 5, 10, 15,

100],

'n_estimators': [100, 200, 300, 400,

500, 600, 700, 800,

900, 1000, 1100,

1200]},

pre_dispatch='2*n_jobs', random_state=42, refit=True,

return_train_score=False, scoring='neg_mean_squared_error',

verbose=2)

rf_random.best_params_

{'n_estimators': 700,

'min_samples_split': 15,

'min_samples_leaf': 1,

'max_features': 'auto',

'max_depth': 20}

prediction = rf_random.predict(X_test)

plt.figure(figsize = (8,8))

sns.distplot(y_test-prediction)

plt.show()

plt.figure(figsize = (8,8))

plt.scatter(y_test, prediction, alpha = 0.5)

plt.xlabel("y_test")

plt.ylabel("y_pred")
plt.show()

print('MAE:', metrics.mean_absolute_error(y_test, prediction))

print('MSE:', metrics.mean_squared_error(y_test, prediction))

print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, prediction)))

MAE: 1164.395004990247

MSE: 4051214.5394281833

RMSE: 2012.76291187715

Save the model to reuse it again
import pickle

open a file, where you ant to store the data
file = open('flight_rf.pkl', 'wb')

dump information to that file
pickle.dump(rf_random, file)

model = open('flight_rf.pkl','rb')
forest = pickle.load(model)

y_prediction = forest.predict(X_test)

metrics.r2_score(y_test, y_prediction)

0.8121137205782866

Chapter 4

Conclusion and Future Scope

4.1 Conclusion

From our detailed analysis of each of the 18 routes, we can determine the following

• Flight prices almost always remain constant or increase between the major cities .

• Tourist routes and routes that offer services involving Tier-2 cities of the country have

uneven trends related to the increase and decrease of airline ticket prices.

• The model in the worst case almost breaks even with the profits and losses, and most case

saves an average of about Rs. 200 per transaction when predicting to wait.

• Routes with data collected over the longer duration of time tend to facilitate with much

more accurate predictions in the model and thus lead to higher average savings.

We were successfully able to analyse each route and generalize the entire project based in terms

of the sector to which the route belonged, and classified them into three major subsections -

Business Routes, Tourist Routes and Tier-2 Routes. We have also successfully busted some of

the typical myths and misconceptions related to the airline industry and backed them up with

data and analysis. 13

Finally, we have created a User Interface for the entire process of buying an airline ticket and

given a proof of our predictions based on the previous trends with our prediction. Thus leaving it

as a battle between “The risk appetite of the user” vs “Our understanding of the airline industry”.

4.2 Future Scope
• More routes can be added and the same analysis can be expanded to major airports and

travel routes in India.

• The analysis can be done by increasing the data points and increasing the historical data

used. That will train the model better giving better accuracies and more savings.

• More rules can be added in the Rule based learning based on our understanding of the

industry, also incorporating the offer periods given by the airlines.

• Developing a more user friendly interface for various routes giving more flexibility to the

users

 References

1. O. Etzioni, R. Tuchinda, C. A. Knoblock, and A. Yates. To buy or not to buy: mining airfare

data to minimize ticket purchase price.

2. Manolis Papadakis. Predicting Airfare Prices.

3. Groves and Gini, 2011. A Regression Model For Predicting Optimal Purchase Timing For

Airline Tickets.

4. Modeling of United States Airline Fares – Using the Official Airline Guide (OAG) and Airline

Origin and Destination Survey (DB1B), Krishna Rama-Murthy, 2006.

5. B. S. Everitt: The Cambridge Dictionary of Statistics, Cambridge University Press, Cambridge

(3rd edition, 2006). ISBN 0-521-69027-7.

6. Bishop: Pattern Recognition and Machine Learning, Springer, ISBN 0-387-31073-8.

7. E. Bachis and C. A. Piga. Low-cost airlines and online price dispersion. International Journal

of Industrial Organization, In Press, Corrected Proof, 2011.

8. P. P. Belobaba. Airline yield management. an overview of seat inventory control.

Transportation Science, 21(2):63, 1987.

9. Y. Levin, J. McGill, and M. Nediak. Dynamic pricing in the presence of strategic consumers

and oligopolistic competition. Management Science, 55(1):32–46, 2009

